2020.0266.SP0002 RPT SWPPP Tahoma Terra 09-01-2020
PRELIMINARY
Stormwater Pollution Prevention Plan (SWPPP)
TAHOMA TERRA
PHASE II, DIVISION III
Project # 10182000024
September 1, 2020
Prepared by:
Ben Enfield, PE
Frances Constantino
Consulting Engineers
612 Woodland Square Loop SE, Suite 100
Lacey, WA 98503
(360) 292-7230
(360) 292-7231 FAX
Construction Stormwater General Permit (CSWGP)
Stormwater Pollution Prevention Plan
(SWPPP)
for
Tahoma Terra
Phase II, Division III
Prepared for:
Department of Ecology
Northwest Regional Office
Permittee / Owner Developer Operator / Contractor
Tahoma Terra Holding, LLC Tahoma Terra Holding, LLC TBD
Certified Erosion and Sediment Control Lead (CESCL)
Name Organization Contact Phone Number
TBD - -
SWPPP Prepared By
Name Organization Contact Phone Number
Frances Constantino KPFF Consulting Engineers (360) 292-7230
SWPPP Preparation Date
9/1/2020
Project Construction Dates
Activity / Phase Start Date End Date
Site Improvements TBD TBD
TABLE OF CONTENTS
Project Information __________________________________________________ 1
Existing Conditions __________________________________________________ 1
Proposed Construction Activities _______________________________________ 2
Construction Stormwater Best Management Practices (BMPs) ______________ 3
The 13 Elements ____________________________________________________ 3
Element 1: Preserve Vegetation/Mark Clearing Limits _____________________ 3
Element 2: Establish Construction Access ______________________________ 4
Element 3: Control Flow Rates ______________________________________ 5
Element 4: Install Sediment Controls __________________________________ 6
Element 5: Stabilize Soils ___________________________________________ 7
Element 6: Protect Slopes __________________________________________ 8
Element 7: Protect Drain Inlets ______________________________________ 9
Element 8: Stabilize Channels and Outlets ____________________________ 10
Element 9: Control Pollutants _______________________________________ 11
Element 10: Control Dewatering ____________________________________ 14
Element 11: Maintain BMPs ________________________________________ 15
Element 12: Manage the Project ____________________________________ 16
Element 13: Protect Low Impact Development _________________________ 19
Pollution Prevention Team ___________________________________________ 20
Monitoring and Sampling Requirements ________________________________ 21
Site Inspection ____________________________________________________ 21
Stormwater Quality Sampling _________________________________________ 21
Turbidity Sampling _______________________________________________ 21
pH Sampling ____________________________________________________ 23
Discharges to 303 (d) or Total Maximum Daily Load (TMDL) Waterbodies_____ 24
303 (d) Listed Waterbodies __________________________________________ 24
TMDL Waterbodies ________________________________________________ 24
Reporting and Record Keeping ________________________________________ 25
Record Keeping ___________________________________________________ 25
Site Log Book ___________________________________________________ 25
Records Retention _______________________________________________ 25
Updating the SWPPP _____________________________________________ 25
Reporting ________________________________________________________ 26
Discharge Monitoring Reports ______________________________________ 26
Notification of Noncompliance ______________________________________ 26
List of Tables
Table 1 _____________________________________________________________ 1
Table 2 ____________________________________________________________ 11
Table 3 ____________________________________________________________ 12
Table 4 ____________________________________________________________ 14
Table 5 ____________________________________________________________ 16
Table 6 ____________________________________________________________ 17
Table 7 ____________________________________________________________ 20
Table 8 ____________________________________________________________ 21
Table 9 ____________________________________________________________ 23
List of Appendices
A. Site Map
B. BMP Details
C. Correspondence
D. Site Inspection Form
E. Construction Stormwater General Permit (CSWGP)
List of Acronyms and Abbreviations
Acronym / Abbreviation Explanation
303(d) Section of the Clean Water Act pertaining to Impaired Waterbodies
BFO Bellingham Field Office of the Department of Ecology
BMP(s) Best Management Practice(s)
CESCL Certified Erosion and Sediment Control Lead
CO2 Carbon Dioxide
CRO Central Regional Office of the Department of Ecology
CSWGP Construction Stormwater General Permit
CWA Clean Water Act
DMR Discharge Monitoring Report
DO Dissolved Oxygen
Ecology Washington State Department of Ecology
EPA United States Environmental Protection Agency
ERO Eastern Regional Office of the Department of Ecology
ERTS Environmental Report Tracking System
ESC Erosion and Sediment Control
GULD General Use Level Designation
NPDES National Pollutant Discharge Elimination System
NTU Nephelometric Turbidity Units
NWRO Northwest Regional Office of the Department of Ecology
pH Power of Hydrogen
RCW Revised Code of Washington
SPCC Spill Prevention, Control, and Countermeasure
su Standard Units
SWMMEW Stormwater Management Manual for Eastern Washington
SWMMWW Stormwater Management Manual for Western Washington
SWPPP Stormwater Pollution Prevention Plan
TESC Temporary Erosion and Sediment Control
SWRO Southwest Regional Office of the Department of Ecology
TMDL Total Maximum Daily Load
VFO Vancouver Field Office of the Department of Ecology
WAC Washington Administrative Code
WSDOT Washington Department of Transportation
WWHM Western Washington Hydrology Model
1
Project Information (1.0)
Project/Site Name: Tahoma Terra - Phase II, Division III
Street/Location: Tahoma Blvd. SE
City: Yelm State: WA Zip code: 98597
Subdivision: n/a
Receiving waterbody: Groundwater
Existing Conditions (1.1)
Total acreage: 46.6 acres
Disturbed acreage: 46.6 acres
Existing structures: Existing Storm Drainage Pipe
Land cover: The project site mainly consists of natural vegetation with two existing infiltration
ponds in the center of the site. There are no existing impervious surfaces on site.
Landscape topography: The project site generally slopes from six to sixty-six percent. The
highest point of the site is located approximately 50 ft. east of nearest existing pond at an
elevation of 406 feet. The lowest existing elevation on the property is located on the east
property line at approximately 329 feet.
Drainage patterns: An existing storm pipe system was installed in a previous development in
which the main pipes run along Tahoma Boulevard and heads south into nearest existing pond.
The majority of stormwater runoff follows the existing topography and generally sheet flows into
the existing infiltration ponds located in the center of site. Runoff currently infiltrates on-site and
sheet flows off-site along the south and east property lines of the project site.
Existing Vegetation: The site was cleared in 2007. Current vegetation consists of bushes, grass,
and small trees throughout project site.
Critical Areas (wetlands, streams, flood zone and high erosion risk): The site lies within a critical
aquifer recharge area and a portion of the site is located within a wellhead protection area. There
are also nearby streams, wetland areas, and floodplain adjacent to the site per FEMA Flood
Zone A as shown on FIRM Panel 53067C0335E.
Table 1 includes a list of suspected and/or known contaminants associated with the construction
activity.
Table 1 – Summary of Site Pollutant Constituents
Constituent
(Pollutant) Location Depth Concentration
None - - -
2
Proposed Construction Activities (1.2)
Description of site development:
The proposed project will be a residential development with 234 lots and 4 apartment buildings.
Description of construction activities:
TESC installation, site grading, trenching & installation for underground utilities (sanitary sewer,
water, stormwater, underground vaults), building construction.
Description of site drainage including flow from and onto adjacent properties. Must be
consistent with Site Map in Appendix A:
Proposed grading of the project site consists of creating a relatively flat developable site.
Infiltration ponds and wetponds will treat and infiltrate more than half of the on-site stormwater
runoff. Runoff from the proposed parking lot, driveway, and roof areas will be conveyed to
nearest pond via pipes. Runoff not infiltrated into the soil will be conveyed into the proposed
main storm system.
Description of final stabilization:
Final stabilization will consist of landscaping and paving.
Contaminated Site Information:
Proposed activities regarding contaminated soils or groundwater (example: on-site treatment
system, authorized sanitary sewer discharge):
None known or suspected.
3
Construction Stormwater Best Management Practices (BMPs) (2.0)
The SWPPP is a living document reflecting current conditions and changes throughout the life
of the project. These changes may be informal (i.e. hand-written notes and deletions). Update
the SWPPP when the CESCL has noted a deficiency in BMPs or deviation from original design.
The 13 Elements (2.1)
Element 1: Preserve Vegetation / Mark Clearing Limits (2.1.1)
To protect adjacent properties and to reduce the area of soil exposed to construction, the limits
of construction will be clearly marked before land-disturbing activities begin. Trees that are to be
preserved, as well as sensitive areas and their buffers, shall be clearly delineated, both in the
field and on the plans. In general, natural vegetation and native topsoil shall be retained in an
undisturbed state to the maximum extent possible.
List and describe BMPs:
BMP C101: Preserving Natural Vegetation
BMP C102: Buffer Zones
BMP C233: Silt Fence
Installation Schedules: Prior to land disturbing activities and as needed.
Inspection and Maintenance plan: Per BMP Maintenance Standards. It is the CESCL’s
responsibility to ensure that all necessary BMPs are adequately installed prior to land disturbing
activities. Once installed, the CESCL must perform periodic inspections to ensure that all BMPs
are functioning properly. The CESCL may also suggest the installation of additional BMPs not
listed above.
Responsible Staff: Contractor provided CESCL.
4
Element 2: Establish Construction Access (2.1.2)
Two stabilized construction entrances will be provided off Tahoma Boulevard SE. Construction
access or activities occurring on unpaved areas shall be minimized, yet where necessary,
access points shall be stabilized to minimize the tracking of sediment onto public roads, and
wheel washing, street sweeping, and street cleaning shall be employed to prevent sediment
from entering State waters. All wash wastewater shall be controlled on-site.
List and describe BMPs:
BMP C105: Stabilized Construction Access
BMP C106: Wheel Wash
BMP C107: Construction Road/Parking Area Stabilization
Construction road/parking area stabilization shall be implemented to keep the existing on-site
roads clean.
Installation Schedules: Prior to land disturbing activities.
Inspection and Maintenance plan: Per BMP maintenance standards. It is the CESCL’s
responsibility to ensure that all necessary BMPs are adequately installed prior to land disturbing
activities. Once installed, the CESCL must inspect the construction entrance for silt and soil
build up and also look for any soil washout on to hard surfaces. If soil washout is present, the
CESCL must take appropriate actions to alleviate the problem.
Responsible Staff: Contractor provided CESCL.
5
Element 3: Control Flow Rates (2.1.3)
In order to protect the properties and waterways downstream of the project site, stormwater
from the site will be controlled by two existing infiltration ponds on site. V-ditches with rock
check dams will be installed to direct stormwater flow towards the infiltration ponds. Silt fence
will also be installed around the downstream project perimeter to prevent sediment laden runoff
from leaving the project site.
Will you construct stormwater retention and/or detention facilities?
☒Yes ☐No
Will you use permanent infiltration ponds or other low impact development (example: rain
gardens, bio-retention, porous pavement) to control flow during construction?
☒Yes ☐No
List and describe BMPs:
BMP C241: Sediment Pond (Temporary)
BMP C207: Check Dams
Installation Schedules: Prior to land disturbing activities and as needed.
Inspection and Maintenance Plan: Per BMP maintenance standards sediment levels shall be
monitored and sediment shall be removed to ensure proper performance of the check dams and
sediment ponds. It is the CESCL’s responsibility to ensure that all necessary BMPs are
adequately installed prior to land disturbing activities. Once installed, the CESCL must inspect
the construction entrance for silt and soil build up and also look for any soil washout on to hard
surfaces. If the above listed BMPs are inadequate at controlling flowrates, the CESCL must
take appropriate actions to alleviate the problem
Responsible Staff: Contractor provided CESCL
6
Element 4: Install Sediment Controls (2.1.4)
All stormwater runoff from disturbed areas shall pass through an appropriate sediment removal
BMP before leaving the construction site, or prior to being discharged to an infiltration facility. In
addition, sediment will be removed from paved areas, in and adjacent to construction work
areas manually or using mechanical sweepers, as needed, to minimize tracking of sediments on
vehicle tires away from the site and to minimize wash off of sediments from adjacent streets in
runoff.
List and describe BMPs:
BMP C220: Storm Drain Inlet Protection
BMP C233: Silt Fence
Installation Schedules: Prior to land disturbing activities and as needed.
Inspection and Maintenance Plan: Per BMP maintenance standards. It is the CESCL’s
responsibility to ensure that all necessary BMPs are adequately installed. Once installed, the
CESCL must perform periodic inspections to ensure that all BMPs are functioning properly. The
CESCL may also suggest the installation of additional BMPs not listed above.
Responsible Staff: Contractor provided CESCL
7
Element 5: Stabilize Soils (2.1.5)
Exposed and unworked soils shall be stabilized with the application of effective BMPs to prevent
erosion throughout the life of the project. All stockpiled soils shall be stabilized from erosion,
protected with sediment trapping measures, and where possible, be located away from storm
drain inlets, waterways, and drainage channels.
West of the Cascade Mountains Crest
Season Dates Number of Days Soils Can
be Left Exposed
During the Dry Season May 1 – September 30 7 days
During the Wet Season October 1 – April 30 2 days
Soils must be stabilized at the end of the shift before a holiday or weekend if needed based on
the weather forecast.
Anticipated project dates: Start date: Spring 2021 End date: Summer 2024
Will you construct during the wet season?
☒Yes ☐No
Exposed and unworked soils shall be stabilized with the application of effective BMPs to prevent
erosion throughout the life of the project.
List and describe BMPs:
BMP C140: Dust Control
BMP C120: Temporary and Permanent Seeding
Installation Schedules: As needed.
Inspection and Maintenance Plan: Per BMP maintenance standards. It is the CESCL’s
responsibility to ensure that all necessary BMPs are adequately installed. Once installed, the
CESCL must perform periodic inspections to ensure that all BMPs are functioning properly. The
CESCL may also suggest the installation of additional BMPs not listed above.
Responsible Staff: Contractor provided CESCL
8
Element 6: Protect Slopes (2.1.6)
All cut and fill slopes will be designed, constructed, and protected in a manner than minimizes
erosion. Scouring will be reduced by using v-ditches with rock check dams to convey
stormwater to the sediment pond on-site.
Will steep slopes be present at the site during construction?
☒Yes ☐No
BMP C207: Check Dams
Installation Schedules: Prior to grading that directs runoff toward slopes.
Inspection and Maintenance Plan: Per BMP maintenance standards. It is the CESCL’s
responsibility to ensure that all necessary BMPs are adequately installed. Once installed, the
CESCL must perform periodic inspections to ensure that all BMPs are functioning properly. The
CESCL may also suggest the installation of additional BMPs not listed above.
Responsible Staff: Contractor provided CESCL
9
Element 7: Protect Drain Inlets (2.1.7)
All storm drain inlets and culverts made operable during construction shall be protected to
prevent unfiltered or untreated water from entering the drainage conveyance system. However,
the first priority is to keep all access roads clean of sediment, and keep street wash water
separate from entering storm drains until treatment can be provided. Storm Drain Inlet
Protection (BMP C220) will be implemented for all drainage inlets and culverts that could
potentially be impacted by sediment-laden runoff on and near the project site.
List and describe BMPs:
BMP C220: Storm Drain Inlet Protection
Installation Schedules: Prior to land disturbing activities.
Inspection and Maintenance Plan: Per BMP maintenance standards. It is the CESCL’s
responsibility to ensure that all necessary BMPs are adequately installed. Once installed, the
CESCL must perform periodic inspections to ensure that all BMPs are functioning properly.
Storm drain inlet protection should be regularly emptied and cleans to maximize effectiveness.
Responsible Staff: Contractor provided CESCL
10
Element 8: Stabilize Channels and Outlets (2.1.8)
For construction stormwater conveyance, v-ditches with rock check dams will be installed to
stabilize channels.
Provide stabilization, including armoring material, adequate to prevent erosion of outlets,
adjacent stream banks, slopes, and downstream reaches, will be installed at the outlets of all
conveyance systems.
Where site runoff is to be conveyed in channels, or discharged to a stream or some other
natural drainage point, efforts will be taken to prevent downstream erosion
List and describe BMPs:
BMP C207: Check Dams
Installation Schedules: Prior to grading that directs runoff toward slopes.
Inspection and Maintenance Plan: Per BMP maintenance standards. It is the CESCL’s
responsibility to ensure that all necessary BMPs are adequately installed. Once installed, the
CESCL must perform periodic inspections to ensure that all BMPs are functioning properly. The
CESCL may also suggest the installation of additional BMPs not listed above.
Responsible Staff: Contractor provided CESCL
11
Element 9: Control Pollutants (2.1.9)
The following pollutants are anticipated to be present on-site:
Table 2 – Pollutants
Pollutant (and source, if applicable)
Petroleum products for construction equipment
Asphalt and concrete for site improvements
etc.
