Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Nisqually Landing Garage 2 Calculations (2018 IBC)
19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: (425) 814-8448 Fax: (425) 821-2120 BTL ENGINEERING Structural Calculations For Nisqually Landing Apartments Garage 2 Yelm, WA November 19, 2021 Prepared by Ryan Hartman Dane Pollett 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: (425) 814-8448 Fax: (425) 821-2120 BTL ENGINEERING STRUCTURAL CALCULATIONS SHEET INDEX Nisqually Landing Apartments - Garages Yelm, WA Item Page # Criteria · Design Criteria ..............................................................................................................C1.1 Gravity · Roof Framing Key Plans .......................................................................................................R1.1 Beams ............................................................................................................R2.1 Lateral · Forces Criteria ............................................................................................................ L1.1 Building Geometry ......................................................................................... L1.2 Seismic Parameters ...................................................................................... L1.3 Wind Lateral Loads ........................................................................................ L1.4 Vertical Distribution of Lateral Forces ........................................................... L1.5 · Shear Walls/Diaphragms Roof Diaphragm Forces ................................................................................ L2.1 Shear Wall Forces ......................................................................................... L2.2 Shear Wall Analysis ....................................................................................... L2.3 · Shear Wall/Diaphragm Capacities Allowable Diaphragm Stresses ..................................................................... L3.1 Allowable Shear Wall Stresses ..................................................................... L3.2 Shear Wall Anchor Bolts ............................................................................... L3.3 Shear Wall Schedule ..................................................................................... L3.4 Miscellaneous · Stud Wall Design......................................................................................................... M1.1 · Post Design ................................................................................................................. M1.3 · Footing Design ............................................................................................................ M2.1 BTL 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: (425) 814-8448 ENGINEERING Fax: (425) 821-2120 Criteria 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 Project:Nisqually Landing Apartments - Garages Project Number:Yelm, WA Code:IBC 2018 Risk Category II Earthquake:Site Class D Ie =1.00 R = 6.5 SS =1.279 W0 =3.0 S1 =0.461 Cd =4.0 r =1.00 Wind:Basic Design Wind Speed, V 100 MPH Exposure B Topographic Factor KZT =1.00 Soil Bearing:3000-psf Allowable Soil Bearing Pressure Concrete:2500-psi Concrete Strength Higher strength may be used, but special inspection and testing reports not req'd Nails:Sheathing 8d common (2½" x 0.131") Framing 12d box (3¼" x 0.131") Roof Framing: Snow Load Ground Snow, Pg 25 psf Exposure factor, Ce 1.0 Thermal Factor, Ct 1.2 Flat Roof Snow, Pf (0.7 Ce Ct I Pg) 21 psf Use Snow Load 25 psf Attic (where accessible)10 psf Dead Load Roofing - Composition Shingles 4.0 psf Sheathing - 7/16 OSB 2.2 psf Framing - Trusses @ 24"oc 2.5 psf Insulation - Batt.1.0 psf Ceiling - 5/8 GWB 2.8 psf Misc.2.5 psf Total 15 psf Deflection L/360 Live Load, L/240 Total Load Wall Framing: Dead Load Exterior 2x Stud Walls 10 psf Interior 2x Stud Walls 8 psf Date: 11/17/2021 Page: C1.1 9/7/2021 U.S. Seismic Design Maps Nisqually Landing Apartments 17021 103rd Ave SE, Yelm, WA 98597, USA Latitude, Longitude: 46.9378888, -122.5780147 American Legion Post 164 e ro M a. w M r Date Design Code Reference Document Risk Category Site Class Old Yelm-Mc Kenna i; LU w oD 9/7/2021, 4:09:56 PM ASCE7-16 11 D - Stiff Soil OSH PD Type Value Description Ss 1.279 MCER ground motion. (for 0.2 second period) S, 0.461 MCER ground motion. (for 1.0s period) SMS 1.279 Site -modified spectral acceleration value SM1 null -See Section 11.4.8 Site -modified spectral acceleration value SDS 0.852 Numeric seismic design value at 0.2 second SA SD1 null -See Section 11.4.8 Numeric seismic design value at 1.0 second SA Type Value Description SDC null -See Section 11.4.8 Seismic design category Fa 1 Site amplification factor at 0.2 second Fv null -See Section 11.4.8 Site amplification factor at 1.0 second PGA 0.5 MCEG peak ground acceleration FPGA 1.1 Site amplification factor at PGA PGAM 0.55 Site modified peak ground acceleration TL 16 Long -period transition period in seconds SsRT 1.279 Probabilistic risk -targeted ground motion. (0.2 second) SsUH 1.407 Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration SsD 1.5 Factored deterministic acceleration value. (0.2 second) S1RT 0.461 Probabilistic risk -targeted ground motion. (1.0 second) S1 UH 0.517 Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration. S1D 0.614 Factored deterministic acceleration value. (1.0 second) PGAd 0.5 Factored deterministic acceleration value. (Peak Ground Acceleration) CRS 0.909 Mapped value of the risk coefficient at short periods ola r Pl��1 d� 4 Map data ©2021 hftps:Hseismicmaps.org C -t, ow 9/7/2021 17021 103rd Ave SE - Google Maps 17021 103rd Ave SE f 3 �� .... SIT?, Natliv,'xsl C'e•yxi --` - , 1� • V-9 nakrwi �Kv=xn,e-v Stxwa70-W ., a 0 •- Go gle Map data 02021 2000 ft, d` FXPOSv(kF FJ l�� T� {��GT ®�►% C)F 013 hftps:/ANww.google.com/maps/place/l 7021+103rd+Ave+S E,+Yelm,+WA+98597/@46.9433618,-122.5673667,14z/data=!4m5!3m4! 1 sOx549113e52178... %V BTL 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: (425) 814-8448 ENGINEERING Fax: (425) 821-2120 Gravity Roof Framing r,15- v Q !(b -V l R1. I �f u\JN D A-Tr_O N PL-p4y --� ------------------------------------------------.-_-.-.-_---- L_J------------------------------------------------------ W �f u\JN D A-Tr_O N PL-p4y BTL ENGINEERING (�6— M= M= k.ft L/360 �Il (LL) L/240 = H 3 1 (TL) EIreq'd = (� S x1061b.in2 M k.ft V= L/?bo (LL) 11 L/240 = 3 (TL) Elreq'd — (� x1061b.in2 Ax1'� Project: Project Number: 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 �UG 4d`00 # a�00 # II ! I}2 f2 ex- BEAM ! 12x POCKET �]2x STUD GROUP FLIP.H]7x STUD GROUP Ftp BEnr+ ( ]2x STUD GROUP rT.usH aenM ( ]2x STUD GROUP FlIl NfN TF=SMFFR rw" eE+rr, r tax STUD GROUP M1W BE HGR F137`aFi BFJW 45R 6Y TRUSS MFR MDSH HGR �T LFOOTw& z� e� POCKET U" BEM POCKET �]2x STUD GROUP FLIP.H]7x STUD GROUP TRIMMER MW BEAM ( )ax STUD GROUP rw" eE+rr, r tax STUD GROUP BEAM _POST r—FOOTING— F137`aFi BFJW 45R 6Y TRUSS MFR MDSH HGR 9EAM POST— FOOTING i 5� o QvF -------------- ---------------- `"1gzgoo # T�LfMMER U" BEM POCKET �]2x STUD GROUP FLIP.H]7x STUD GROUP AT)7x STUD GROUP H6R BY TVI)% MFR HGR BEAM _POST r—FOOTING— +t p5 l Client: lq'�I BEAMx TRIMMER t AT)7x STUD GROUP rt(N BE—M ]fix STUD GROUP FU)5H BENE IM HGR BY TRUSS MFR HSR POST �FQQTINGJ Designed