All pollutants, including waste materials and demolition debris, that occur on-site shall be
handled and disposed of in a manner that does not cause contamination of stormwater. Good
housekeeping and preventative measures will be taken to ensure that the site will be kept clean,
well-organized, and free of debris.
List and describe BMPs:
BMP C151: Concrete Handling
BMP C153: Material Delivery, Storage and Containment
BMPC154: Concrete Washout Area
BMP C251: Construction Stormwater Filtration
Volume IV – Source Control BMPs
S407 BMPs for Dust Control at Disturbed Land Areas and Unpaved Roadways and
Parking Lots
S411 BMPs for Landscaping and Lawn/Vegetation Management
S412 BMPs for Loading and Unloading Areas for Liquid and Solid Material
S414 BMPs for Maintenance and Repair of Vehicles and Equipment
S417 BMPs for Maintenance of Stormwater Drainage and Treatment Systems
S419 BMPs for Mobile Fueling of Vehicles and Heavy Equipment
S421 BMPs for Parking and Storage of Vehicles and Equipment
S426 BMPs for Spills of Oil and Hazardous Materials
Installation Schedules: As needed.
Inspection and Maintenance Plan: Per BMP maintenance standards. It is the CESCL’s
responsibility to ensure that all necessary BMPs are adequately installed. Once installed, the
CESCL must perform periodic inspections to ensure that all BMPs are functioning properly. The
CESCL may also suggest the installation of additional BMPs not listed above.
Responsible Staff: Contractor provided CESCL.
12
Will maintenance, fueling, and/or repair of heavy equipment and vehicles occur on-site?
☒Yes ☐No
List and describe BMPs:
S412 BMPs for Loading and Unloading Areas for Liquid and Solid Material
S414 BMPs for Maintenance and Repair of Vehicles and Equipment
S419 BMPs for Mobile Fueling of Vehicles and Heavy Equipment
S426 BMPs for Spills of Oil and Hazardous Materials
Installation Schedules: As needed.
Inspection and Maintenance Plan: As needed
Responsible Staff: Per BMP maintenance standards. It is the CESCL’s responsibility to ensure
that all necessary BMPs are adequately installed. Once installed, the CESCL must perform
periodic inspections to ensure that all BMPs are functioning properly. The CESCL may also
suggest the installation of additional BMPs not listed above.
Will wheel wash or tire bath system BMPs be used during construction?
☐Yes ☐No
Will pH-modifying sources be present on-site?
☒Yes ☐No
Table 3 – pH-Modifying Sources
None
X Bulk cement
Cement kiln dust
Fly ash
Other cementitious materials
New concrete washing or curing waters
Waste streams generated from concrete grinding and sawing
Exposed aggregate processes
Dewatering concrete vaults
X Concrete pumping and mixer washout waters
Recycled concrete
Other (i.e. calcium lignosulfate) [please describe]
List and describe BMPs:
BMP C252: Treating and Disposing of High pH Water
Installation Schedules:
Inspection and Maintenance Plan: Per BMP maintenance standards. It is the CESCL’s
responsibility to ensure that all necessary BMPs are adequately installed. Once installed, the
13
CESCL must perform periodic inspections to ensure that all BMPs are functioning properly. The
CESCL may also suggest the installation of additional BMPs not listed above.
Responsible Staff: Contractor provided CESCL
Concrete trucks must not be washed out onto the ground, or into storm drains, open ditches,
streets, or streams. Excess concrete must not be dumped on-site, except in designated
concrete washout areas with appropriate BMPs installed.
14
Element 10: Control Dewatering (2.1.10)
Dewatering could potentially be necessary depending on field conditions. Groundwater was not
encountered during geotechnical site explorations.
It is not anticipated that any contaminants will be encountered during excavation or possible
dewatering.
Possible dewatering is to be discharged on-site via BMP C240: Temporary Sediment Trap or
any CESCL approved on-site dispersion.
Table 4 – Dewatering BMPs
X Infiltration
Transport off-site in a vehicle (vacuum truck for legal disposal)
Ecology-approved on-site chemical treatment or other suitable treatment technologies
Sanitary or combined sewer discharge with local sewer district approval (last resort)
Use of sedimentation bag with discharge to ditch or swale (small volumes of localized
dewatering)
List and describe BMPs:
Installation Schedules: Prior to land disturbing activities and as needed.
Inspection and Maintenance Plan: Per BMP maintenance standards. It is the CESCL’s
responsibility to ensure that all necessary BMPs are adequately installed. Once installed, the
CESCL must perform periodic inspections to ensure that all BMPs are functioning properly. The
CESCL may also suggest the installation of additional BMPs not listed above.
Responsible Staff: Contractor provided CESCL
15
Element 11: Maintain BMPs (2.1.11)
All temporary and permanent Erosion and Sediment Control (ESC) BMPs shall be maintained
and repaired as needed to ensure continued performance of their intended function.
Maintenance and repair shall be conducted in accordance with each particular BMP
specification (see Volume II of the SWMMWW or Chapter 7 of the SWMMEW).
Visual monitoring of all BMPs installed at the site will be conducted at least once every calendar
week and within 24 hours of any stormwater or non-stormwater discharge from the site. If the
site becomes inactive and is temporarily stabilized, the inspection frequency may be reduced to
once every calendar month.
All temporary ESC BMPs shall be removed within 30 days after final site stabilization is
achieved or after the temporary BMPs are no longer needed.
Trapped sediment shall be stabilized on-site or removed. Disturbed soil resulting from removal
of either BMPs or vegetation shall be permanently stabilized.
Additionally, protection must be provided for all BMPs installed for the permanent control of
stormwater from sediment and compaction. BMPs that are to remain in place following
completion of construction shall be examined and restored to full operating condition. If
sediment enters these BMPs during construction, the sediment shall be removed and the facility
shall be returned to conditions specified in the construction documents.
16
Element 12: Manage the Project (2.1.12)
The project will be managed based on the following principles:
· Projects will be phased to the maximum extent practicable and seasonal work limitations
will be taken into account.
· Inspection and monitoring:
o Inspection, maintenance and repair of all BMPs will occur as needed to ensure
performance of their intended function.
o Site inspections and monitoring will be conducted in accordance with Special
Condition S4 of the CSWGP. Sampling locations are indicated on the Site Map.
Sampling station(s) are located in accordance with applicable requirements of
the CSWGP.
· Maintain an updated SWPPP.
o The SWPPP will be updated, maintained, and implemented in accordance with
Special Conditions S3, S4, and S9 of the CSWGP.
As site work progresses, the SWPPP will be modified routinely to reflect changing site
conditions. The SWPPP will be reviewed monthly to ensure the content is current.
Table 5 – Management
X Design the project to fit the existing topography, soils, and drainage patterns
X Emphasize erosion control rather than sediment control
X Minimize the extent and duration of the area exposed
X Keep runoff velocities low
X Retain sediment on-site
X Thoroughly monitor site and maintain all ESC measures
X Schedule major earthwork during the dry season
Other (please describe)
17
Table 6 – BMP Implementation Schedule
Phase of Construction
Project
Stormwater BMPs Date Wet/Dry
Season
TBD TBD TBD TBD
18
Phase of Construction
Project
Stormwater BMPs Date Wet/Dry
Season
TBD TBD TBD TBD
19
Element 13: Protect Low Impact Development (LID) BMPs (2.1.13).
Infiltration ponds are proposed and amended soils will be utilized for landscape areas. Care
should be taken to ensure heavy machinery does not compact areas for future infiltration in
order to maintain the infiltration capacity of existing soils. Sediment should be removed from the
bottom of the existing infiltration pond at the end of construction.
20
Pollution Prevention Team (3.0)
Table 7 – Team Information
Title Name(s) Phone Number
Certified Erosion and
Sediment Control Lead
(CESCL)
TBD
Resident Engineer Ben Enfield (360) 292-7230
Emergency Ecology
Contact
Northwest Regional Office (425) 649-7000
Emergency Permittee/
Owner Contact
TBD
Non-Emergency Owner
Contact
TBD
Monitoring Personnel TBD
Ecology Regional Office Northwest Regional Office (425) 649-7000
21
Monitoring and Sampling Requirements (4.0)
Monitoring includes visual inspection, sampling for water quality parameters of concern, and
documentation of the inspection and sampling findings in a site log book. A site log book will be
maintained for all on-site construction activities and will include:
· A record of the implementation of the SWPPP and other permit requirements
· Site inspections
· Stormwater sampling data
Create your own Site Inspection Form or use the Construction Stormwater Site Inspection Form
found on Ecology’s website. https://www.ecology.wa.gov/Regulations-Permits/Permits-
certifications/Stormwater-general-permits/Construction-stormwater-permit
Blank form under Appendix D.
The site log book must be maintained on-site within reasonable access to the site and be made
available upon request to Ecology or the local jurisdiction.
Numeric effluent limits may be required for certain discharges to 303(d) listed waterbodies. See
CSWGP Special Condition S8 and Section 5 of this template.
Site Inspection (4.1)
Site inspections will be conducted at least once every calendar week and within 24 hours
following any discharge from the site. For sites that are temporarily stabilized and inactive, the
required frequency is reduced to once per calendar month.
The discharge point(s) are indicated on the Site Map (see Appendix A) and in accordance with
the applicable requirements of the CSWGP.
Stormwater Quality Sampling (4.2)
Turbidity Sampling (4.2.1)
Requirements include calibrated turbidity meter or transparency tube to sample site discharges
for compliance with the CSWGP. Sampling will be conducted at all discharge points at least
once per calendar week.
Method for sampling turbidity:
Table 8 – Turbidity Sampling Method
X Turbidity Meter/Turbidimeter (required for disturbances 5 acres or greater in size)
Transparency Tube (option for disturbances less than 1 acre and up to 5 acres in size)
The benchmark for turbidity value is 25 nephelometric turbidity units (NTU) and a transparency
less than 33 centimeters.
If the discharge’s turbidity is 26 to 249 NTU or the transparency is less than 33 cm but equal to
or greater than 6 cm, the following steps will be conducted:
22
1. Review the SWPPP for compliance with Special Condition S9. Make appropriate
revisions within 7 days of the date the discharge exceeded the benchmark.
2. Immediately begin the process to fully implement and maintain appropriate source
control and/or treatment BMPs as soon as possible. Address the problems within 10
days of the date the discharge exceeded the benchmark. If installation of necessary
treatment BMPs is not feasible within 10 days, Ecology may approve additional time
when the Permittee requests an extension within the initial 10-day response period.
3. Document BMP implementation and maintenance in the site log book.
If the turbidity exceeds 250 NTU or the transparency is 6 cm or less at any time, the following
steps will be conducted:
1. Telephone or submit an electronic report to the applicable Ecology Region’s
Environmental Report Tracking System (ERTS) within 24 hours.
https://www.ecology.wa.gov/About-us/Get-involved/Report-an-environmental-issue
· Northwest Region (King, Kitsap, Island, San Juan, Skagit, Snohomish,
Whatcom): (425) 649-7000
2. Immediately begin the process to fully implement and maintain appropriate source
control and/or treatment BMPs as soon as possible. Address the problems within 10
days of the date the discharge exceeded the benchmark. If installation of necessary
treatment BMPs is not feasible within 10 days, Ecology may approve additional time
when the Permittee requests an extension within the initial 10-day response period
3. Document BMP implementation and maintenance in the site log book.
4. Continue to sample discharges daily until one of the following is true:
· Turbidity is 25 NTU (or lower).
· Transparency is 33 cm (or greater).
· Compliance with the water quality limit for turbidity is achieved.
o 1 - 5 NTU over background turbidity, if background is less than 50 NTU
o 1% - 10% over background turbidity, if background is 50 NTU or greater
· The discharge stops or is eliminated.
23
pH Sampling (4.2.2)
pH monitoring is required for “Significant concrete work” (i.e. greater than 1000 cubic yards
poured concrete or recycled concrete over the life of the project).The use of engineered soils
(soil amendments including but not limited to Portland cement-treated base [CTB], cement kiln
dust [CKD] or fly ash) also requires pH monitoring.
For significant concrete work, pH sampling will start the first day concrete is poured and
continue until it is cured, typically three (3) weeks after the last pour.
For engineered soils and recycled concrete, pH sampling begins when engineered soils or
recycled concrete are first exposed to precipitation and continues until the area is fully
stabilized.
If the measured pH is 8.5 or greater, the following measures will be taken:
1. Prevent high pH water from entering storm sewer systems or surface water.
2. Adjust or neutralize the high pH water to the range of 6.5 to 8.5 su using appropriate
technology such as carbon dioxide (CO2) sparging (liquid or dry ice).
3. Written approval will be obtained from Ecology prior to the use of chemical treatment
other than CO2 sparging or dry ice.
Method for sampling pH:
Table 9 – pH Sampling Method
pH meter
X pH test kit
Wide range pH indicator paper
24
Discharges to 303(d) or Total Maximum Daily Load (TMDL)
Waterbodies (5.0)
303(d) Listed Waterbodies (5.1)
Is the receiving water 303(d) (Category 5) listed for turbidity, fine sediment, phosphorus, or pH?
☐Yes ☒No
TMDL Waterbodies (5.2)
Waste Load Allocation for CWSGP discharges: N/A
Discharges to TMDL receiving waterbodies will meet in-stream water quality criteria at the point
of discharge.
25
Reporting and Record Keeping (6.0)
Record Keeping (6.1)
Site Log Book (6.1.1)
A site log book will be maintained for all on-site construction activities and will include:
· A record of the implementation of the SWPPP and other permit requirements
· Site inspections
· Sample logs
Records Retention (6.1.2)
Records will be retained during the life of the project and for a minimum of three (3) years
following the termination of permit coverage in accordance with Special Condition S5.C of the
CSWGP.
Permit documentation to be retained on-site:
· CSWGP
· Permit Coverage Letter
· SWPPP
· Site Log Book
Permit documentation will be provided within 14 days of receipt of a written request from
Ecology. A copy of the SWPPP or access to the SWPPP will be provided to the public when
requested in writing in accordance with Special Condition S5.G.2.b of the CSWGP.
Updating the SWPPP (6.1.3)
The SWPPP will be modified if:
· Found ineffective in eliminating or significantly minimizing pollutants in stormwater
discharges from the site.
· There is a change in design, construction, operation, or maintenance at the construction
site that has, or could have, a significant effect on the discharge of pollutants to waters
of the State.
The SWPPP will be modified within seven (7) days if inspection(s) or investigation(s) determine
additional or modified BMPs are necessary for compliance. An updated timeline for BMP
implementation will be prepared.
26
Reporting (6.2)
Discharge Monitoring Reports (6.2.1)
Cumulative soil disturbance is one (1) acre or larger; therefore, Discharge Monitoring
Reports (DMRs) will be submitted to Ecology monthly. If there was no discharge during a given
monitoring period the DMR will be submitted as required, reporting “No Discharge”. The DMR
due date is fifteen (15) days following the end of each calendar month.
DMRs will be reported online through Ecology’s WQWebDMR System.
To sign up for WQWebDMR go to:
https://www.ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Water-quality-
permits-guidance/WQWebPortal-guidance
Notification of Noncompliance (6.2.2)
If any of the terms and conditions of the permit is not met, and the resulting noncompliance may
cause a threat to human health or the environment, the following actions will be taken:
1. Ecology will be notified within 24-hours of the failure to comply by calling the applicable
Regional office ERTS phone number (Regional office numbers listed below).
2. Immediate action will be taken to prevent the discharge/pollution or otherwise stop or
correct the noncompliance. If applicable, sampling and analysis of any noncompliance
will be repeated immediately and the results submitted to Ecology within five (5) days of
becoming aware of the violation.
3. A detailed written report describing the noncompliance will be submitted to Ecology
within five (5) days, unless requested earlier by Ecology.
Specific information to be included in the noncompliance report is found in Special Condition
S5.F.3 of the CSWGP.
Anytime turbidity sampling indicates turbidity is 250 NTUs or greater, or water transparency is 6
cm or less, the Ecology Regional office will be notified by phone within 24 hours of analysis as
required by Special Condition S5.A of the CSWGP.
· Northwest Region at (425) 649-7000 for Island, King, Kitsap, San Juan, Skagit,
Snohomish, or Whatcom County
Include the following information:
1. Your name and / Phone number
2. Permit number
3. City / County of project
4. Sample results
5. Date / Time of call
6. Date / Time of sample
7. Project name
In accordance with Special Condition S4.D.5.b of the CSWGP, the Ecology Regional office will
be notified if chemical treatment other than CO2 sparging is planned for adjustment of high pH
water.