By: Date: Scale: Page: V41 BTL 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: (425) 814-8448 ENGINEERING Fax: (425) 821-2120 Lateral Forces 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 Nisqually Landing Apartments Revision Date: Garage 2 Criteria Code: Seismic Design:ASCE 7-16: 12.8 Equivalent Lateral Force Procedure Wind Design:ASCE 7-16: Ch. 28 Envelope Procedure, Low Rise Risk Category:Table 1.5-1 Snow Importance Factor I S =1.00 Table 1.5-2 Ice Importance Factor - Thickness I i =1.00 Table 1.5-2 Ice Importance Factor - Wind I w =1.00 Table 1.5-2 Seismic Importance Factor I e =1.00 Table 1.5-2 Spectral Response, Short Period S S =1.279 (Mapped) Spectral Response, 1-s Period S 1 =0.461 (Mapped) Site Class:Table 20.3-1 Site Coefficient F a =1.04 Table 11.4-1 Site Coefficient F v =1.84 Table 11.4-2 Structural Systems: T L =6 (Figs. 22-14 thru 22-17) Response Modification Coefficient R =6.5 Table 12.2-1 Overstrength Factor W0 =3 Table 12.2-1 Deflection Amplification Factor C d =4 Table 12.2-1 Basic Wind Speed: Exposure to Wind:Section 26.7.3 Topographical Factor K ZT =1.00 11/18/2021 Light framed walls with shear panels Date: 11/18/2021 Page: L1.1 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 Nisqually Landing Apartments Revision Date:11/18/2021 Garage 2 Roof Seismic Weight - Roof N/S Projected Area - Roof Geometry Roof Area 1 1450 SF 15 psf 21,750#Sloped Roof Area 275 SF Mean Roof Height Hn =11.5 ft Roof Area 2 350 SF 6 psf 2,100#Gable/Parapet Area 0 SF Roof Depth D-Roof =4.67 ft Roof Area 3 Wall Area 202.5 SF Overhang Length 24 in Exterior Wall 1 134 LF 4.5 ft 10 psf 6,030# Pitch 4:12 Exterior Wall 2 E/W Projected Area - Roof Exterior Wall 3 Sloped Roof Area 0 SF Floor 1 Interior Wall 60 LF 4.5 ft 8 psf 2,160#Gable/Parapet Area 50 SF Geometry Total 32,040#Wall Area 99 SF Width W3 =45 ft Length L3 =22 ft Plate Height H3 =9 ft Floor Depth D3 =0 in Date: 11/18/2021 Page: L1.2 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 Nisqually Landing Apartments Revision Date: Garage 2 Redundancy, ρ 1 (Section 12.3.4) Design Base Shear S MS =F a S S (Eq. 11.4-1)S M 1 =F v S 1 (Eq. 11.4-2) =1.34 =0.85 S DS =⅔ S MS (Eq. 11.4-3)S D 1 =⅔ S M 1 (Eq. 11.4-4) =0.89 =0.57 Seismic Design Category:Structure Period and Weight: Short Period --D 1-Second Period --D C t =0.020 Table 12.8-2 x =0.75 Building Height (Mean Roof), h n =12 ft Approximate Fundamental Period, T a =C t (h n )x (Eq. 12.8-7) T = T a =0.12 T L =6 (Figs. 22-14 thru 22-17) Calculated design base shear: V =C s W (Eq. 12.8-1) C s =(Eq. 12.8-2) C s =0.14 The total design base shear need not exceed: (Eq. 12.8-3)(Eq. 12.8-4) for T O T L C s = C s =0.70 C s =33.44 C s =0.70 T ≤ TL C s =1.04 1.5 times Cs in accordance with 11.4.8 The total design base shear shall not be less than: C s =0.044S DS I e 0.01 (Eq. 12.8-5) C s =0.04 nor where S 1 0.6g: C s =0.5S 1/(R/Ie)(Eq. 12.8-6) C s =0.00 C s =0.14 V =0.14 W 11/18/2021 for T > T L C s = 𝑅𝐷𝑆 𝑅 𝐼𝑒 𝑅𝐷1 𝑅𝑅 𝐼𝑒 𝑅𝐷1 𝑅𝐿 𝑅2 𝑅 𝐼𝑒 Date: 11/18/2021 Page: L1.3 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 Nisqually Landing Apartments Revision Date:11/18/2021 Garage 2 ρS = λ KZT ρS30 (28.5-1)Exposure =B λ =1.00 (Fig. 28.5.1)Mean Roof Ht hn (ft) =12 ft K ZT =1.00 (Section 26.8)a (roof) =3.0 ft Basic Wind Speed =100 mph Roof Angle =19 North/South Loading 28.5.4 Minimum Design Loads Zone Area p S30 (psf)p S30 design (psf)ρ (psf)Force (#)ASD Force (#)Force (#)ASD Force (#) Roof Awall 27 21.6 21.6 21.6 583 350 432 259 Agable 0 21.6 21.6 21.6 0 0 0 0 B 28 -6.0 0.0 0.0 0 0 224 134 Cwall 176 14.3 14.3 14.3 2517 1510 2808 1685 Cgable 0 14.3 14.3 14.3 0 0 0 0 D 247 -3.3 0.0 0.0 0 0 1976 1186 Total Area =478 Total Load =3099 1860 5440 3264 Design:5440 3264 East/West Loading 28.5.4 Minimum Design Loads Zone Area p S30 (psf)p S30 design (psf)ρ (psf)Force (#)ASD Force (#)Force (#)ASD Force (#) Roof Awall 27 21.6 21.6 21.6 583 350 432 259 Agable 14 21.6 21.6 21.6 302 181 224 134 B 0 -6.0 0.0 0.0 0 0 0 0 Cwall 72 14.3 14.3 14.3 1032 619 1152 691 Cgable 36 14.3 14.3 14.3 516 310 576 346 D 0 -3.3 0.0 0.0 0 0 0 0 Total Area =149 Total Load =2434 1460 2384 1430 Design :2434 1460 Date: 11/18/2021 Page: L1.4 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 Nisqually Landing Apartments Revision Date: Garage 2 Vertical Distribution of Lateral Forces Base Shear: V =4.39 kips Shear Walls: F x =C vx V (Eq. 12.8-11)C vx =(Eq. 12.8-12) Diaphragms: Floor Level (from base) Height, hx (ft) Story Weight, wx (Kips) wxhx (ft-Kips) Roof 11.3 32.04 363 Totals W =32.04 Kips wxhx =363 ft-Kips Floor Level (from base) Lateral Force N/S, Hx (Kips) Story Shear N/S, ∑Hx (Kips) Lateral Force E/W, Hx (Kips) Roof 5.44 5.44 2.43 Seismic, [0.7E] (kips) Wind N/S [0.6W] (kips) Wind E/W [0.6W] (kips) Roof 3.99 3.26 1.46 Seismic, [0.7E] (kips) Wind E/W [0.6W] (kips) 1.46Floor 1 3.263.07 Diaphragm (ASD) Wind N/S [0.6W] (kips) Shear Walls (ASD) 11/18/2021 Story Shear, Fx (Kips) 4.39 Lateral Force, Fx (Kips) 4.39 Strength Design Wind Forces (W) Story Shear E/W, Hx (Kips) 2.43 Strength Design Seismic Forces (E) Story Moment (ft-Kips) 50 Portion of Weight at i , wi (Kips) 32 Diaphragm Force, Fpx (Kips) 5.71 𝑤𝑥ℎ𝑥𝑘 σ𝑖=1 𝑛𝑤𝑖ℎ𝑖 𝑘 𝐸𝑝𝑥= 𝑖=𝑥 𝑛 𝐸𝑖/ 𝑖=𝑥 𝑛 𝑤𝑖𝑤𝑝𝑥…𝐸𝑞.12.10 −1 𝐸𝑝𝑥=0.4𝑅𝐷𝑆𝐼𝑒𝑤𝑝𝑥…𝐸𝑞.12.10 −3 (max) 𝐸𝑝𝑥=0.2𝑅𝐷𝑆𝐼𝑒𝑤𝑝𝑥…𝐸𝑞.12.10 −2 (min) Date: 11/18/2021 Page: L1.5 BTL 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: (425) 814-8448 ENGINEERING Fax: (425) 821-2120 Lateral Shear Walls/Diaphragms BTL ENGINEERING 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 Diaphragm Fords: Roof E=ggq° # W =3a b E=3�1`IQ'lk W=�yb° 1 6 w)�3b� C C)I�0o-- -- (C� 11,100 W) 9 qo (uuj l i q 64 PLS (oNN'CLT"CON, O(E) ; bN PAF (E)1� ?LIT- ® (o' Lqg54cJG f`�Fi� a� ti �'T ISP (a cam° p Project: Project Number: Client: Designed By: Date: Scale: Page: L2.1 BTL ENGINEERING 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 Shear Wall Forces Main Floor E= 3070 W=3 Off$ 1535 0 730 E = 3U7Q 1� o W= lk4bm tv 4 J.Oc . C= 1535 � - _ E.lggS C,1075 - Project: Designed By: Datf. Project Number: Client: Scale: Pa€ _ _. BTL -PXTr_TXTT- T-7 R TXT( -- 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 F%Y-49.5-82.1-9.1g.n Shear Wall Line E_ ��35 W- 730 a _ 0 0 w Cd Ov��-b Project: Designed By: Project Number: Client: Scale: Date: Page:. L2.3 BTL 'PXT(tTXTFFRTXTCt Shear Wall Line E=�53�� W= /3,0 # F-.4 a 0 0 w Cd ►" (C1 1y'3�/g Project: 51a � w:ahs� y 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 S,F /h Fo ( - QI' M vPLS�I: 510 —1"`'o ;6So� `3 1� T rE`1 Designed By: Project Number: Client: Scale: Date: Page: L2.1-1 BTL ENGINEERING 19011 Woad-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 Shear Wall Line E_ M a b � 0 0 w CCS►�`'����'�i �`� NO vPvGFT Project: Project Number: Client: Designed By: Date: Scale: Page: L2. S BTL ENGINEERING Shear Wall Line W= M04 1Q U017 — a -- - a 3 P �.r--- F O 0 Project: Designed By: Project Number: Client: Scale: 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 Date: Page: L2. (o BTL 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: (425) 814-8448 ENGINEERING Fax: (425) 821-2120 Lateral Shear Wall/Diaphragm Capacities 2018 IBC/SDPWS 2015 - Diaphragms (8d Nailing) Table 4.2C Nominal Unit Shear Capacities for Wood -Frame Diaphragms Unblocked Wood Structural Panel Olaphragms"A'A €. Noogoulunji 2.3 Ind, skraraapacidrs dell be adjuged in'auordanre wiN4. _inn ASDallosreblrsoil shaar capacity and LRYI? mrtwea ank [esfsnnco. Pm p_1 conamednn nquiNmnnn aca 42 6. Fm sperm rrgNraman4, 114.2.7.1i wood etrvenan[panel&aphmpns-SaAppcndieh Larrpmmpn nail dhnrnst9ne- '-. For 9pre ice and grades of rmming oehm du11 DoMFe Pia-Larrh 0r Sauthem pine,[ adav4 nominal urA - shell be dcmrmmed by VZ""'tba tats] o d Pommel alt l sh 4 ty by doe Spsclfic Gnvaty Ad]mlmeat F.,L,-[I{o5-CA.