APPENDIX A
Site Map
CALL
UNDERGROUND
LOCATE TWO (2)
WORKING DAYS
BEFORE YOU
DIG
811 SECTION 23, TOWNSHIP 17 NORTH, RANGE 1 EAST, W.M.THURSTON COUNTY, WASHINGTONTAHOMA TERRA PHASE III
612 Woodland Square Loop,
Suite 100
Lacey, WA 98503
360.292.7230
www.kpff.com LEGENDTAHOMA BOULEVARDSWPPP SITE PLAN1NOTE:ABWETLANDCLEGAL DESCRIPTION:FINE SANDY LOAMEVERETT VERYGRAVELLY SANDY LOAMTISCH SILT LOAMFEMA FLOOD ZONEBOUNDARYD
CALL
UNDERGROUND
LOCATE TWO (2)
WORKING DAYS
BEFORE YOU
DIG
811 SECTION 23, TOWNSHIP 17 NORTH, RANGE 1 EAST, W.M.THURSTON COUNTY, WASHINGTONTAHOMA TERRA PHASE III
612 Woodland Square Loop,
Suite 100
Lacey, WA 98503
360.292.7230
www.kpff.com STANDARD EROSION CONTROL NOTES:SILT FENCES:SIDE VIEWFRONT VIEWSILT FENCEANOTES:INLET SEDIMENT PROTECTIONBSITE MAP NOTES & DETAILS2 CONSTRUCTION ENTRANCECCONSTRUCTION ENTRANCE NOTES:SPACING BETWEEN CHECK DAMSSECTION A - ANOTE:AAVIEW LOOKING UPSTREAMDROCK CHECK DAMMAINTENANCE STANDARDS:
APPENDIX B
BMP Detail
BMP C101: Preserving Natural Vegetation
Purpose
The purpose of preserving natural vegetation is to reduce erosion wherever practicable. Limiting site
disturbance is the single most effective method for reducing erosion. For example, conifers can hold
up to about 50 percent of all rain that falls during a storm. Up to 20-30 percent of this rain may never
reach the ground but is taken up by the tree or evaporates. Another benefit is that the rain held in the
tree can be released slowly to the ground after the storm.
Conditions of Use
Natural vegetation should be preserved on steep slopes, near perennial and intermittent water-
courses or swales, and on building sites in wooded areas.
l As required by local governments.
l Phase construction to preserve natural vegetation on the project site for as long as possible
during the construction period.
Design and Installation Specifications
Natural vegetation can be preserved in natural clumps or as individual trees, shrubs and vines.
The preservation of individual plants is more difficult because heavy equipment is generally used to
remove unwanted vegetation. The points to remember when attempting to save individual plants
are:
l Is the plant worth saving? Consider the location, species, size, age, vigor, and the work
involved. Local governments may also have ordinances to save natural vegetation and trees.
l Fence or clearly mark areas around trees that are to be saved. It is preferable to keep ground
disturbance away from the trees at least as far out as the dripline.
Plants need protection from three kinds of injuries:
l Construction Equipment - This injury can be above or below the ground level. Damage results
from scarring, cutting of roots, and compaction of the soil. Placing a fenced buffer zone around
plants to be saved prior to construction can prevent construction equipment injuries.
l Grade Changes - Changing the natural ground level will alter grades, which affects the plant's
ability to obtain the necessary air, water, and minerals. Minor fills usually do not cause prob-
lems although sensitivity between species does vary and should be checked. Trees can typ-
ically tolerate fill of 6 inches or less. For shrubs and other plants, the fill should be less.
When there are major changes in grade, it may become necessary to supply air to the roots of
plants. This can be done by placing a layer of gravel and a tile system over the roots before the
fill is made. The tile system should be laid out on the original grade leading from a dry well
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 271
around the tree trunk. The system should then be covered with small stones to allow air to cir-
culate over the root area.
Lowering the natural ground level can seriously damage trees and shrubs. The highest per-
centage of the plant roots are in the upper 12 inches of the soil and cuts of only 2-3 inches can
cause serious injury. To protect the roots it may be necessary to terrace the immediate area
around the plants to be saved. If roots are exposed, construction of retaining walls may be
needed to keep the soil in place. Plants can also be preserved by leaving them on an undis-
turbed, gently sloping mound. To increase the chances for survival, it is best to limit grade
changes and other soil disturbances to areas outside the dripline of the plant.
l Excavations - Protect trees and other plants when excavating for drainfields, power, water,
and sewer lines. Where possible, the trenches should be routed around trees and large
shrubs. When this is not possible, it is best to tunnel under them. This can be done with hand
tools or with power augers. If it is not possible to route the trench around plants to be saved,
then the following should be observed:
o Cut as few roots as possible. When you have to cut, cut clean. Paint cut root ends with a
wood dressing like asphalt base paint if roots will be exposed for more than 24-hours.
o Backfill the trench as soon as possible.
o Tunnel beneath root systems as close to the center of the main trunk to preserve most
of the important feeder roots.
Some problems that can be encountered with a few specific trees are:
l Maple, Dogwood, Red alder, Western hemlock, Western red cedar, and Douglas fir do not
readily adjust to changes in environment and special care should be taken to protect these
trees.
l The windthrow hazard of Pacific silver fir and madrona is high, while that of Western hemlock
is moderate. The danger of windthrow increases where dense stands have been thinned.
Other species (unless they are on shallow, wet soils less than 20 inches deep) have a low
windthrow hazard.
l Cottonwoods, maples, and willows have water-seeking roots. These can cause trouble in
sewer lines and infiltration fields. On the other hand, they thrive in high moisture conditions
that other trees would not.
l Thinning operations in pure or mixed stands of Grand fir, Pacific silver fir, Noble fir, Sitka
spruce, Western red cedar, Western hemlock, Pacific dogwood, and Red alder can cause ser-
ious disease problems. Disease can become established through damaged limbs, trunks,
roots, and freshly cut stumps. Diseased and weakened trees are also susceptible to insect
attack.
Maintenance Standards
Inspect flagged and/or fenced areas regularly to make sure flagging or fencing has not been
removed or damaged. If the flagging or fencing has been damaged or visibility reduced, it shall be
repaired or replaced immediately and visibility restored.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 272
If tree roots have been exposed or injured, “prune” cleanly with an appropriate pruning saw or lop-
pers directly above the damaged roots and recover with native soils. Treatment of sap flowing trees
(fir, hemlock, pine, soft maples) is not advised as sap forms a natural healing barrier.
BMP C102: Buffer Zones
Purpose
Creation of an undisturbed area or strip of natural vegetation or an established suitable planting that
will provide a living filter to reduce soil erosion and stormwater runoff velocities.
Conditions of Use
Buffer zones are used along streams, wetlands and other bodies of water that need protection from
erosion and sedimentation. Contractors can use vegetative buffer zone BMPs to protect natural
swales and they can incorporate them into the natural landscaping of an area.
Do not use critical-areas buffer zones as sediment treatment areas. These areas shall remain com-
pletely undisturbed. The local permitting authority may expand the buffer widths temporarily to allow
the use of the expanded area for removal of sediment.
The types of buffer zones can change the level of protection required as shown below:
Designated Critical Area Buffers - buffers that protect Critical Areas, as defined by the Washington
State Growth Management Act, and are established and managed by the local permitting authority.
These should not be disturbed and must protected with sediment control BMPs to prevent impacts.
The local permitting authority may expand the buffer widths temporarily to allow the use of the expan-
ded area for removal of sediment.
Vegetative Buffer Zones - areas that may be identified in undisturbed vegetation areas or managed
vegetation areas that are outside any Designated Critical Area Buffer. They may be utilized to
provide an additional sediment control area and/or reduce runoff velocities. If being used for pre-
servation of natural vegetation, they should be arranged in clumps or strips. They can be used to pro-
tect natural swales and incorporated into the natural landscaping area.
Design and Installation Specifications
l Preserving natural vegetation or plantings in clumps, blocks, or strips is generally the easiest
and most successful method.
l Leave all unstable steep slopes in natural vegetation.
l Mark clearing limits and keep all equipment and construction debris out of the natural areas
and buffer zones. Steel construction fencing is the most effective method to protect sensitive
areas and buffers. Alternatively, wire-backed silt fence on steel posts is marginally effective.
Flagging alone is typically not effective.
l Keep all excavations outside the dripline of trees and shrubs.
l Do not push debris or extra soil into the buffer zone area because it will cause damage by
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 273
burying and smothering vegetation.
l Vegetative buffer zones for streams, lakes or other waterways shall be established by the
local permitting authority or other state or federal permits or approvals.
Maintenance Standards
Inspect the area frequently to make sure flagging remains in place and the area remains undis-
turbed. Replace all damaged flagging immediately. Remove all materials located in the buffer area
that may impede the ability of the vegetation to act as a filter.
BMP C103: High-Visibility Fence
Purpose
High-visibility fencing is intended to:
l Restrict clearing to approved limits.
l Prevent disturbance of sensitive areas, their buffers, and other areas required to be left undis-
turbed.
l Limit construction traffic to designated construction entrances, exits, or internal roads.
l Protect areas where marking with survey tape may not provide adequate protection.
Conditions of Use
To establish clearing limits plastic, fabric, or metal fence may be used:
l At the boundary of sensitive areas, their buffers, and other areas required to be left uncleared.
l As necessary to control vehicle access to and on the site.
Design and Installation Specifications
High-visibility plastic fence shall be composed of a high-density polyethylene material and shall be at
least four feet in height. Posts for the fencing shall be steel or wood and placed every 6 feet on center
(maximum) or as needed to ensure rigidity. The fencing shall be fastened to the post every six inches
with a polyethylene tie. On long continuous lengths of fencing, a tension wire or rope shall be used as
a top stringer to prevent sagging between posts. The fence color shall be high-visibility orange. The
fence tensile strength shall be 360 lbs/ft using the ASTM D4595 testing method.
If appropriate install fabric silt fence in accordance with BMP C233: Silt Fence to act as high-visibility
fence. Silt fence shall be at least 3 feet high and must be highly visible to meet the requirements of
this BMP.
Metal fences shall be designed and installed according to the manufacturer's specifications.
Metal fences shall be at least 3 feet high and must be highly visible.
Fences shall not be wired or stapled to trees.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 274
Maintenance Standards
If the fence has been damaged or visibility reduced, it shall be repaired or replaced immediately and
visibility restored.
BMP C105: Stabilized Construction Access
Purpose
Stabilized construction accesses are established to reduce the amount of sediment transported onto
paved roads outside the project site by vehicles or equipment. This is done by constructing a sta-
bilized pad of quarry spalls at entrances and exits for project sites.
Conditions of Use
Construction accesses shall be stabilized wherever traffic will be entering or leaving a construction
site if paved roads or other paved areas are within 1,000 feet of the site.
For residential subdivision construction sites, provide a stabilized construction access for each res-
idence, rather than only at the main subdivision entrance. Stabilized surfaces shall be of sufficient
length/width to provide vehicle access/parking, based on lot size and configuration.
On large commercial, highway, and road projects, the designer should include enough extra mater-
ials in the contract to allow for additional stabilized accesses not shown in the initial Construction
SWPPP. It is difficult to determine exactly where access to these projects will take place; additional
materials will enable the contractor to install them where needed.
Design and Installation Specifications
See Figure II-3.1: Stabilized Construction Access for details. Note: the 100’ minimum length of the
access shall be reduced to the maximum practicable size when the size or configuration of the site
does not allow the full length (100’).
Construct stabilized construction accesses with a 12-inch thick pad of 4-inch to 8-inch quarry spalls,
a 4-inch course of asphalt treated base (ATB), or use existing pavement. Do not use crushed con-
crete, cement, or calcium chloride for construction access stabilization because these products raise
pH levels in stormwater and concrete discharge to waters of the State is prohibited.
A separation geotextile shall be placed under the spalls to prevent fine sediment from pumping up
into the rock pad. The geotextile shall meet the standards listed in Table II-3.2: Stabilized Con-
struction Access Geotextile Standards.
Geotextile Property Required Value
Grab Tensile Strength (ASTM D4751)200 psi min.
Table II-3.2: Stabilized Construction Access
Geotextile Standards
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 275
Geotextile Property Required Value
Grab Tensile Elongation (ASTM D4632)30% max.
Mullen Burst Strength (ASTM D3786-80a)400 psi min.
AOS (ASTM D4751)20-45 (U.S. standard sieve size)
Table II-3.2: Stabilized Construction Access
Geotextile Standards (continued)
l Consider early installation of the first lift of asphalt in areas that will be paved; this can be used
as a stabilized access. Also consider the installation of excess concrete as a stabilized access.
During large concrete pours, excess concrete is often available for this purpose.
l Fencing (see BMP C103: High-Visibility Fence) shall be installed as necessary to restrict
traffic to the construction access.
l Whenever possible, the access shall be constructed on a firm, compacted subgrade. This can
substantially increase the effectiveness of the pad and reduce the need for maintenance.
l Construction accesses should avoid crossing existing sidewalks and back of walk drains if at
all possible. If a construction access must cross a sidewalk or back of walk drain, the full length
of the sidewalk and back of walk drain must be covered and protected from sediment leaving
the site.
Alternative Material Specification
WSDOT has raised safety concerns about the Quarry Spall rock specified above. WSDOT observes
that the 4-inch to 8-inch rock sizes can become trapped between Dually truck tires, and then
released off-site at highway speeds. WSDOT has chosen to use a modified specification for the rock
while continuously verifying that the Stabilized Construction Access remains effective. To remain
effective, the BMP must prevent sediment from migrating off site. To date, there has been no per-
formance testing to verify operation of this new specification. Jurisdictions may use the alternative
specification, but must perform increased off-site inspection if they use, or allow others to use, it.
Stabilized Construction Accesses may use material that meets the requirements of WSDOT's Stand-
ard Specifications for Road, Bridge, and Municipal Construction Section 9-03.9(1) (WSDOT, 2016)
for ballast except for the following special requirements.
The grading and quality requirements are listed in Table II-3.3: Stabilized Construction Access
Alternative Material Requirements.
Sieve Size Percent Passing
2½″99-100
Table II-3.3: Stabilized
Construction Access
Alternative Material
Requirements
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 276
Sieve Size Percent Passing
2″65-100
¾″40-80
No. 4 5 max.
No. 100 0-2
% Fracture 75 min.
Table II-3.3: Stabilized
Construction Access
Alternative Material
Requirements
(continued)
l All percentages are by weight.
l The sand equivalent value and dust ratio requirements do not apply.
l The fracture requirement shall be at least one fractured face and will apply the combined
aggregate retained on the No. 4 sieve in accordance with FOP for AASHTO T 335.
Maintenance Standards
Quarry spalls shall be added if the pad is no longer in accordance with the specifications.
l If the access is not preventing sediment from being tracked onto pavement, then alternative
measures to keep the streets free of sediment shall be used. This may include replace-
ment/cleaning of the existing quarry spalls, street sweeping, an increase in the dimensions of
the access, or the installation of BMP C106: Wheel Wash.
l Any sediment that is tracked onto pavement shall be removed by shoveling or street sweep-
ing. The sediment collected by sweeping shall be removed or stabilized on site. The pavement
shall not be cleaned by washing down the street, except when high efficiency sweeping is inef-
fective and there is a threat to public safety. If it is necessary to wash the streets, the con-
struction of a small sump to contain the wash water shall be considered. The sediment would
then be washed into the sump where it can be controlled.
l Perform street sweeping by hand or with a high efficiency sweeper. Do not use a non-high effi-
ciency mechanical sweeper because this creates dust and throws soils into storm systems or
conveyance ditches.
l Any quarry spalls that are loosened from the pad, which end up on the roadway shall be
removed immediately.
l If vehicles are entering or exiting the site at points other than the construction access(es),
BMP C103: High-Visibility Fence shall be installed to control traffic.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 277
l Upon project completion and site stabilization, all construction accesses intended as per-
manent access for maintenance shall be permanently stabilized.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 278
Figure II-3.1: Stabilized Construction Access
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 279
Approved as Functionally Equivalent
Ecology has approved products as able to meet the requirements of this BMP. The products did not
pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions
may choose not to accept these products, or may require additional testing prior to consideration for
local use. Products that Ecology has approved as functionally equivalent are available for review on
Ecology’s website at:
https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-per-
mittee-guidance-resources/Emerging-stormwater-treatment-technologies
BMP C106: Wheel Wash
Purpose
Wheel washes reduce the amount of sediment transported onto paved roads by washing dirt from
the wheels of motor vehicles prior to the motor vehicles leaving the construction site.