-1emG SP fi Dmvtyoflhr Framing lumber From ,br ND5 ryable 1333A] The Specific I1111O AdjZ-1 Facmr shill nm be [treater than I. 7 Appaunl chew stffn !alms 0., ole b95ed l oIp in 0amo19 -h n nnr km 00;= 1b 19%w- ffb- aM panel ,nfh.,vaI_fbrdiaPI.-wim-41 050 mn ply plywood panel], When 4 -ply or 5,11 FIv dpmnlso pwt pmo[s arc uwd, G, ,.ht Mnl1be permittedm he mahlplled byk2 4 wdncoaoi:[mc con[entufthrfrmolsm is Xlra9rl tkaa 195, al tune affrhnea lion, 0. 4allirs daaLL be multiplied by O5. 5. Dlaphtagm reslsamx dePenes m Ne direLtipn of con[ilwsale panel joins wllh resp..[ w ilo 1p.adingai ft,n a end tlireelion of flaming mrnb>e, er.d u irdedenr,gr pmr nnrl nrianmrnn, � low... MinimN6nhnun xrnllnal wmm lmgPeaPl D-fint FeFndicularm3vppar6 Common Fastener Nwninul oNndad Facea shadhirlgGrade Nailsne Pernmralion In Framing panel svPPmrad TriEagan non Mail Spacing at diaphragm boundaries - (Ip.( Im.4 1lwndadaa (161 a.mil ed - 6d 1.114 5116 3 ad tesla 318 s 5frupbaelI 10d 1412 15132 2 s kf N. 5115 2 3 Smawa liar! vdnptue-0m on 1-124 31a 2 3 055 PLY 330 90 7.0 318 2 3 8.0 4.5 1170 7,6 2 Shlng rnd Floo15!32 ed 1-9167116 2 8.5 79 360 6.0 4.5 530 15132 3 8.0 gd 1.112 19132 2 3 570 14 10 €. Noogoulunji 2.3 Ind, skraraapacidrs dell be adjuged in'auordanre wiN4. _inn ASDallosreblrsoil shaar capacity and LRYI? mrtwea ank [esfsnnco. Pm p_1 conamednn nquiNmnnn aca 42 6. Fm sperm rrgNraman4, 114.2.7.1i wood etrvenan[panel&aphmpns-SaAppcndieh Larrpmmpn nail dhnrnst9ne- '-. For 9pre ice and grades of rmming oehm du11 DoMFe Pia-Larrh 0r Sauthem pine,[ adav4 nominal urA - shell be dcmrmmed by VZ""'tba tats] o d Pommel alt l sh 4 ty by doe Spsclfic Gnvaty Ad]mlmeat F.,L,-[I{o5-CA.-1emG SP fi Dmvtyoflhr Framing lumber From ,br ND5 ryable 1333A] The Specific I1111O AdjZ-1 Facmr shill nm be [treater than I. 7 Appaunl chew stffn !alms 0., ole b95ed l oIp in 0amo19 -h n nnr km 00;= 1b 19%w- ffb- aM panel ,nfh.,vaI_fbrdiaPI.-wim-41 050 mn ply plywood panel], When 4 -ply or 5,11 FIv dpmnlso pwt pmo[s arc uwd, G, ,.ht Mnl1be permittedm he mahlplled byk2 4 wdncoaoi:[mc con[entufthrfrmolsm is Xlra9rl tkaa 195, al tune affrhnea lion, 0. 4allirs daaLL be multiplied by O5. 5. Dlaphtagm reslsamx dePenes m Ne direLtipn of con[ilwsale panel joins wllh resp..[ w ilo 1p.adingai ft,n a end tlireelion of flaming mrnb>e, er.d u irdedenr,gr pmr nnrl nrianmrnn, C$tts l@3:Cbntin0ous Cases 2@4'Cnntinuoue CSaea S&dContnuoas PatxlJanp PerpcodicWv Pvrnt lot MZ Pv¢uol to Pane]lanLa Prrpco• m Flaming r mg dicvlm mid Parallelm Long Panel DucLvpn Perymdicdmlo Suppn¢ts � -• � A lmgPeaPl D-fint FeFndicularm3vppar6 - -( C ��� � SEISMIC _ _ e In. Mail Spacing at diaphragm boundaries - and II pried a.mil ed - Cat.I Ca5ea 2, 3,4,5,6 YI ng !tart a! SaPMaOn kf N. hi sfin. Smawa liar! vdnptue-0m 059 PLY brulatl,6Pac do las caaash,l wnalnaem 41, md!d O Pweellnfeatl lCesea]a 4 end still ttWu ca Caa,ai8e 055 PLY 330 90 7.0 250 8.0 4.5 1170 7,6 6.0 250 4.5 4.0 4130 8.5 79 360 6.0 4.5 530 7.5 8.0 400 5.0 4. 570 14 10 430 115 70 AM 12 90 480220 BD fir 3000 9.0 65 8 -0 4,0 340 To 5.5 250 5.0 3.5 330 7,5 5.5 250 S.0 4.0 370 6.0 4.5 280 4.0 3.0 430 9.0 6.5 340 6.0 _ 4.5 480 7.5 5.5 360 50 3.5 480 015 6.0 a40 6,5 40 0 7.0 5.5 311 4 2 3 450 7.5 5.5 300 5.o 4.0 530 6.5 5. 3.6 570 25 9.06 360 10 8.0 5g0 12 0 430 0.0 5.5 570 13 8.5 430 0.9 55 19 95 11 65 1090 122n 7,5 480 7.0 5.0 C$tts l@3:Cbntin0ous Cases 2@4'Cnntinuoue CSaea S&dContnuoas PatxlJanp PerpcodicWv Pvrnt lot MZ Pv¢uol to Pane]lanLa Prrpco• m Flaming r mg dicvlm mid Parallelm Long Panel DucLvpn Perymdicdmlo Suppn¢ts � -• � ,,,, �. � lmgPeaPl D-fint FeFndicularm3vppar6 - -( C ��� � I.anr f�rlel Atrec[idn Pamlle] to Supports' _ _ , ul Fernley case. rm oer.d-p1.o,loon. moyxln..ar ann al,rp,a.n..6..ea lk b.,a p...e a;ad.n PUFnaiculrm m,�.a. [Sc sesoisny.214etl iulion 51.31 Table 4.2A Nominal Unit Shear Capacities for Woad -Frame Diaphragms Blocked Wood Structural Panel Diaphragms3aaa6 1.Nom'lnd ocit ahuw wycitira dldl ba adju dinacrp 4m iJ, 4.2.31, dcinmioc A30 dlanaticunit sM1cmupariry and LP.FDGPmrW unit residence. Fm general usmnlpnrvpolemrna mr41,6-Fo[spxigc requimnXnu. see4.1?.I far wood sfiael For .i. pearl diaphragms. Ser Appendix A fm rprrmml lull dmens'wtn, S. spas sod g,dm offs 9 vdtmLima L%uglas-Fir-Lmh or 50uthem PNe, mdviced mm� nal v t 141, rapines shall bx deurmi.d by multiplying the mbtdmedanrn_m wI. ah-e4pmlryby IIIc SWific 0-i.,AdjvdnvrtFacwr- [I wL_a Sr"fic Gmvilyaf_(tong lumber Qom Ne NDS(35Me 1213A), 7h5 3penrc Gmnry Adju9lmeM FattOr Mall not be g}ealtr Naa I 3. Appame low sli n,Ill-,G„11beed en ..it a hp in fromialr 1nNmoimlrt fr8nt Was L1- -W m 19°1 air- Orfabn io and parol atifmr. x.Icen d'uph .ign, wn-"d wKk abler OSB uc3•ply plyveood Pmde. W1l 4 -ply nr5-pty plyw68d pmlda m eooromi4pmlela artvscd, 9,vducs sta0 he pcmlinrd lobe mu 1[ipind by 1,2, 4 whern maw I Phe fro ghgrtater Nan 1941 e1lime orfoblzvlon, D. valuers Ibe annitiplWby05 i oaaplaagmre lan¢dgmada. M.d- - ot,metmvolmperel3o'nIDwiN respect m the loading dtreclim 4M drtclioa offismiag mrmbc ad is'usdcpndcnt of die panel eriexadn9. Cares 1A3[osdnuv¢s pami lemh P,7,11dtcuLv Raring [ms iR4•LLnOnrwr Rod Fdnn P_IW Framing Cala 5@4•case- PmlelM_Pas- dicwlnr and PnrW Frrming lmgPeaPl D-fint FeFndicularm3vppar6 - -( C r -.e d•.. A Bp96ae � 8 Tmm� Naxp - _ �� ng !tart a! SaPMaOn bleu Smawa liar! vdnptue-0m eoumarvea tan nsaln mnunmm panel noes 0ery81bteee nu.es64 e.d eldl e.sl rad ca Cwca 566 brulatl,6Pac do las caaash,l wnalnaem 41, md!d O Pweellnfeatl lCesea]a 4 end still ttWu ca Caa,ai8e eenimum � znn z a Frslwr MInTI stn M wnN.laxdN XaN ___.... _. Ful w sdax ixl,d Cense 1,2.3. S 4 dna iParinp I61.) dn1n,. pntela�a Ceeve -.1&. 9MeIMa9 fbinnan Penna bnln PaR1M Pmlel � Fan at ndiaNng WO 0 W�. AM 9 Ik mn 1 3 6 a 0.adr IIN em Ilenhmn Pan.l5d9se imJ1lnOr ON Ma- Is-) 9nunddirbe In. 370 420 098 PLY 15 12 12 PS 500 560 069 PLY 05 i.6 75n 7.0 SA 1. C69 RT 12 to 9 S &.$ gap 4yi 060 PLT 4a 15 11 5211 Tq0 aura 1578 Inn 765 1115 F939 N 1-fM 9M8 2 3 1mB 32 2 B Sun 6W 14 II 12 In 720 800 90 i.5 1060 75 8.5 fIN 13 10 19 90 1Mn 13511 2i 18 10 13 101 1 11A 108! 1000 tail 5-1R 1Ya2 3 ]T8 26 1T 2n 15 aOz 4a0 15 I] 12E0 tR 55 1ma 29 li In 19 1100 loop 31 29 2g la 696 11110 1]01 2011 m1p 13x3 AIL22052205____ 9d t•tn Stla 2 3 310 3m 15 10 12 11, 450 500 9.0 s7o 7.0 _u 1. t g 1n 8.0 n 890 21 13 1T 1] 475 va 940 tpgi 53o Ito !065 1205 2 ala i9 95 10 89 506 5®] _ 70 9b 153 55 - 510 10 00 0.5 70 860 956 14 12 14 10 531100 1Md at? I. 105 1176 1339 �neume Y6 2 ] 400 15 1 1 �i IOW 95 gap 7.5 _ Imo 19 95 11 65 1090 122n 21 13 td 12 OTO ba] 1315 1325 755 loin 1SFo ti10 roil 50ig1eferl BO 15'9 T16 2 515 14 M 11 90 ass 700 5.5 o 161. T.0 1111 t2 95 t0 OD 1150 1290 In 19 tY 715 350 1415 1610 o t:AS 1605 law 2 9 510 1a 95 10 ]211 T.6 ILt. - 00 11 05 7S 400 4350 19 13 15 11 155 10m 1165 1590 910 Iran 1560 1090 fOtl 1-110 !figs 2 3 560 w $ 15 21 14 ]70 AGO 15 it 1150 12 n5 1300 21 t4 1T 1 1n56 1470 77 16 ae On 1000 1013 