Conditions of Use
l Use a wheel wash when BMP C105: Stabilized Construction Access is not preventing sed-
iment from being tracked off site.
l Wheel washing is generally an effective BMP when installed with careful attention to topo-
graphy. For example, a wheel wash can be detrimental if installed at the top of a slope abut-
ting a right-of-way where the water from the dripping truck can run unimpeded into the street.
l Pressure washing combined with an adequately sized and surfaced pad with direct drainage
to a large 10-foot x 10-foot sump can be very effective.
l Wheel wash wastewater is not stormwater. It is commonly called process water, and must be
discharged to a separate on-site treatment system that prevents discharge to waters of the
State, or to the sanitary sewer with local sewer district approval.
l Wheel washes may use closed-loop recirculation systems to conserve water use.
l Wheel wash wastewater shall not include wastewater from concrete washout areas.
l When practical, the wheel wash should be placed in sequence with BMP C105: Stabilized
Construction Access. Locate the wheel wash such that vehicles exiting the wheel wash will
enter directly onto BMP C105: Stabilized Construction Access. In order to achieve this, BMP
C105: Stabilized Construction Access may need to be extended beyond the standard install-
ation to meet the exit of the wheel wash.
Design and Installation Specifications
Suggested details are shown in Figure II-3.2: Wheel Wash. The Local Permitting Authority may
allow other designs. A minimum of 6 inches of asphalt treated base (ATB) over crushed base mater-
ial or 8 inches over a good subgrade is recommended to pave the wheel wash.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 280
Use a low clearance truck to test the wheel wash before paving. Either a belly dump or lowboy will
work well to test clearance.
Keep the water level from 12 to 14 inches deep to avoid damage to truck hubs and filling the truck
tongues with water.
Midpoint spray nozzles are only needed in extremely muddy conditions.
Wheel wash systems should be designed with a small grade change, 6- to 12-inches for a 10-foot-
wide pond, to allow sediment to flow to the low side of pond to help prevent re-suspension of sed-
iment. A drainpipe with a 2- to 3-foot riser should be installed on the low side of the pond to allow for
easy cleaning and refilling. Polymers may be used to promote coagulation and flocculation in a
closed-loop system. Polyacrylamide (PAM) added to the wheel wash water at a rate of 0.25 - 0.5
pounds per 1,000 gallons of water increases effectiveness and reduces cleanup time. If PAM is
already being used for dust or erosion control and is being applied by a water truck, the same truck
can be used to change the wash water.
Maintenance Standards
The wheel wash should start out each day with fresh water.
The wheel wash water should be changed a minimum of once per day. On large earthwork jobs
where more than 10-20 trucks per hour are expected, the wheel wash water will need to be changed
more often.
Approved as Functionally Equivalent
Ecology has approved products as able to meet the requirements of this BMP. The products did not
pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions
may choose not to accept these products, or may require additional testing prior to consideration for
local use. Products that Ecology has approved as functionally equivalent are available for review on
Ecology’s website at:
https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-per-
mittee-guidance-resources/Emerging-stormwater-treatment-technologies
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 281
Figure II-3.2: Wheel Wash
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 282
BMP C107: Construction Road / Parking Area
Stabilization
Purpose
Stabilizing roads, parking areas, and other on-site vehicle transportation routes immediately after
grading reduces erosion caused by construction traffic or stormwater runoff.
Conditions of Use
Roads and parking areas shall be stabilized wherever they are constructed, whether permanent or
temporary, for use by construction traffic.
BMP C103: High-Visibility Fence shall be installed, if necessary, to limit the access of vehicles to only
those roads and parking areas that are stabilized.
Design and Installation Specifications
l On areas that will receive asphalt as part of the project, install the first lift as soon as possible.
l A 6-inch depth of 2- to 4-inch crushed rock, gravel base, or crushed surfacing base course
shall be applied immediately after grading or utility installation. A 4-inch course of asphalt
treated base (ATB) may also be used, or the road/parking area may be paved. It may also be
possible to use cement or calcium chloride for soil stabilization. If cement or cement kiln dust is
used for roadbase stabilization, pH monitoring and BMP C252: Treating and Disposing of
High pH Water is necessary to evaluate and minimize the effects on stormwater. If the area
will not be used for permanent roads, parking areas, or structures, a 6-inch depth of hog fuel
may also be used, but this is likely to require more maintenance. Whenever possible, con-
struction roads and parking areas shall be placed on a firm, compacted subgrade.
l Temporary road gradients shall not exceed 15 percent. Roadways shall be carefully graded to
drain. Drainage ditches shall be provided on each side of the roadway in the case of a
crowned section, or on one side in the case of a super-elevated section. Drainage ditches
shall be directed to a sediment control BMP.
l Rather than relying on ditches, it may also be possible to grade the road so that runoff sheet-
flows into a heavily vegetated area with a well-developed topsoil. Landscaped areas are not
adequate. If this area has at least 50 feet of vegetation that water can flow through, then it is
generally preferable to use the vegetation to treat runoff, rather than a sediment pond or trap.
The 50 feet shall not include wetlands or their buffers. If runoff is allowed to sheetflow through
adjacent vegetated areas, it is vital to design the roadways and parking areas so that no con-
centrated runoff is created.
l Storm drain inlets shall be protected to prevent sediment-laden water entering the drainage
system (see BMP C220: Inlet Protection).
Maintenance Standards
Inspect stabilized areas regularly, especially after large storm events.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 283
Crushed rock, gravel base, etc., shall be added as required to maintain a stable driving surface and
to stabilize any areas that have eroded.
Following construction, these areas shall be restored to pre-construction condition or better to pre-
vent future erosion.
Perform street cleaning at the end of each day or more often if necessary.
BMP C120: Temporary and Permanent Seeding
Purpose
Seeding reduces erosion by stabilizing exposed soils. A well-established vegetative cover is one of
the most effective methods of reducing erosion.
Conditions of Use
Use seeding throughout the project on disturbed areas that have reached final grade or that will
remain unworked for more than 30 days.
The optimum seeding windows for western Washington are April 1 through June 30 and September
1 through October 1.
Between July 1 and August 30 seeding requires irrigation until 75 percent grass cover is established.
Between October 1 and March 30 seeding requires a cover of mulch or an erosion control blanket
until 75 percent grass cover is established.
Review all disturbed areas in late August to early September and complete all seeding by the end of
September. Otherwise, vegetation will not establish itself enough to provide more than average pro-
tection.
Mulch is required at all times for seeding because it protects seeds from heat, moisture loss, and
transport due to runoff. Mulch can be applied on top of the seed or simultaneously by hydroseeding.
See BMP C121: Mulching for specifications.
Seed and mulch all disturbed areas not otherwise vegetated at final site stabilization. Final sta-
bilization means the completion of all soil disturbing activities at the site and the establishment of a
permanent vegetative cover, or equivalent permanent stabilization measures (such as pavement,
riprap, gabions, or geotextiles) which will prevent erosion. See BMP T5.13: Post-Construction Soil
Quality and Depth.
Design and Installation Specifications
General
l Install channels intended for vegetation before starting major earthwork and hydroseed with a
Bonded Fiber Matrix. For vegetated channels that will have high flows, install erosion control
blankets over the top of hydroseed. Before allowing water to flow in vegetated channels,
establish 75 percent vegetation cover. If vegetated channels cannot be established by seed
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 284
before water flow; install sod in the channel bottom — over top of hydromulch and erosion con-
trol blankets.
l Confirm the installation of all required surface water control measures to prevent seed from
washing away.
l Hydroseed applications shall include a minimum of 1,500 pounds per acre of mulch with 3 per-
cent tackifier. See BMP C121: Mulching for specifications.
l Areas that will have seeding only and not landscaping may need compost or meal-based
mulch included in the hydroseed in order to establish vegetation. Re-install native topsoil on
the disturbed soil surface before application. See BMP T5.13: Post-Construction Soil Quality
and Depth.
l When installing seed via hydroseeding operations, only about 1/3 of the seed actually ends up
in contact with the soil surface. This reduces the ability to establish a good stand of grass
quickly. To overcome this, consider increasing seed quantities by up to 50 percent.
l Enhance vegetation establishment by dividing the hydromulch operation into two phases:
o Phase 1- Install all seed and fertilizer with 25-30 percent mulch and tackifier onto soil in
the first lift.
o Phase 2- Install the rest of the mulch and tackifier over the first lift.
Or, enhance vegetation by:
o Installing the mulch, seed, fertilizer, and tackifier in one lift.
o Spread or blow straw over the top of the hydromulch at a rate of 800-1000 pounds per
acre.
o Hold straw in place with a standard tackifier.
Both of these approaches will increase cost moderately but will greatly improve and enhance
vegetative establishment. The increased cost may be offset by the reduced need for:
o Irrigation.
o Reapplication of mulch.
o Repair of failed slope surfaces.
This technique works with standard hydromulch (1,500 pounds per acre minimum) and Bon-
ded Fiber Matrix/ Mechanically Bonded Fiber Matrix (BFM/MBFMs) (3,000 pounds per acre
minimum).
l Seed may be installed by hand if:
o Temporary and covered by straw, mulch, or topsoil.
o Permanent in small areas (usually less than 1 acre) and covered with mulch, topsoil, or
erosion blankets.
l The seed mixes listed in Table II-3.4: Temporary and Permanent Seed Mixes include
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 285
recommended mixes for both temporary and permanent seeding.
l Apply these mixes, with the exception of the wet area seed mix, at a rate of 120 pounds per
acre. This rate can be reduced if soil amendments or slow-release fertilizers are used. Apply
the wet area seed mix at a rate of 60 pounds per acre.
l Consult the local suppliers or the local conservation district for their recommendations. The
appropriate mix depends on a variety of factors, including location, exposure, soil type, slope,
and expected foot traffic. Alternative seed mixes approved by the local authority may be used,
depending on the soil type and hydrology of the area.
Common Name Latin Name % Weight % Purity % Germination
Temporary Erosion Control Seed Mix
A standard mix for areas requiring a temporary vegetative cover.
Chewings or
annual blue grass
Festuca rubra var.
commutata or Poa
anna
40 98 90
Perennial rye Lolium perenne 50 98 90
Redtop or colonial
bentgrass
Agrostis alba or
Agrostis tenuis 5 92 85
White dutch clover Trifolium repens 5 98 90
Landscaping Seed Mix
A recommended mix for landscaping seed.
Perennial rye blend Lolium perenne 70 98 90
Chewings and red
fescue blend
Festuca rubra var.
commutata or Fes-
tuca rubra
30 98 90
Low-Growing Turf Seed Mix
A turf seed mix for dry situations where there is no need for watering. This mix requires very little main-
tenance.
Dwarf tall fescue
(several varieties)
Festuca arundin-
acea var. 45 98 90
Dwarf perennial
rye (Barclay)
Lolium perenne
var. barclay 30 98 90
Red fescue Festuca rubra 20 98 90
Colonial bentgrass Agrostis tenuis 5 98 90
Bioswale Seed Mix
A seed mix for bioswales and other intermittently wet areas.
Tall or meadow fes-Festuca arundin-75-80 98 90
Table II-3.4: Temporary and Permanent Seed Mixes
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 286
Common Name Latin Name % Weight % Purity % Germination
cue acea or Festuca
elatior
Seaside/Creeping
bentgrass Agrostis palustris 10-15 92 85
Redtop bentgrass Agrostis alba or
Agrostis gigantea 5-10 90 80
Wet Area Seed Mix
A low-growing, relatively non-invasive seed mix appropriate for very wet areas that are not regulated wet-
lands. Consult Hydraulic Permit Authority (HPA) for seed mixes if applicable.
Tall or meadow fes-
cue
Festuca arundin-
acea or Festuca
elatior
60-70 98 90
Seaside/Creeping
bentgrass Agrostis palustris 10-15 98 85
Meadow foxtail Alepocurus praten-
sis 10-15 90 80
Alsike clover Trifolium hybridum 1-6 98 90
Redtop bentgrass Agrostis alba 1-6 92 85
Meadow Seed Mix
A recommended meadow seed mix for infrequently maintained areas or non-maintained areas where col-
onization by native plants is desirable. Likely applications include rural road and utility right-of-way. Seed-
ing should take place in September or very early October in order to obtain adequate establishment prior to
the winter months. Consider the appropriateness of clover, a fairly invasive species, in the mix. Amending
the soil can reduce the need for clover.
Redtop or Oregon
bentgrass
Agrostis alba or
Agrostis ore-
gonensis
20 92 85
Red fescue Festuca rubra 70 98 90
White dutch clover Trifolium repens 10 98 90
Table II-3.4: Temporary and Permanent Seed Mixes (continued)
Roughening and Rototilling
l The seedbed should be firm and rough. Roughen all soil no matter what the slope. Track walk
slopes before seeding if engineering purposes require compaction. Backblading or smoothing
of slopes greater than 4H:1V is not allowed if they are to be seeded.
l Restoration-based landscape practices require deeper incorporation than that provided by a
simple single-pass rototilling treatment. Wherever practical, initially rip the subgrade to
improve long-term permeability, infiltration, and water inflow qualities. At a minimum,
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 287
permanent areas shall use soil amendments to achieve organic matter and permeability per-
formance defined in engineered soil/landscape systems. For systems that are deeper than 8
inches complete the rototilling process in multiple lifts, or prepare the engineered soil system
per specifications and place to achieve the specified depth.
Fertilizers
l Conducting soil tests to determine the exact type and quantity of fertilizer is recommended.
This will prevent the over-application of fertilizer.
l Organic matter is the most appropriate form of fertilizer because it provides nutrients (includ-
ing nitrogen, phosphorus, and potassium) in the least water-soluble form.
l In general, use 10-4-6 N-P-K (nitrogen-phosphorus-potassium) fertilizer at a rate of 90
pounds per acre. Always use slow-release fertilizers because they are more efficient and
have fewer environmental impacts. Do not add fertilizer to the hydromulch machine, or agit-
ate, more than 20 minutes before use. Too much agitation destroys the slow-release coating.
l There are numerous products available that take the place of chemical fertilizers. These
include several with seaweed extracts that are beneficial to soil microbes and organisms. If
100 percent cottonseed meal is used as the mulch in hydroseed, chemical fertilizer may not be
necessary. Cottonseed meal provides a good source of long-term, slow-release, available
nitrogen.
Bonded Fiber Matrix and Mechanically Bonded Fiber Matrix
l On steep slopes use Bonded Fiber Matrix (BFM) or Mechanically Bonded Fiber Matrix
(MBFM) products. Apply BFM/MBFM products at a minimum rate of 3,000 pounds per acre
with approximately 10 percent tackifier. Achieve a minimum of 95 percent soil coverage during
application. Numerous products are available commercially. Most products require 24-36
hours to cure before rainfall and cannot be installed on wet or saturated soils. Generally,
products come in 40-50 pound bags and include all necessary ingredients except for seed and
fertilizer.
l Install products per manufacturer's instructions.
l BFMs and MBFMs provide good alternatives to blankets in most areas requiring vegetation
establishment. Advantages over blankets include:
o BFM and MBFMs do not require surface preparation.
o Helicopters can assist in installing BFM and MBFMs in remote areas.
o On slopes steeper than 2.5H:1V, blanket installers may require ropes and harnesses
for safety.
o Installing BFM and MBFMs can save at least $1,000 per acre compared to blankets.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 288
Maintenance Standards
Reseed any seeded areas that fail to establish at least 75 percent cover (100 percent cover for areas
that receive sheet or concentrated flows). If reseeding is ineffective, use an alternate method such
as sodding, mulching, nets, or blankets.
l Reseed and protect by mulch any areas that experience erosion after achieving adequate
cover. Reseed and protect by mulch any eroded area.
l Supply seeded areas with adequate moisture, but do not water to the extent that it causes run-
off.
Approved as Functionally Equivalent
Ecology has approved products as able to meet the requirements of this BMP. The products did not
pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions
may choose not to accept these products, or may require additional testing prior to consideration for
local use. Products that Ecology has approved as functionally equivalent are available for review on
Ecology’s website at:
https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-per-
mittee-guidance-resources/Emerging-stormwater-treatment-technologies
BMP C121: Mulching
Purpose
Mulching soils provides immediate temporary protection from erosion. Mulch also enhances plant
establishment by conserving moisture, holding fertilizer, seed, and topsoil in place, and moderating
soil temperatures. There are a variety of mulches that can be used. This section discusses only the
most common types of mulch.
Conditions of Use
As a temporary cover measure, mulch should be used:
l For less than 30 days on disturbed areas that require cover.
l At all times for seeded areas, especially during the wet season and during the hot summer
months.
l During the wet season on slopes steeper than 3H:1V with more than 10 feet of vertical relief.
Mulch may be applied at any time of the year and must be refreshed periodically.
For seeded areas, mulch may be made up of 100 percent:
l cottonseed meal;
l fibers made of wood, recycled cellulose, hemp, or kenaf;
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 289
BMP C140: Dust Control
Purpose
Dust control prevents wind transport of dust from disturbed soil surfaces onto roadways, drainage
ways, and surface waters.
Conditions of Use
Use dust control in areas (including roadways) subject to surface and air movement of dust where
on-site or off-site impacts to roadways, drainage ways, or surface waters are likely.