1.35 620 2080 lgu 2 F1 21 850 14 9.5 1360 16 12 1460 20 1T _122- 885 1100 1]00 2W5 i i4g 1i 960 1M0 M1a 11 16W 24 1i 1-010 1914 0115 2286 1.Nom'lnd ocit ahuw wycitira dldl ba adju dinacrp 4m iJ, 4.2.31, dcinmioc A30 dlanaticunit sM1cmupariry and LP.FDGPmrW unit residence. Fm general usmnlpnrvpolemrna mr41,6-Fo[spxigc requimnXnu. see4.1?.I far wood sfiael For .i. pearl diaphragms. Ser Appendix A fm rprrmml lull dmens'wtn, S. spas sod g,dm offs 9 vdtmLima L%uglas-Fir-Lmh or 50uthem PNe, mdviced mm� nal v t 141, rapines shall bx deurmi.d by multiplying the mbtdmedanrn_m wI. ah-e4pmlryby IIIc SWific 0-i.,AdjvdnvrtFacwr- [I wL_a Sr"fic Gmvilyaf_(tong lumber Qom Ne NDS(35Me 1213A), 7h5 3penrc Gmnry Adju9lmeM FattOr Mall not be g}ealtr Naa I 3. Appame low sli n,Ill-,G„11beed en ..it a hp in fromialr 1nNmoimlrt fr8nt Was L1- -W m 19°1 air- Orfabn io and parol atifmr. x.Icen d'uph .ign, wn-"d wKk abler OSB uc3•ply plyveood Pmde. W1l 4 -ply nr5-pty plyw68d pmlda m eooromi4pmlela artvscd, 9,vducs sta0 he pcmlinrd lobe mu 1[ipind by 1,2, 4 whern maw I Phe fro ghgrtater Nan 1941 e1lime orfoblzvlon, D. valuers Ibe annitiplWby05 i oaaplaagmre lan¢dgmada. M.d- - ot,metmvolmperel3o'nIDwiN respect m the loading dtreclim 4M drtclioa offismiag mrmbc ad is'usdcpndcnt of die panel eriexadn9. lel P,xl cp=n rali2 Fw oW o6pla3. bade naY b<bwa Don lin aPanrean6 wilA am beg Peed durum Perpellanaaflo Suppely f5m Sa1iw 9.2 4 and Satiw 3.2 31 1. Reduction Factor= 2 2. G = 0.42 (SPF or Hem Fir)... Adjustment Factor = [1-(0.5-0.42)] = 0.92 or 0.5 (I -Joists or Douglas Fir)... Adjustment Factor= 1.0 L3.1 Cares 1A3[osdnuv¢s pami lemh P,7,11dtcuLv Raring [ms iR4•LLnOnrwr Rod Fdnn P_IW Framing Cala 5@4•case- PmlelM_Pas- dicwlnr and PnrW Frrming lmgPeaPl D-fint FeFndicularm3vppar6 - -( C r -.e d•.. � f.wg Pawl Dirtatoe Parallel m 3_ -, - _ �� lel P,xl cp=n rali2 Fw oW o6pla3. bade naY b<bwa Don lin aPanrean6 wilA am beg Peed durum Perpellanaaflo Suppely f5m Sa1iw 9.2 4 and Satiw 3.2 31 1. Reduction Factor= 2 2. G = 0.42 (SPF or Hem Fir)... Adjustment Factor = [1-(0.5-0.42)] = 0.92 or 0.5 (I -Joists or Douglas Fir)... Adjustment Factor= 1.0 L3.1 2018 IBC/SDPWS 2015 - Shear Wall Schedule 7/16"OSB; 0.131"(P Nails; SPF or HF Studs @ 16"oc Table 4.3A Nominal Unit Shear Capacities for Wood -France Shear Walls'A.6,7 Wood -based Panels I. Nominal uah slwv .pacams shall be adjusrcd in accordance;with 4.3.3 tndcrcmrinc AS❑allowablc unit shear capacity and LUD factored unit resistanrr. For gcncrul construction requireen nia sr 4 3.6. rot apatific reQUIM Ats, see 4,3,7,1 for wood sli Oiml panel shear wails, 4.3.7.2 for part ittebcard sbeur walls, and 4-3.75 for fiberboard shear walls, S--App--di- A for common and hex nai I dinnCtIMas, I Sbeurs are pc-ALed ru be increased w values shown lar 15132 inch (nominal) sheathing with same nuiling provided (a) studs we spaced a maximum of 16 inches on center, or (b) panels ate applied with lung dimension acmes surds. 3. Fur species and gr.des of Framing other than Duugla Fir -Larch w Suuthnm Pine, reduxd nominal unit shear tapscilies shall hcdelennieed by mulliplyixg the lubulattd amainal daft shear Jpaci4y by the Specific Gmvity Adjustment Factor = [!-(0.5-G]], when: G = Specific Gravity of the ft riing lumber from the NDS (Table 123.3A)_ lite Specific Gravity Adjustment Faerurshall not be SrWlrr r1�n L 4. Apparent shear sfffners v3hlcs G., arc based on nail slip in fiarning rvilll moisture xwu[enl leas than or equal 10 19% at time of fabrication and panel sfiffncss ,alues forshear wails cve,lrueted with either OSB or 3 -ply plywood panels. 1When 4 -ply or 5 -ply plywood pinus- cmnposite panels are used G. values shall be permined to be multiplied by 1.2. 