Design and Installation Specifications
l Vegetate or mulch areas that will not receive vehicle traffic. In areas where planting, mulching,
or paving is impractical, apply gravel or landscaping rock.
l Limit dust generation by clearing only those areas where immediate activity will take place,
leaving the remaining area(s) in the original condition. Maintain the original ground cover as
long as practical.
l Construct natural or artificial windbreaks or windscreens. These may be designed as enclos-
ures for small dust sources.
l Sprinkle the site with water until the surface is wet. Repeat as needed. To prevent carryout of
mud onto the street, refer to BMP C105: Stabilized Construction Access and BMP C106:
Wheel Wash.
l Irrigation water can be used for dust control. Irrigation systems should be installed as a first
step on sites where dust control is a concern.
l Spray exposed soil areas with a dust palliative, following the manufacturer’s instructions and
cautions regarding handling and application. Used oil is prohibited from use as a dust sup-
pressant. Local governments may approve other dust palliatives such as calcium chloride or
PAM.
l PAM (BMP C126: Polyacrylamide (PAM) for Soil Erosion Protection) added to water at a rate
of 0.5 pounds per 1,000 gallons of water per acre and applied from a water truck is more effect-
ive than water alone. This is due to increased infiltration of water into the soil and reduced
evaporation. In addition, small soil particles are bonded together and are not as easily trans-
ported by wind. Adding PAM may reduce the quantity of water needed for dust control. Note
that the application rate specified here applies to this BMP, and is not the same application
rate that is specified in BMP C126: Polyacrylamide (PAM) for Soil Erosion Protection, but the
downstream protections still apply.
Refer to BMP C126: Polyacrylamide (PAM) for Soil Erosion Protection for conditions of use.
PAM shall not be directly applied to water or allowed to enter a water body.
l Contact your local Air Pollution Control Authority for guidance and training on other dust con-
trol measures. Compliance with the local Air Pollution Control Authority constitutes
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 313
compliance with this BMP.
l Use vacuum street sweepers.
l Remove mud and other dirt promptly so it does not dry and then turn into dust.
l Techniques that can be used for unpaved roads and lots include:
o Lower speed limits. High vehicle speed increases the amount of dust stirred up from
unpaved roads and lots.
o Upgrade the road surface strength by improving particle size, shape, and mineral types
that make up the surface and base materials.
o Add surface gravel to reduce the source of dust emission. Limit the amount of fine
particles (those smaller than .075 mm) to 10 to 20 percent.
o Use geotextile fabrics to increase the strength of new roads or roads undergoing recon-
struction.
o Encourage the use of alternate, paved routes, if available.
o Apply chemical dust suppressants using the admix method, blending the product with
the top few inches of surface material. Suppressants may also be applied as surface
treatments.
o Limit dust-causing work on windy days.
o Pave unpaved permanent roads and other trafficked areas.
Maintenance Standards
Respray area as necessary to keep dust to a minimum.
BMP C150: Materials on Hand
Purpose
Keep quantities of erosion prevention and sediment control materials on the project site at all times
to be used for regular maintenance and emergency situations such as unexpected heavy rains. Hav-
ing these materials on-site reduces the time needed to replace existing or implement new BMPs
when inspections indicate that existing BMPs are not meeting the Construction SWPPP require-
ments. In addition, contractors can save money by buying some materials in bulk and storing them at
their office or yard.
Conditions of Use
l Construction projects of any size or type can benefit from having materials on hand. A small
commercial development project could have a roll of plastic and some gravel available for
immediate protection of bare soil and temporary berm construction. A large earthwork project,
such as highway construction, might have several tons of straw, several rolls of plastic, flexible
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 314
pipe, sandbags, geotextile fabric and steel “T” posts.
l Materials should be stockpiled and readily available before any site clearing, grubbing, or
earthwork begins. A large contractor or project proponent could keep a stockpile of materials
that are available for use on several projects.
l If storage space at the project site is at a premium, the contractor could maintain the materials
at their office or yard. The office or yard must be less than an hour from the project site.
Design and Installation Specifications
Depending on project type, size, complexity, and length, materials and quantities will vary. A good
minimum list of items that will cover numerous situations includes:
l Clear Plastic, 6 mil
l Drainpipe, 6 or 8 inch diameter
l Sandbags, filled
l Straw Bales for mulching
l Quarry Spalls
l Washed Gravel
l Geotextile Fabric
l Catch Basin Inserts
l Steel "T" Posts
l Silt fence material
l Straw Wattles
Maintenance Standards
l All materials with the exception of the quarry spalls, steel “T” posts, and gravel should be kept
covered and out of both sun and rain.
l Re-stock materials as needed.
BMP C151: Concrete Handling
Purpose
Concrete work can generate process water and slurry that contain fine particles and high pH, both of
which can violate water quality standards in the receiving water. Concrete spillage or concrete dis-
charge to waters of the State is prohibited. Use this BMP to minimize and eliminate concrete, con-
crete process water, and concrete slurry from entering waters of the State.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 315
Conditions of Use
Any time concrete is used, utilize these management practices. Concrete construction project com-
ponents include, but are not limited to:
l Curbs
l Sidewalks
l Roads
l Bridges
l Foundations
l Floors
l Runways
Disposal options for concrete, in order of preference are:
1. Off-site disposal
2. Concrete wash-out areas (see BMP C154: Concrete Washout Area)
3. De minimus washout to formed areas awaiting concrete
Design and Installation Specifications
l Wash concrete truck drums at an approved off-site location or in designated concrete
washout areas only. Do not wash out concrete trucks onto the ground (including formed areas
awaiting concrete), or into storm drains, open ditches, streets, or streams. Refer to BMP
C154: Concrete Washout Area for information on concrete washout areas.
o Return unused concrete remaining in the truck and pump to the originating batch plant
for recycling. Do not dump excess concrete on site, except in designated concrete
washout areas as allowed in BMP C154: Concrete Washout Area.
l Wash small concrete handling equipment (e.g. hand tools, screeds, shovels, rakes, floats,
trowels, and wheelbarrows) into designated concrete washout areas or into formed areas
awaiting concrete pour.
l At no time shall concrete be washed off into the footprint of an area where an infiltration fea-
ture will be installed.
l Wash equipment difficult to move, such as concrete paving machines, in areas that do not dir-
ectly drain to natural or constructed stormwater conveyance or potential infiltration areas.
l Do not allow washwater from areas, such as concrete aggregate driveways, to drain directly
(without detention or treatment) to natural or constructed stormwater conveyances.
l Contain washwater and leftover product in a lined container when no designated concrete
washout areas (or formed areas, allowed as described above) are available. Dispose of con-
tained concrete and concrete washwater (process water) properly.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 316
l Always use forms or solid barriers for concrete pours, such as pilings, within 15-feet of surface
waters.
l Refer to BMP C252: Treating and Disposing of High pH Water for pH adjustment require-
ments.
l Refer to the Construction Stormwater General Permit (CSWGP) for pH monitoring require-
ments if the project involves one of the following activities:
o Significant concrete work (as defined in the CSWGP).
o The use of soils amended with (but not limited to) Portland cement-treated base,
cement kiln dust or fly ash.
o Discharging stormwater to segments of water bodies on the 303(d) list (Category 5) for
high pH.
Maintenance Standards
Check containers for holes in the liner daily during concrete pours and repair the same day.
BMP C152: Sawcutting and Surfacing Pollution
Prevention
Purpose
Sawcutting and surfacing operations generate slurry and process water that contains fine particles
and high pH (concrete cutting), both of which can violate the water quality standards in the receiving
water. Concrete spillage or concrete discharge to waters of the State is prohibited. Use this BMP to
minimize and eliminate process water and slurry created through sawcutting or surfacing from enter-
ing waters of the State.
Conditions of Use
Utilize these management practices anytime sawcutting or surfacing operations take place. Saw-
cutting and surfacing operations include, but are not limited to:
l Sawing
l Coring
l Grinding
l Roughening
l Hydro-demolition
l Bridge and road surfacing
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 317
Design and Installation Specifications
l Vacuum slurry and cuttings during cutting and surfacing operations.
l Slurry and cuttings shall not remain on permanent concrete or asphalt pavement overnight.
l Slurry and cuttings shall not drain to any natural or constructed drainage conveyance includ-
ing stormwater systems. This may require temporarily blocking catch basins.
l Dispose of collected slurry and cuttings in a manner that does not violate ground water or sur-
face water quality standards.
l Do not allow process water generated during hydro-demolition, surface roughening or similar
operations to drain to any natural or constructed drainage conveyance including stormwater
systems. Dispose of process water in a manner that does not violate ground water or surface
water quality standards.
l Handle and dispose of cleaning waste material and demolition debris in a manner that does
not cause contamination of water. Dispose of sweeping material from a pick-up sweeper at an
appropriate disposal site.
Maintenance Standards
Continually monitor operations to determine whether slurry, cuttings, or process water could enter
waters of the state. If inspections show that a violation of water quality standards could occur, stop
operations and immediately implement preventive measures such as berms, barriers, secondary
containment, and/or vacuum trucks.
BMP C153: Material Delivery, Storage, and
Containment
Purpose
Prevent, reduce, or eliminate the discharge of pollutants to the stormwater system or watercourses
from material delivery and storage. Minimize the storage of hazardous materials on-site, store mater-
ials in a designated area, and install secondary containment.
Conditions of Use
Use at construction sites with delivery and storage of the following materials:
l Petroleum products such as fuel, oil and grease
l Soil stabilizers and binders (e.g., Polyacrylamide)
l Fertilizers, pesticides and herbicides
l Detergents
l Asphalt and concrete compounds
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 318
l Hazardous chemicals such as acids, lime, adhesives, paints, solvents, and curing compounds
l Any other material that may be detrimental if released to the environment
Design and Installation Specifications
l The temporary storage area should be located away from vehicular traffic, near the con-
struction entrance(s), and away from waterways or storm drains.
l Safety Data Sheets (SDS) should be supplied for all materials stored. Chemicals should be
kept in their original labeled containers.
l Hazardous material storage on-site should be minimized.
l Hazardous materials should be handled as infrequently as possible.
l During the wet weather season (Oct 1 – April 30), consider storing materials in a covered
area.
l Materials should be stored in secondary containments, such as an earthen dike, horse trough,
or even a children’s wading pool for non-reactive materials such as detergents, oil, grease,
and paints. Small amounts of material may be secondarily contained in “bus boy” trays or con-
crete mixing trays.
l Do not store chemicals, drums, or bagged materials directly on the ground. Place these items
on a pallet and, when possible, within secondary containment.
l If drums must be kept uncovered, store them at a slight angle to reduce ponding of rainwater
on the lids to reduce corrosion. Domed plastic covers are inexpensive and snap to the top of
drums, preventing water from collecting.
l Liquids, petroleum products, and substances listed in 40 CFR Parts 110, 117, or 302 shall be
stored in approved containers and drums and shall not be overfilled. Containers and drums
shall be stored in temporary secondary containment facilities.
l Temporary secondary containment facilities shall provide for a spill containment volume able
to contain 10% of the total enclosed container volume of all containers, or 110% of the capa-
city of the largest container within its boundary, whichever is greater.
l Secondary containment facilities shall be impervious to the materials stored therein for a min-
imum contact time of 72 hours.
l Sufficient separation should be provided between stored containers to allow for spill cleanup
and emergency response access.
l During the wet weather season (Oct 1 – April 30), each secondary containment facility shall
be covered during non-working days, prior to and during rain events.
l Keep material storage areas clean, organized and equipped with an ample supply of appro-
priate spill clean-up material (spill kit).
l The spill kit should include, at a minimum:
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 319
o 1-Water Resistant Nylon Bag
o 3-Oil Absorbent Socks 3”x 4’
o 2-Oil Absorbent Socks 3”x 10’
o 12-Oil Absorbent Pads 17”x19”
o 1-Pair Splash Resistant Goggles
o 3-Pair Nitrile Gloves
o 10-Disposable Bags with Ties
o Instructions
Maintenance Standards
l Secondary containment facilities shall be maintained free of accumulated rainwater and spills.
In the event of spills or leaks, accumulated rainwater and spills shall be collected and placed
into drums. These liquids shall be handled as hazardous waste unless testing determines
them to be non-hazardous.
l Re-stock spill kit materials as needed.
BMP C154: Concrete Washout Area
Purpose
Prevent or reduce the discharge of pollutants from concrete waste to stormwater by conducting
washout off-site, or performing on-site washout in a designated area.
Conditions of Use
Concrete washout areas are implemented on construction projects where:
l Concrete is used as a construction material
l It is not possible to dispose of all concrete wastewater and washout off-site (ready mix plant,
etc.).
l Concrete truck drums are washed on-site.
Note that auxiliary concrete truck components (e.g. chutes and hoses) and small concrete
handling equipment (e.g. hand tools, screeds, shovels, rakes, floats, trowels, and wheel-
barrows) may be washed into formed areas awaiting concrete pour.
At no time shall concrete be washed off into the footprint of an area where an infiltration feature will
be installed.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 320
Design and Installation Specifications
Implementation
l Perform washout of concrete truck drums at an approved off-site location or in designated con-
crete washout areas only.
l Do not wash out concrete onto non-formed areas, or into storm drains, open ditches, streets,
or streams.
l Wash equipment difficult to move, such as concrete paving machines, in areas that do not dir-
ectly drain to natural or constructed stormwater conveyance or potential infiltration areas.
l Do not allow excess concrete to be dumped on-site, except in designated concrete washout
areas as allowed above.
l Concrete washout areas may be prefabricated concrete washout containers, or self-installed
structures (above-grade or below-grade).
l Prefabricated containers are most resistant to damage and protect against spills and leaks.
Companies may offer delivery service and provide regular maintenance and disposal of solid
and liquid waste.
l If self-installed concrete washout areas are used, below-grade structures are preferred over
above-grade structures because they are less prone to spills and leaks.
l Self-installed above-grade structures should only be used if excavation is not practical.
l Concrete washout areas shall be constructed and maintained in sufficient quantity and size to
contain all liquid and concrete waste generated by washout operations.
Education
l Discuss the concrete management techniques described in this BMP with the ready-mix con-
crete supplier before any deliveries are made.
l Educate employees and subcontractors on the concrete waste management techniques
described in this BMP.
l Arrange for the contractor’s superintendent or Certified Erosion and Sediment Control Lead
(CESCL) to oversee and enforce concrete waste management procedures.
l A sign should be installed adjacent to each concrete washout area to inform concrete equip-
ment operators to utilize the proper facilities.
Contracts
Incorporate requirements for concrete waste management into concrete supplier and subcontractor
agreements.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 321
Location and Placement
l Locate concrete washout areas at least 50 feet from sensitive areas such as storm drains,
open ditches, water bodies, or wetlands.
l Allow convenient access to the concrete washout area for concrete trucks, preferably near the
area where the concrete is being poured.
l If trucks need to leave a paved area to access the concrete washout area, prevent track-out
with a pad of rock or quarry spalls (see BMP C105: Stabilized Construction Access). These
areas should be far enough away from other construction traffic to reduce the likelihood of acci-
dental damage and spills.
l The number of concrete washout areas you install should depend on the expected demand
for storage capacity.
l On large sites with extensive concrete work, concrete washout areas should be placed in mul-
tiple locations for ease of use by concrete truck drivers.
Concrete Truck Washout Procedures
l Washout of concrete truck drums shall be performed in designated concrete washout areas
only.
l Concrete washout from concrete pumper bins can be washed into concrete pumper trucks
and discharged into designated concrete washout areas or properly disposed of off-site.
Concrete Washout Area Installation
l Concrete washout areas should be constructed as shown in the figures below, with a recom-
mended minimum length and minimum width of 10 ft, but with sufficient quantity and volume to
contain all liquid and concrete waste generated by washout operations.
l Plastic lining material should be a minimum of 10 mil polyethylene sheeting and should be free
of holes, tears, or other defects that compromise the impermeability of the material.
l Lath and flagging should be commercial type.
l Liner seams shall be installed in accordance with manufacturers’ recommendations.
l Soil base shall be prepared free of rocks or other debris that may cause tears or holes in the
plastic lining material.
Maintenance Standards
Inspection and Maintenance
l Inspect and verify that concrete washout areas are in place prior to the commencement of con-
crete work.
l Once concrete wastes are washed into the designated washout area and allowed to harden,
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 322
the concrete should be broken up, removed, and disposed of per applicable solid waste reg-
ulations. Dispose of hardened concrete on a regular basis.
l During periods of concrete work, inspect the concrete washout areas daily to verify continued
performance.
o Check overall condition and performance.
o Check remaining capacity (% full).
o If using self-installed concrete washout areas, verify plastic liners are intact and side-
walls are not damaged.
o If using prefabricated containers, check for leaks.
l Maintain the concrete washout areas to provide adequate holding capacity with a minimum
freeboard of 12 inches.
l Concrete washout areas must be cleaned, or new concrete washout areas must be con-
structed and ready for use once the concrete washout area is 75% full.
l If the concrete washout area is nearing capacity, vacuum and dispose of the waste material in
an approved manner.
l Do not discharge liquid or slurry to waterways, storm drains or directly onto ground.
l Do not discharge to the sanitary sewer without local approval.
l Place a secure, non-collapsing, non-water collecting cover over the concrete washout
area prior to predicted wet weather to prevent accumulation and overflow of pre-
cipitation.
l Remove and dispose of hardened concrete and return the structure to a functional con-
dition. Concrete may be reused on-site or hauled away for disposal or recycling.
l When you remove materials from a self-installed concrete washout area, build a new struc-
ture; or, if the previous structure is still intact, inspect for signs of weakening or damage, and
make any necessary repairs. Re-line the structure with new plastic after each cleaning.
Removal of Concrete Washout Areas
l When concrete washout areas are no longer required for the work, the hardened concrete,
slurries and liquids shall be removed and properly disposed of.
l Materials used to construct concrete washout areas shall be removed from the site of the work
and disposed of or recycled.
l Holes, depressions or other ground disturbance caused by the removal of the concrete
washout areas shall be backfilled, repaired, and stabilized to prevent erosion.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 323
Figure II-3.7: Concrete Washout Area with Wood Planks
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 324
Figure II-3.8: Concrete Washout Area with Straw Bales
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 325
Figure II-3.9: Prefabricated Concrete Washout Container w/Ramp
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 326
BMP C207: Check Dams
Purpose
Construction of check dams across a swale or ditch reduces the velocity of concentrated flow and dis-
sipates energy at the check dam.
Conditions of Use
Use check dams where temporary or permanent channels are not yet vegetated, channel lining is
infeasible, and/or velocity checks are required.
l Check dams may not be placed in streams unless approved by the State Department of Fish
and Wildlife.
l Check dams may not be placed in wetlands without approval from a permitting agency.
l Do not place check dams below the expected backwater from any salmonid bearing water
between October 1 and May 31 to ensure that there is no loss of high flow refuge habitat for
overwintering juvenile salmonids and emergent salmonid fry.
Design and Installation Specifications
l Construct rock check dams from appropriately sized rock. The rock used must be large
enough to stay in place given the expected design flow through the channel. The rock must be
placed by hand or by mechanical means (do not dump the rock to form the dam) to achieve
complete coverage of the ditch or swale and to ensure that the center of the dam is lower than
the edges.
l Check dams may also be constructed of either rock or pea-gravel filled bags. Numerous new
products are also available for this purpose. They tend to be re-usable, quick and easy to
install, effective, and cost efficient.
l Place check dams perpendicular to the flow of water.
l The check dam should form a triangle when viewed from the side. This prevents undercutting
as water flows over the face of the check dam rather than falling directly onto the ditch bottom.
l Before installing check dams, impound and bypass upstream water flow away from the work
area. Options for bypassing include pumps, siphons, or temporary channels.
l Check dams combined with sumps work more effectively at slowing flow and retaining sed-
iment than a check dam alone. A deep sump should be provided immediately upstream of the
check dam.
l In some cases, if carefully located and designed, check dams can remain as permanent install-
ations with very minor regrading. They may be left as either spillways, in which case accu-
mulated sediment would be graded and seeded, or as check dams to prevent further
sediment from leaving the site.
l The maximum spacing between check dams shall be such that the downstream toe of the
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 351
upstream dam is at the same elevation as the top of the downstream dam.
l Keep the maximum height at 2 feet at the center of the check dam.
l Keep the center of the check dam at least 12 inches lower than the outer edges at natural
ground elevation.
l Keep the side slopes of the check dam at 2H:1V or flatter.
l Key the stone into the ditch banks and extend it beyond the abutments a minimum of 18
inches to avoid washouts from overflow around the dam.
l Use filter fabric foundation under a rock or sand bag check dam. If a blanket ditch liner is used,
filter fabric is not necessary. A piece of organic or synthetic blanket cut to fit will also work for
this purpose.
l In the case of grass-lined ditches and swales, all check dams and accumulated sediment shall
be removed when the grass has matured sufficiently to protect the ditch or swale - unless the
slope of the swale is greater than 4 percent. The area beneath the check dams shall be
seeded and mulched immediately after dam removal.
l Ensure that channel appurtenances, such as culvert entrances below check dams, are not
subject to damage or blockage from displaced stones.
l See Figure II-3.16: Rock Check Dam.
Maintenance Standards
Check dams shall be monitored for performance and sediment accumulation during and after each
rainfall that produces runoff. Sediment shall be removed when it reaches one half the sump depth.
l Anticipate submergence and deposition above the check dam and erosion from high flows
around the edges of the dam.
l If significant erosion occurs between dams, install a protective riprap liner in that portion of the
channel. See BMP C202: Riprap Channel Lining.
Approved as Functionally Equivalent
Ecology has approved products as able to meet the requirements of this BMP. The products did not
pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions
may choose not to accept these products, or may require additional testing prior to consideration for
local use. Products that Ecology has approved as functionally equivalent are available for review on
Ecology’s website at:
https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-per-
mittee-guidance-resources/Emerging-stormwater-treatment-technologies
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 352
Figure II-3.16: Rock Check Dam
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 353
thickness is 2 feet.
o For outlets at the base of steep slope pipes (pipe slope greater than 10 percent), use an
engineered energy dissipator.
o Filter fabric or erosion control blankets should always be used under riprap to prevent
scour and channel erosion. See BMP C122: Nets and Blankets.
l Bank stabilization, bioengineering, and habitat features may be required for disturbed areas.
This work may require a Hydraulic Project Approval (HPA) from the Washington State Depart-
ment of Fish and Wildlife. See I-2.11 Hydraulic Project Approvals.
Maintenance Standards
l Inspect and repair as needed.
l Add rock as needed to maintain the intended function.
l Clean energy dissipator if sediment builds up.
BMP C220: Inlet Protection
Purpose
Inlet protection prevents coarse sediment from entering drainage systems prior to permanent sta-
bilization of the disturbed area.
Conditions of Use
Use inlet protection at inlets that are operational before permanent stabilization of the disturbed
areas that contribute runoff to the inlet. Provide protection for all storm drain inlets downslope and
within 500 feet of a disturbed or construction area, unless those inlets are preceded by a sediment
trapping BMP.
Also consider inlet protection for lawn and yard drains on new home construction. These small and
numerous drains coupled with lack of gutters can add significant amounts of sediment into the roof
drain system. If possible, delay installing lawn and yard drains until just before landscaping, or cap
these drains to prevent sediment from entering the system until completion of landscaping. Provide
18-inches of sod around each finished lawn and yard drain.
Table II-3.10: Storm Drain Inlet Protection lists several options for inlet protection. All of the methods
for inlet protection tend to plug and require a high frequency of maintenance. Limit contributing drain-
age areas for an individual inlet to one acre or less. If possible, provide emergency overflows with
additional end-of-pipe treatment where stormwater ponding would cause a hazard.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 356
Type of Inlet Pro-
tection
Emergency
Overflow
Applicable for
Paved/ Earthen Sur-
faces
Conditions of Use
Drop Inlet Protection
Excavated drop
inlet protection
Yes, temporary
flooding may
occur
Earthen
Applicable for heavy flows. Easy
to maintain. Large area requirement:
30'x30'/acre
Block and gravel
drop inlet pro-
tection
Yes Paved or Earthen Applicable for heavy concentrated flows.
Will not pond.
Gravel and wire
drop inlet pro-
tection
No Paved or Earthen Applicable for heavy concentrated flows.
Will pond. Can withstand traffic.
Catch basin filters Yes Paved or Earthen Frequent maintenance required.
Curb Inlet Protection
Curb inlet pro-
tection with
wooden weir
Small capacity
overflow Paved Used for sturdy, more compact install-
ation.
Block and gravel
curb inlet pro-
tection
Yes Paved Sturdy, but limited filtration.
Culvert Inlet Protection
Culvert inlet sed-
iment trap N/A N/A 18 month expected life.
Table II-3.10: Storm Drain Inlet Protection
Design and Installation Specifications
Excavated Drop Inlet Protection
Excavated drop inlet protection consists of an excavated impoundment around the storm drain inlet.
Sediment settles out of the stormwater prior to entering the storm drain. Design and installation spe-
cifications for excavated drop inlet protection include:
l Provide a depth of 1-2 ft as measured from the crest of the inlet structure.
l Slope sides of excavation should be no steeper than 2H:1V.
l Minimum volume of excavation is 35 cubic yards.
l Shape the excavation to fit the site, with the longest dimension oriented toward the longest
inflow area.
l Install provisions for draining to prevent standing water.
l Clear the area of all debris.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 357
l Grade the approach to the inlet uniformly.
l Drill weep holes into the side of the inlet.
l Protect weep holes with screen wire and washed aggregate.
l Seal weep holes when removing structure and stabilizing area.
l Build a temporary dike, if necessary, to the down slope side of the structure to prevent bypass
flow.
Block and Gravel Filter
A block and gravel filter is a barrier formed around the inlet with standard concrete blocks and gravel.
See Figure II-3.17: Block and Gravel Filter. Design and installation specifications for block gravel fil-
ters include:
l Provide a height of 1 to 2 feet above the inlet.
l Recess the first row of blocks 2-inches into the ground for stability.
l Support subsequent courses by placing a pressure treated wood 2x4 through the block open-
ing.
l Do not use mortar.
l Lay some blocks in the bottom row on their side to allow for dewatering the pool.
l Place hardware cloth or comparable wire mesh with ½-inch openings over all block openings.
l Place gravel to just below the top of blocks on slopes of 2H:1V or flatter.
l An alternative design is a gravel berm surrounding the inlet, as follows:
o Provide a slope of 3H:1V on the upstream side of the berm.
o Provide a slope of 2H:1V on the downstream side of the berm.
o Provide a 1-foot wide level stone area between the gravel berm and the inlet.
o Use stones 3 inches in diameter or larger on the upstream slope of the berm.
o Use gravel ½- to ¾-inch at a minimum thickness of 1-foot on the downstream slope of
the berm.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 358
Figure II-3.17: Block and Gravel Filter
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 359
Gravel and Wire Mesh Filter
Gravel and wire mesh filters are gravel barriers placed over the top of the inlet. This method does not
provide an overflow. Design and installation specifications for gravel and wire mesh filters include:
l Use a hardware cloth or comparable wire mesh with ½-inch openings.
o Place wire mesh over the drop inlet so that the wire extends a minimum of 1-foot bey-
ond each side of the inlet structure.
o Overlap the strips if more than one strip of mesh is necessary.
l Place coarse aggregate over the wire mesh.
o Provide at least a 12-inch depth of aggregate over the entire inlet opening and extend at
least 18-inches on all sides.
Catch Basin Filters
Catch basin filters are designed by manufacturers for construction sites. The limited sediment stor-
age capacity increases the amount of inspection and maintenance required, which may be daily for
heavy sediment loads. To reduce maintenance requirements, combine a catch basin filter with
another type of inlet protection. This type of inlet protection provides flow bypass without overflow
and therefore may be a better method for inlets located along active rights-of-way. Design and install-
ation specifications for catch basin filters include:
l Provides 5 cubic feet of storage.
l Requires dewatering provisions.
l Provides a high-flow bypass that will not clog under normal use at a construction site.
l Insert the catch basin filter in the catch basin just below the grating.
Curb Inlet Protection with Wooden Weir
Curb inlet protection with wooden weir is an option that consists of a barrier formed around a curb
inlet with a wooden frame and gravel. Design and installation specifications for curb inlet protection
with wooden weirs include:
l Use wire mesh with ½-inch openings.
l Use extra strength filter cloth.
l Construct a frame.
l Attach the wire and filter fabric to the frame.
l Pile coarse washed aggregate against the wire and fabric.
l Place weight on the frame anchors.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 360
Block and Gravel Curb Inlet Protection
Block and gravel curb inlet protection is a barrier formed around a curb inlet with concrete blocks and
gravel. See Figure II-3.18: Block and Gravel Curb Inlet Protection. Design and installation spe-
cifications for block and gravel curb inlet protection include:
l Use wire mesh with ½-inch openings.
l Place two concrete blocks on their sides abutting the curb at either side of the inlet opening.
These are spacer blocks.
l Place a 2x4 stud through the outer holes of each spacer block to align the front blocks.
l Place blocks on their sides across the front of the inlet and abutting the spacer blocks.
l Place wire mesh over the outside vertical face.
l Pile coarse aggregate against the wire to the top of the barrier.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 361
Figure II-3.18: Block and Gravel Curb Inlet Protection
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 362
Curb and Gutter Sediment Barrier
Curb and gutter sediment barrier is a sandbag or rock berm (riprap and aggregate) 3 feet high and 3
feet wide in a horseshoe shape. See Figure II-3.19: Curb and Gutter Barrier. Design and installation
specifications for curb and gutter sediment barrier include:
l Construct a horseshoe shaped berm, faced with coarse aggregate if using riprap, 3 feet high
and 3 feet wide, at least 2 feet from the inlet.
l Construct a horseshoe shaped sedimentation trap on the upstream side of the berm. Size the
trap to sediment trap standards for protecting a culvert inlet.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 363
Figure II-3.19: Curb and Gutter Barrier
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 364
Maintenance Standards
l Inspect all forms of inlet protection frequently, especially after storm events. Clean and
replace clogged catch basin filters. For rock and gravel filters, pull away the rocks from the
inlet and clean or replace. An alternative approach would be to use the clogged rock as fill and
put fresh rock around the inlet.
l Do not wash sediment into storm drains while cleaning. Spread all excavated material evenly
over the surrounding land area or stockpile and stabilize as appropriate.
Approved as Functionally Equivalent
Ecology has approved products as able to meet the requirements of this BMP. The products did not
pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions
may choose not to accept these products, or may require additional testing prior to consideration for
local use. Products that Ecology has approved as functionally equivalent are available for review on
Ecology’s website at:
https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-per-
mittee-guidance-resources/Emerging-stormwater-treatment-technologies
BMP C231: Brush Barrier
Purpose
The purpose of brush barriers is to reduce the transport of coarse sediment from a construction site
by providing a temporary physical barrier to sediment and reducing the runoff velocities of overland
flow.
Conditions of Use
l Brush barriers may be used downslope of disturbed areas that are less than one-quarter acre.
l Brush barriers are not intended to treat concentrated flows, nor are they intended to treat sub-
stantial amounts of overland flow. Any concentrated flows must be directed to a sediment trap-
ping BMP. The only circumstance in which overland flow can be treated solely by a brush
barrier, rather than by a sediment trapping BMP, is when the area draining to the barrier is
small.
l Brush barriers should only be installed on contours.
Design and Installation Specifications
l Height: 2 feet (minimum) to 5 feet (maximum).
l Width: 5 feet at base (minimum) to 15 feet (maximum).
l Filter fabric (geotextile) may be anchored over the brush berm to enhance the filtration ability
of the barrier. Ten-ounce burlap is an adequate alternative to filter fabric.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 365
BMP C233: Silt Fence
Purpose
Silt fence reduces the transport of coarse sediment from a construction site by providing a temporary
physical barrier to sediment and reducing the runoff velocities of overland flow.
Conditions of Use
Silt fence may be used downslope of all disturbed areas.
l Silt fence shall prevent sediment carried by runoff from going beneath, through, or over the
top of the silt fence, but shall allow the water to pass through the fence.
l Silt fence is not intended to treat concentrated flows, nor is it intended to treat substantial
amounts of overland flow. Convey any concentrated flows through the drainage system to a
sediment trapping BMP.
l Do not construct silt fences in streams or use in V-shaped ditches. Silt fences do not provide
an adequate method of silt control for anything deeper than sheet or overland flow.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 370
Figure II-3.22: Silt Fence
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 371
Design and Installation Specifications
l Use in combination with other construction stormwater BMPs.
l Maximum slope steepness (perpendicular to the silt fence line) 1H:1V.
l Maximum sheet or overland flow path length to the silt fence of 100 feet.
l Do not allow flows greater than 0.5 cfs.
l Use geotextile fabric that meets the following standards. All geotextile properties listed below
are minimum average roll values (i.e., the test result for any sampled roll in a lot shall meet or
exceed the values shown in Table II-3.11: Geotextile Fabric Standards for Silt Fence):
Geotextile Property Minimum Average Roll Value
Polymeric Mesh AOS
(ASTM D4751)
0.60 mm maximum for slit film woven (#30 sieve).
0.30 mm maximum for all other geotextile types (#50 sieve).
0.15 mm minimum for all fabric types (#100 sieve).
Water Permittivity
(ASTM D4491)
0.02 sec-1 minimum
Grab Tensile Strength
(ASTM D4632)
180 lbs. Minimum for extra strength fabric.
100 lbs minimum for standard strength fabric.
Grab Tensile Strength
(ASTM D4632)
30% maximum
Ultraviolet Resistance
(ASTM D4355)
70% minimum
Table II-3.11: Geotextile Fabric Standards for Silt Fence
l Support standard strength geotextiles with wire mesh, chicken wire, 2-inch x 2-inch wire,
safety fence, or jute mesh to increase the strength of the geotextile. Silt fence materials are
available that have synthetic mesh backing attached.
l Silt fence material shall contain ultraviolet ray inhibitors and stabilizers to provide a minimum
of six months of expected usable construction life at a temperature range of 0°F to 120°F.
l One-hundred percent biodegradable silt fence is available that is strong, long lasting, and can
be left in place after the project is completed, if permitted by the local jurisdiction.
l Refer to Figure II-3.22: Silt Fence for standard silt fence details. Include the following Stand-
ard Notes for silt fence on construction plans and specifications:
1. The Contractor shall install and maintain temporary silt fences at the locations shown in
the Plans.
2. Construct silt fences in areas of clearing, grading, or drainage prior to starting those
activities.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 372
3. The silt fence shall have a 2-feet min. and a 2½-feet max. height above the original
ground surface.
4. The geotextile fabric shall be sewn together at the point of manufacture to form fabric
lengths as required. Locate all sewn seams at support posts. Alternatively, two sections
of silt fence can be overlapped, provided that the overlap is long enough and that the
adjacent silt fence sections are close enough together to prevent silt laden water from
escaping through the fence at the overlap.
5. Attach the geotextile fabric on the up-slope side of the posts and secure with staples,
wire, or in accordance with the manufacturer's recommendations. Attach the geotextile
fabric to the posts in a manner that reduces the potential for tearing.
6. Support the geotextile fabric with wire or plastic mesh, dependent on the properties of
the geotextile selected for use. If wire or plastic mesh is used, fasten the mesh securely
to the up-slope side of the posts with the geotextile fabric up-slope of the mesh.
7. Mesh support, if used, shall consist of steel wire with a maximum mesh spacing of 2-
inches, or a prefabricated polymeric mesh. The strength of the wire or polymeric mesh
shall be equivalent to or greater than 180 lbs. grab tensile strength. The polymeric mesh
must be as resistant to the same level of ultraviolet radiation as the geotextile fabric it
supports.
8. Bury the bottom of the geotextile fabric 4-inches min. below the ground surface. Backfill
and tamp soil in place over the buried portion of the geotextile fabric, so that no flow can
pass beneath the silt fence and scouring cannot occur. When wire or polymeric back-up
support mesh is used, the wire or polymeric mesh shall extend into the ground 3-inches
min.
9. Drive or place the silt fence posts into the ground 18-inches min. A 12–inch min. depth
is allowed if topsoil or other soft subgrade soil is not present and 18-inches cannot be
reached. Increase fence post min. depths by 6 inches if the fence is located on slopes of
3H:1V or steeper and the slope is perpendicular to the fence. If required post depths
cannot be obtained, the posts shall be adequately secured by bracing or guying to pre-
vent overturning of the fence due to sediment loading.
10. Use wood, steel or equivalent posts. The spacing of the support posts shall be a max-
imum of 6-feet. Posts shall consist of either:
l Wood with minimum dimensions of 2 inches by 2 inches by 3 feet. Wood shall be
free of defects such as knots, splits, or gouges.
l No. 6 steel rebar or larger.
l ASTM A 120 steel pipe with a minimum diameter of 1-inch.
l U, T, L, or C shape steel posts with a minimum weight of 1.35 lbs./ft.
l Other steel posts having equivalent strength and bending resistance to the post
sizes listed above.
11. Locate silt fences on contour as much as possible, except at the ends of the fence,
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 373
where the fence shall be turned uphill such that the silt fence captures the runoff water
and prevents water from flowing around the end of the fence.
12. If the fence must cross contours, with the exception of the ends of the fence, place
check dams perpendicular to the back of the fence to minimize concentrated flow and
erosion. The slope of the fence line where contours must be crossed shall not be
steeper than 3H:1V.
l Check dams shall be approximately 1-foot deep at the back of the fence. Check
dams shall be continued perpendicular to the fence at the same elevation until
the top of the check dam intercepts the ground surface behind the fence.
l Check dams shall consist of crushed surfacing base course, gravel backfill for
walls, or shoulder ballast. Check dams shall be located every 10 feet along the
fence where the fence must cross contours.
l Refer to Figure II-3.23: Silt Fence Installation by Slicing Method for slicing method details. The
following are specifications for silt fence installation using the slicing method:
1. The base of both end posts must be at least 2- to 4-inches above the top of the geo-
textile fabric on the middle posts for ditch checks to drain properly. Use a hand level or
string level, if necessary, to mark base points before installation.
2. Install posts 3- to 4-feet apart in critical retention areas and 6- to 7-feet apart in standard
applications.
3. Install posts 24-inches deep on the downstream side of the silt fence, and as close as
possible to the geotextile fabric, enabling posts to support the geotextile fabric from
upstream water pressure.
4. Install posts with the nipples facing away from the geotextile fabric.
5. Attach the geotextile fabric to each post with three ties, all spaced within the top 8-
inches of the fabric. Attach each tie diagonally 45 degrees through the fabric, with each
puncture at least 1-inch vertically apart. Each tie should be positioned to hang on a post
nipple when tightening to prevent sagging.
6. Wrap approximately 6-inches of the geotextile fabric around the end posts and secure
with 3 ties.
7. No more than 24-inches of a 36-inch geotextile fabric is allowed above ground level.
8. Compact the soil immediately next to the geotextile fabric with the front wheel of the
tractor, skid steer, or roller exerting at least 60 pounds per square inch. Compact the
upstream side first and then each side twice for a total of four trips. Check and correct
the silt fence installation for any deviation before compaction. Use a flat-bladed shovel
to tuck the fabric deeper into the ground if necessary.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 374
Figure II-3.23: Silt Fence Installation by Slicing Method
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 375
Maintenance Standards
l Repair any damage immediately.
l Intercept and convey all evident concentrated flows uphill of the silt fence to a sediment trap-
ping BMP.
l Check the uphill side of the silt fence for signs of the fence clogging and acting as a barrier to
flow and then causing channelization of flows parallel to the fence. If this occurs, replace the
fence and remove the trapped sediment.
l Remove sediment deposits when the deposit reaches approximately one-third the height of
the silt fence, or install a second silt fence.
l Replace geotextile fabric that has deteriorated due to ultraviolet breakdown.
BMP C234: Vegetated Strip
Purpose
Vegetated strips reduce the transport of coarse sediment from a construction site by providing a
physical barrier to sediment and reducing the runoff velocities of overland flow.
Conditions of Use
l Vegetated strips may be used downslope of all disturbed areas.
l Vegetated strips are not intended to treat concentrated flows, nor are they intended to treat
substantial amounts of overland flow. Any concentrated flows must be conveyed through the
drainage system to BMP C241: Sediment Pond (Temporary) or other sediment trapping
BMP. The only circumstance in which overland flow can be treated solely by a vegetated strip,
rather than by a sediment trapping BMP, is when the following criteria are met (see Table II-
3.12: Contributing Drainage Area for Vegetated Strips):
Average Contributing Area
Slope
Average Contributing Area Per-
cent Slope
Max Contributing area Flowpath
Length
1.5H : 1V or flatter 67% or flatter 100 feet
2H : 1V or flatter 50% or flatter 115 feet
4H : 1V or flatter 25% or flatter 150 feet
6H : 1V or flatter 16.7% or flatter 200 feet
10H : 1V or flatter 10% or flatter 250 feet
Table II-3.12: Contributing Drainage Area for Vegetated Strips
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 376
BMP C241: Sediment Pond (Temporary)
Purpose
Sediment ponds are temporary ponds used during construction to remove sediment from runoff ori-
ginating from disturbed areas of the project site. Sediment ponds are typically designed to remove
sediment no smaller than medium silt (0.02 mm). Consequently, they usually reduce turbidity only
slightly.
Conditions of Use
l Use a sediment pond where the contributing drainage area to the pond is 3 acres or more.
Ponds must be used in conjunction with other Construction Stormwater BMPs to reduce the
amount of sediment flowing into the pond.
l Do not install sediment ponds on sites where failure of the BMP would result in loss of life,
damage to homes or buildings, or interruption of use or service of public roads or utilities. Also,
sediment ponds are attractive to children and can be dangerous. Compliance with local ordin-
ances regarding health and safety must be addressed. If fencing of the pond is required, show
the type of fence and its location on the drawings in the Construction SWPPP.
l Sediment ponds that can impound 10 acre-ft (435,600 cu-ft, or 3.26 million gallons) or more,
or have an embankment of more than 6 feet, are subject to the Washington Dam Safety Regu-
lations (Chapter 173-175 WAC). See BMP D.1: Detention Ponds for more information regard-
ing dam safety considerations for detention ponds.
l Projects that are constructing permanent Flow Control BMPs or Runoff Treatment BMPs that
use ponding for treatment may use the rough-graded or final-graded permanent BMP foot-
print for the temporary sediment pond. When permanent BMP footprints are used as tem-
porary sediment ponds, the surface area requirement of the temporary sediment pond must
be met. If the surface area requirement of the sediment pond is larger than the surface area of
the permanent BMP, then the sediment pond shall be enlarged beyond the permanent BMP
footprint to comply with the surface area requirement.
The permanent control structure must be temporarily replaced with a control structure that
only allows water to leave the temporary sediment pond from the surface or by pumping.
Alternatively, the permanent control structure may used if it is temporarily modified by plug-
ging any outlet holes below the riser. The permanent control structure must be installed as
part of the permanent BMP after the site is fully stabilized.
Design and Installation Specifications
General
l See Figure II-3.28: Sediment Pond Plan View, Figure II-3.29: Sediment Pond Cross Section,
and Figure II-3.30: Sediment Pond Riser Detail for details.
l Use of permanent infiltration BMP footprints for temporary sediment ponds during
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 388
construction tends to clog the soils and reduce their capacity to infiltrate. If permanent infilt-
ration BMP footprints are used, the sides and bottom of the temporary sediment pond must
only be rough excavated to a minimum of 2 feet above final grade of the permanent infiltration
BMP. Final grading of the permanent infiltration BMP shall occur only when all contributing
drainage areas are fully stabilized. Any proposed permanent pretreatment BMP prior to the
infiltration BMP should be fully constructed and used with the temporary sediment pond to
help prevent clogging of the soils. See Element 13: Protect Low Impact Development BMPs
for more information about protecting permanent infiltration BMPs.
l The pond shall be divided into two roughly equal volume cells by a permeable divider that will
reduce turbulence while allowing movement of water between the cells. The divider shall be at
least one-half the height of the riser, and at least one foot below the top of the riser. Wire-
backed, 2- to 3-foot high, high strength geotextile fabric supported by treated 4"x4"s can be
used as a divider. Alternatively, staked straw bales wrapped with geotextile fabric may be
used. If the pond is more than 6 feet deep, a different divider design must be proposed. A
riprap embankment is one acceptable method of separation for deeper ponds. Other designs
that satisfy the intent of this provision are allowed as long as the divider is permeable, struc-
turally sound, and designed to prevent erosion under and around the divider.
l The most common structural failure of sediment ponds is caused by piping. Piping refers to
two phenomena: (1) water seeping through fine-grained soil, eroding the soil grain by grain
and forming pipes or tunnels; and, (2) water under pressure flowing upward through a gran-
ular soil with a head of sufficient magnitude to cause soil grains to lose contact and capability
for support.
The most critical construction practices to prevent piping are:
o Tight connections between the riser and outlet pipe, and other pipe connections.
o Adequate anchoring of the riser.
o Proper soil compaction of the embankment and riser footing.
o Proper construction of anti-seep devices.
Sediment Pond Geometry
To determine the sediment pond geometry, first calculate the design surface area (SA) of the pond,
measured at the top of the riser pipe. Use the following equation:
SA = 2 x Q2/0.00096
or
2080 square feet per cfs of inflow
See BMP C240: Sediment Trap for more information on the above equation.
The basic geometry of the pond can now be determined using the following design criteria:
l Required surface area SA (from the equation above) at the top of the riser.
l Minimum 3.5-foot depth from the top of the riser to the bottom of the pond.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 389
l Maximum 3H:1V interior side slopes and maximum 2H:1V exterior slopes. The interior slopes
can be increased to a maximum of 2H:1V if fencing is provided at or above the maximum
water surface.
l One foot of freeboard between the top of the riser and the crest of the emergency spillway.
l Flat bottom.
l Minimum 1-foot deep spillway.
l Length-to-width ratio between 3:1 and 6:1.
Sediment Pond Discharge
The outlet for the pond consists of a combination of principal and emergency spillways. These out-
lets must pass the peak runoff expected from the contributing drainage area for a 100-year storm. If,
due to site conditions and basin geometry, a separate emergency spillway is not feasible, the prin-
cipal spillway must pass the entire peak runoff expected from the 100-year storm. However, an
attempt to provide a separate emergency spillway should always be made. Base the runoff cal-
culations on the site conditions during construction. The flow through the dewatering orifice cannot
be utilized when calculating the 100-year storm elevation because of its potential to become
clogged; therefore, available spillway storage must begin at the principal spillway riser crest.
The principal spillway designed by the procedures described below will result in some reduction in
the peak rate of runoff. However, the design will not control the discharge flow rates to the extent
required to comply with I-3.4.7 MR7: Flow Control. The size of the contributing basin, the expected
life of the construction project, the anticipated downstream effects, and the anticipated weather con-
ditions during construction should be considered to determine the need for additional discharge con-
trol.
Principal Spillway: Determine the required diameter for the principal spillway (riser pipe). The dia-
meter shall be the minimum necessary to pass the peak volumetric flow rate using a 15-minute time
step from a Type 1A, 10-year, 24-hour frequency storm for the developed condition. Use Figure II-
3.31: Riser Inflow Curves to determine the riser diameter.
To aid in determining sediment depth, one-foot intervals shall be prominently marked on the riser.
Emergency Overflow Spillway: Size the emergency overflow spillway for the peak volumetric flow
rate using a 10-minute time step from a Type 1A, 100-year, 24-hour frequency storm for the
developed condition. See BMP D.1: Detention Ponds for additional guidance for Emergency Over-
flow Spillway design
Dewatering Orifice: Size of the dewatering orifice(s) (minimum 1-inch diameter) using a modified
version of the discharge equation for a vertical orifice and a basic equation for the area of a circular
orifice. Determine the required area of the orifice with the following equation:
where
Ao = orifice area (square feet)
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 390
AS = pond surface area (square feet)
h = head of water above orifice (height of riser in feet)
T = dewatering time (24 hours)
g = acceleration of gravity (32.2 feet/second2)
Convert the orifice area (in square feet) to the orifice diameter D (in inches):
The vertical, perforated tubing connected to the dewatering orifice must be at least 2 inches larger in
diameter than the orifice to improve flow characteristics. The size and number of perforations in the
tubing should be large enough so that the tubing does not restrict flow. The orifice should control the
flow rate.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 391
Figure II-3.28: Sediment Pond Plan View
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 392
Figure II-3.29: Sediment Pond Cross Section
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 393
Figure II-3.30: Sediment Pond Riser Detail
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 394
Figure II-3.31: Riser Inflow Curves
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 395
Maintenance Standards
l Remove sediment from the pond when it reaches 1 foot in depth.
l Repair any damage to the pond embankments or slopes.
BMP C250: Construction Stormwater Chemical
Treatment
Purpose
This BMP applies when using chemicals to treat turbidity in stormwater by either batch or flow-
through chemical treatment.
Turbidity is difficult to control once fine particles are suspended in stormwater runoff from a con-
struction site. BMP C241: Sediment Pond (Temporary) is effective at removing larger particulate
matter by gravity settling, but is ineffective at removing smaller particulates such as clay and fine silt.
Traditional Construction Stormwater BMPs may not be adequate to ensure compliance with the
water quality standards for turbidity in the receiving water.
Chemical treatment can reliably provide exceptional reductions of turbidity and associated pol-
lutants. Chemical treatment may be required to meet turbidity stormwater discharge requirements,
especially when construction proceeds through the wet season.
Conditions of Use
Formal written approval from Ecology is required for the use of chemical treatment, regardless of
site size. See https://fortress.wa.gov/ecy/publications/SummaryPages/ecy070258.html for a copy of
the Request for Chemical Treatment form. The Local Permitting Authority may also require review
and approval. When authorized, the chemical treatment systems must be included in the Con-
struction Stormwater Pollution Prevention Plan (SWPPP).
Chemically treated stormwater discharged from construction sites must be nontoxic to aquatic organ-
isms. The Chemical Technology Assessment Protocol - Ecology (CTAPE) must be used to evaluate
chemicals proposed for stormwater treatment. Only chemicals approved by Ecology under the
CTAPE may be used for stormwater treatment. The approved chemicals, their allowable application
techniques (batch treatment or flow-through treatment), allowable application rates, and conditions
of use can be found at the Department of Ecology Emerging Technologies website:
https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-
guidance-resources/Emerging-stormwater-treatment-technologies
Background on Chemical Treatment Systems
Coagulation and flocculation have been used for over a century to treat water. The use of coagu-
lation and flocculation to treat stormwater is a very recent application. Experience with the treatment
of water and wastewater has resulted in a basic understanding of the process, in particular factors
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 396
treatment pond prior to decanting. Compliance with the water quality standards is determined in the
receiving water.
Operator Training
Each project site using chemical treatment must have a trained operator who is certified for oper-
ation of an Enhanced Chemical Treatment system. The operator must be trained and certified by an
organization approved by Ecology. Organizations approved for operator training are found at the fol-
lowing website:
https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-
guidance-resources/Contaminated-water-on-construction-sites
Sediment Removal and Disposal
l Sediment shall be removed from the untreated stormwater storage pond and treatment cells
as necessary. Typically, sediment removal is required at least once during a wet season and
at the decommissioning of the chemical treatment system. Sediment remaining in the cells
between batches may enhance the settling process and reduce the required chemical
dosage.
l Sediment that is known to be non-toxic may be incorporated into the site away from drain-
ages.
BMP C251: Construction Stormwater Filtration
Purpose
Filtration removes sediment from runoff originating from disturbed areas of the site.
Conditions of Use
Traditional Construction Stormwater BMPs used to control soil erosion and sediment loss from con-
struction sites may not be adequate to ensure compliance with the water quality standard for tur-
bidity in the receiving water. Filtration may be used in conjunction with gravity settling to remove
sediment as small as fine silt (0.5 µm). The reduction in turbidity will be dependent on the particle
size distribution of the sediment in the stormwater. In some circumstances, sedimentation and fil-
tration may achieve compliance with the water quality standard for turbidity.
The use of construction stormwater filtration does not require approval from Ecology as long as treat-
ment chemicals are not used. Filtration in conjunction with BMP C250: Construction Stormwater
Chemical Treatment requires testing under the Chemical Technology Assessment Protocol – Eco-
logy (CTAPE) before it can be initiated. Approval from Ecology must be obtained at each site where
chemical use is proposed prior to use. See https://-
fortress.wa.gov/ecy/publications/SummaryPages/ecy070258.html for a copy of the Request for
Chemical Treatment form.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 404
Design and Installation Specifications
Two types of filtration systems may be applied to construction stormwater treatment: rapid and slow.
Rapid filtration systems are the typical system used for water and wastewater treatment. They can
achieve relatively high hydraulic flow rates, on the order of 2 to 20 gpm/sf, because they have auto-
matic backwash systems to remove accumulated solids.
Slow filtration systems have very low hydraulic rates, on the order of 0.02 gpm/sf, because they do
not have backwash systems. Slow filtration systems have generally been used as post construction
BMPs to treat stormwater (see V-6 Filtration BMPs). Slow filtration is mechanically simple in com-
parison to rapid filtration, but requires a much larger filter area.
Filter Types and Efficiencies
Sand media filters are available with automatic backwashing features that can filter to 50 µm particle
size. Screen or bag filters can filter down to 5 µm. Fiber wound filters can remove particles down to
0.5 µm. Filters should be sequenced from the largest to the smallest pore opening. Sediment
removal efficiency will be related to particle size distribution in the stormwater.
Treatment Process and Description
Stormwater is collected at interception point(s) on the site and diverted to an untreated stormwater
sediment pond or tank for removal of large sediment, and storage of the stormwater before it is
treated by the filtration system. In a rapid filtration system, the untreated stormwater is pumped from
the pond or tank through the filtration media. Slow filtration systems are designed using gravity to
convey water from the pond or tank to and through the filtration media.
Sizing
Filtration treatment systems must be designed to control the velocity and peak volumetric flow rate
that is discharged from the system and consequently the project site. See Element 3: Control Flow
Rates for further details on this requirement.
The untreated stormwater storage pond or tank should be sized to hold 1.5 times the volume of run-
off generated from the site during the 10-year, 24-hour storm event, minus the filtration treatment
system flowrate for an 8-hour period. For a chitosan-enhanced sand filtration system, the filtration
treatment system flowrate should be sized using a hydraulic loading rate between 6-8 gpm/ft2. Other
hydraulic loading rates may be more appropriate for other systems. Bypass should be provided
around the filtration treatment system to accommodate extreme storm events. Runoff volume shall
be calculated using the methods presented in III-2.3 Single Event Hydrograph Method. Worst-case
land cover conditions (i.e., producing the most runoff) should be used for analyses (in most cases,
this would be the land cover conditions just prior to final landscaping).
If the filtration treatment system design does not allow you to discharge at the rates as required by
Element 3: Control Flow Rates, and if the site has a permanent Flow Control BMP that will serve the
planned development, the discharge from the filtration treatment system may be directed to the per-
manent Flow Control BMP to comply with Element 3: Control Flow Rates. In this case, all discharge
(including water passing through the treatment system and stormwater bypassing the treatment
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 405
system) will be directed into the permanent Flow Control BMP. If site constraints make locating the
untreated stormwater storage pond difficult, the permanent Flow Control BMP may be divided to
serve as the untreated stormwater storage pond and the post-treatment temporary flow control
pond. A berm or barrier must be used in this case so the untreated water does not mix with the
treated water. Both untreated stormwater storage requirements, and adequate post-treatment flow
control must be achieved. The designer must document in the Construction SWPPP how the per-
manent Flow Control BMP is able to attenuate the discharge from the site to meet the requirements
of Element 3: Control Flow Rates. If the design of the permanent Flow Control BMP was modified
for temporary construction flow control purposes, the construction of the permanent Flow Control
BMP must be finalized, as designed for its permanent function, at project completion.
Maintenance Standards
l Rapid sand filters typically have automatic backwash systems that are triggered by a pre-set
pressure drop across the filter. If the backwash water volume is not large or substantially more
turbid than the untreated stormwater stored in the holding pond or tank, backwash return to
the untreated stormwater pond or tank may be appropriate. However, other means of treat-
ment and disposal may be necessary.
l Screen, bag, and fiber filters must be cleaned and/or replaced when they become clogged.
l Sediment shall be removed from the storage and/or treatment ponds as necessary. Typically,
sediment removal is required once or twice during a wet season and at the decommissioning
of the ponds.
l Disposal of filtration equipment must comply with applicable local, state, and federal reg-
ulations.
BMP C252: Treating and Disposing of High pH Water
Purpose
When pH levels in stormwater rise above 8.5, it is necessary to lower the pH levels to the acceptable
range of 6.5 to 8.5 prior to discharge to surface or ground water. A pH level range of 6.5 to 8.5 is typ-
ical for most natural watercourses, and this neutral pH range is required for the survival of aquatic
organisms. Should the pH rise or drop out of this range, fish and other aquatic organisms may
become stressed and may die.
Conditions of Use
l The water quality standard for pH in Washington State is in the range of 6.5 to 8.5. Storm-
water with pH levels exceeding water quality standards may be either neutralized on site or
disposed of to a sanitary sewer or concrete batch plant with pH neutralization capabilities.
l Neutralized stormwater may be discharged to surface waters under the Construction Storm-
water General permit.
l Neutralized process water such as concrete truck wash-out, hydro-demolition, or saw-cutting
slurry must be managed to prevent discharge to surface waters. Any stormwater
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 406
contaminated during concrete work is considered process wastewater and must not be dis-
charged to waters of the State or stormwater collection systems.
l The process used for neutralizing and/or disposing of high pH stormwater from the site must
be documented in the Construction Stormwater Pollution Prevention Plan.
Causes of High pH
High pH at construction sites is most commonly caused by the contact of stormwater with poured or
recycled concrete, cement, mortars, and other Portland cement or lime containing construction
materials. (See BMP C151: Concrete Handling for more information on concrete handling pro-
cedures). The principal caustic agent in cement is calcium hydroxide (free lime).
Calcium hardness can contribute to high pH values and cause toxicity that is associated with high pH
conditions. A high level of calcium hardness in waters of the state is not allowed. Ground water stand-
ard for calcium and other dissolved solids in Washington State is less than 500 mg/l.
Treating High pH Stormwater by Carbon Dioxide Sparging
Advantages of Carbon Dioxide Sparging
l Rapidly neutralizes high pH water.
l Cost effective and safer to handle than acid compounds.
l CO2 is self-buffering. It is difficult to overdose and create harmfully low pH levels.
l Material is readily available.
The Chemical Process of Carbon Dioxide Sparging
When carbon dioxide (CO2) is added to water (H 2O), carbonic acid (H2CO3) is formed which can
further dissociate into a proton (H+) and a bicarbonate anion (HCO3-) as shown below:
CO2 + H 2O ↔ H2CO3 ↔ H+ + HCO3-
The free proton is a weak acid that can lower the pH. Water temperature has an effect on the reac-
tion as well. The colder the water temperature is, the slower the reaction occurs. The warmer the
water temperature is, the quicker the reaction occurs. Most construction applications in Washington
State have water temperatures in the 50°F or higher range so the reaction is almost simultaneous.
The Treatment Process of Carbon Dioxide Sparging
High pH water may be treated using continuous treatment, continuous discharge systems. These
manufactured systems continuously monitor influent and effluent pH to ensure that pH values are
within an acceptable range before being discharged. All systems must have fail safe automatic shut
off switches in the event that pH is not within the acceptable discharge range. Only trained operators
may operate manufactured systems. System manufacturers often provide trained operators or train-
ing on their devices.
The following procedure may be used when not using a continuous discharge system:
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 407
1. Prior to treatment, the appropriate jurisdiction should be notified in accordance with the reg-
ulations set by the jurisdiction.
2. Every effort should be made to isolate the potential high pH water in order to treat it separately
from other stormwater on-site.
3. Water should be stored in an acceptable storage facility, detention pond, or containment cell
prior to pH treatment.
4. Transfer water to be treated for pH to the pH treatment structure. Ensure that the pH treat-
ment structure size is sufficient to hold the amount of water that is to be treated. Do not fill the
pH treatment structure completely, allow at least 2 feet of freeboard.
5. The operator samples the water within the pH treatment structure for pH and notes the clarity
of the water. As a rule of thumb, less CO2 is necessary for clearer water. The results of the
samples and water clarity observations should be recorded.
6. In the pH treatment structure, add CO2 until the pH falls into the range of 6.9-7.1. Adjusting
pH to within 0.2 pH units of receiving water (background pH) is recommended. It is unlikely
that pH can be adjusted to within 0.2 pH units using dry ice. Compressed carbon dioxide gas
should be introduced to the water using a carbon dioxide diffuser located near the bottom of
the pH treatment structure, this will allow carbon dioxide to bubble up through the water and
diffuse more evenly.
7. Slowly discharge the water, making sure water does not get stirred up in the process. Release
about 80% of the water from the pH treatment structure leaving any sludge behind. If turbidity
remains above the maximum allowable, consider adding filtration to the treatment train. See
BMP C251: Construction Stormwater Filtration.
8. Discharge treated water through a pond or drainage system.
9. Excess sludge needs to be disposed of properly as concrete waste. If several batches of
water are undergoing pH treatment, sludge can be left in the treatment structure for the next
batch treatment. Dispose of sludge when it fills 50% of the treatment structure volume.
10. Disposal must comply with applicable local, state, and federal regulations.
Treating High pH Stormwater by Food Grade Vinegar
Food grade vinegar that meets FDA standards may be used to neutralize high pH water. Food
grade vinegar is only 4% to 18% acetic acid with the remainder being water. Food grade vinegar
may be used if dosed just enough to lower pH sufficiently. Use a treatment process as described
above for CO2 sparging, but add food grade vinegar instead of CO2.
This treatment option for high pH stormwater does not apply to anything but food grade vinegar.
Acetic acid does not equal vinegar. Any other product or waste containing acetic acid must go
through the evaluation process in Appendix G of Whole Effluent Toxicity Testing Guidance and Test
Review Criteria (Marshall, 2016).
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 408
Disposal of High pH Stormwater
Sanitary Sewer Disposal
Local sewer authority approval is required prior to disposal via the sanitary sewer.
Concrete Batch Plant Disposal
l Only permitted facilities may accept high pH water.
l Contact the facility to ensure they can accept the high pH water.
Maintenance Standards
Safety and materials handling:
l All equipment should be handled in accordance with OSHA rules and regulations.
l Follow manufacturer guidelines for materials handling.
Each operator should provide:
l A diagram of the monitoring and treatment equipment.
l A description of the pumping rates and capacity the treatment equipment is capable of treat-
ing.
Each operator should keep a written record of the following:
l Client name and phone number.
l Date of treatment.
l Weather conditions.
l Project name and location.
l Volume of water treated.
l pH of untreated water.
l Amount of CO2 or food grade vinegar needed to adjust water to a pH range of 6.9-7.1.
l pH of treated water.
l Discharge point location and description.
A copy of this record should be given to the client/contractor who should retain the record for three
years.
2019 Stormwater Management Manual for Western Washington
Volume II -Chapter 3 -Page 409
APPENDIX C
Correspondence
(Correspondence to be added to the appendix as received)
APPENDIX D
Site Inspection Form
Construction Stormwater Site Inspection Form
Page 3
Element # Inspection BMPs
Inspected
BMP needs
maintenance
BMP
failed
Action
required
(describe in
section F)
yes no n/a
5
Stabilize Soils
Cont.
Are stockpiles stabilized from erosion,
protected with sediment trapping
measures and located away from drain
inlet, waterways, and drainage
channels?
Have soils been stabilized at the end of
the shift, before a holiday or weekend
if needed based on the weather
forecast?
6
Protect
Slopes
Has stormwater and ground water
been diverted away from slopes and
disturbed areas with interceptor dikes,
pipes and or swales?
Is off-site storm water managed
separately from stormwater generated
on the site?
Is excavated material placed on uphill
side of trenches consistent with safety
and space considerations?
Have check dams been placed at
regular intervals within constructed
channels that are cut down a slope?
7
Drain Inlets
Storm drain inlets made operable
during construction are protected.
Are existing storm drains within the
influence of the project protected?
8
Stabilize
Channel and
Outlets
Have all on-site conveyance channels
been designed, constructed and
stabilized to prevent erosion from
expected peak flows?
Is stabilization, including armoring
material, adequate to prevent erosion
of outlets, adjacent stream banks,
slopes and downstream conveyance
systems?
9
Control
Pollutants
Are waste materials and demolition
debris handled and disposed of to
prevent contamination of stormwater?
Has cover been provided for all
chemicals, liquid products, petroleum
products, and other material?
Has secondary containment been
provided capable of containing 110%
of the volume?
Were contaminated surfaces cleaned
immediately after a spill incident?
Were BMPs used to prevent
contamination of stormwater by a pH
modifying sources?
Construction Stormwater Site Inspection Form
Page 4
Element # Inspection BMPs
Inspected
BMP needs
maintenance
BMP
failed
Action
required
(describe in
section F)
yes no n/a
9
Cont.
Wheel wash wastewater is handled
and disposed of properly.
10
Control
Dewatering
Concrete washout in designated areas.
No washout or excess concrete on the
ground.
Dewatering has been done to an
approved source and in compliance
with the SWPPP.
Were there any clean non turbid
dewatering discharges?
11
Maintain
BMP
Are all temporary and permanent
erosion and sediment control BMPs
maintained to perform as intended?
12
Manage the
Project
Has the project been phased to the
maximum degree practicable?
Has regular inspection, monitoring and
maintenance been performed as
required by the permit?
Has the SWPPP been updated,
implemented and records maintained?
13
Protect LID
Is all Bioretention and Rain Garden
Facilities protected from
sedimentation with appropriate BMPs?
Is the Bioretention and Rain Garden
protected against over compaction of
construction equipment and foot
traffic to retain its infiltration
capabilities?
Permeable pavements are clean and
free of sediment and sediment laden-
water runoff. Muddy construction
equipment has not been on the base
material or pavement.
Have soiled permeable pavements
been cleaned of sediments and pass
infiltration test as required by
stormwater manual methodology?
Heavy equipment has been kept off
existing soils under LID facilities to
retain infiltration rate.
E. Check all areas that have been inspected.
All in place BMPs All disturbed soils All concrete wash out area All material storage areas
All discharge locations All equipment storage areas All construction entrances/exits
APPENDIX E
Construction Stormwater General Permit (CSWGP)
Download the CSWGP:
http://www.ecy.wa.gov/programs/wq/stormwater/construction/index.htm