5. Where m[iislmo content er the rtaming is grcawr than 19% al time o f fabrication, Co. values shall he muiliplicd by 0.5. 6. Where panels ale applied on batt faces of a shear wall and nail spacing is less Than 6" on censer on either side, panel joints sh8L1 be -offset Id fall an di11'e7ent framing members as shown below. AliaYnativcly, ehe width of the nailed face of framing rnemixrs shall be 3- norainsl nrgreatcr at adjoining panes edges and nails at all panes odgm shall he itangcred. 7. Galvatuad nails shaU be hot dipped or tumbled. 1. Reduction Factor= 2 2. 16"oc studs - use values for 15/32 3. G = 0.42 (SPF or Hem Fir)... Adjustment Factor = [1-(0.5-0.42)] = 0.92 Wall Type Blocked Sheathing (1) or (2) Sides Nail Spacing Edge/Intermediate Framing Sill Plate Seismic Capacity h/b, = 2 Seismic Capacity h/b, = 3.5 SEISMIC A WIN❑ B 6alnimun . Minimum Nominal Fastener Peatratlan nFraming Fastener Panel Edge Fastener Spacing (in.) Panel Edge spacing Fastener n. Sheathing g Panel in Type 6 Size -- fi_ A MMMM== 3 2 ®M© a 4 3 2 Maateriatem l Thickness M or •• • v, G, V. Ge ®® V. G, ® v, Ga K v„ V. V. (In.j lackl,rnber Blocking in, {plf} (JapcJmn j ipli) (klpsFin,) {plf) (kiprlin.] (pll) (kipslin.) (pts) (pt1) (plf) (p If) Nair lcominDrt or 056 PLY 056 PLY DS5 PLY Dss PLY galvanized box) 4vood Vi6 1414 6d 400 13 0 SOD 18 13 780 23 16 1020 35 22 550 840 1090 1430 Structural Panels- 946' 460 111, 14 720 24 17 920 30 20 1220 43 24 645 1010 1290 1710 SWcltral as 7l16i 1'No od 51.1 16 13 790 21 16 1010 27 19 1340 44 24 715 1105 1415 1875 75192 560 14 71 060 18 14 1100 24 17 1460 37 23 765 1205 1540 2945 1 19132 1-112 lad a80 22 16 1020 29 20 1330 36 22 1740 61 28 959 1430 1860 2435 5116 1.114 360 13 9.5 540 18 t2 1 24 14 DM 37 18 305 155 980 1260 am 400 71 6.5 800 15 f1 750 20 13 1020 32 17 569 840 1080 1430 Woad 316 449 17 12 510 2S _ 15 "rli 31 17 1060 45 2A 515 995 1750 1465 Panala� 7116, 1-3l6 8d 48D 15 71 700 22 14 e:ll1 25 17 1170 d2 2'1 5Ta 98.1 1260 4040 Sheilh"11 16132 529 13 15 70a 19 13 980 35 15 1266 39 20 730 1905 1371) 1780 1M2 141 2 10d 620 22 14 926 30 17 1203 37 19 1546 52 23 9TD 1290 1500 2155 ivu 580 19 13 102D 20 10 193J 93 18 1740 4a 22 959 1430 1860 2435 Ply,m9d I Nall I•alvan[zad casinyj Siding Sic 1.174 Cd 280 13 420 i8 SSo 17 720 21 390 690 770 1616 wa 1-38 W 320 10 1 490 16 $26 30 820 22 450 a7D 870 1160 Na11 leemmm w pgniclepperd getvanlxed hex) Sheathlrg - 3B fid 210 15 360 17 460 19 60o 22 335 505 645 840 'Exlgrtor 3M 9d 260 16 300 20 480 21 630 23 365 530 670 804 Glue Glue' end "Exterior 112 260 18 420 20 540 22 790 24 390 590 795 990 104 370 21 550 23 729 24 920 25 520 770 1014 1290 Qu Glue'j 112 5M 400 21 610 23 7% 24 1046 26 500 953 1105 1455 Mau Igalvenlxedr flnyl Structural 102 11 ga. gar, nofing nail (0.12T 340 4.0 460 5.6 520 5.5 415 545 730 Flbirboard x 1-1l2'rong x 7176" head) 25.r32 11 9a. 9a1v. roofing nail(0.120° °J-00 4.0 460 5.0 520 5 5 475 945 7311 Sbaallilg x 1.314' long x 318' head l I. Nominal uah slwv .pacams shall be adjusrcd in accordance;with 4.3.3 tndcrcmrinc AS❑allowablc unit shear capacity and LUD factored unit resistanrr. For gcncrul construction requireen nia sr 4 3.6. rot apatific reQUIM Ats, see 4,3,7,1 for wood sli Oiml panel shear wails, 4.3.7.2 for part ittebcard sbeur walls, and 4-3.75 for fiberboard shear walls, S--App--di- A for common and hex nai I dinnCtIMas, I Sbeurs are pc-ALed ru be increased w values shown lar 15132 inch (nominal) sheathing with same nuiling provided (a) studs we spaced a maximum of 16 inches on center, or (b) panels ate applied with lung dimension acmes surds. 3. Fur species and gr.des of Framing other than Duugla Fir -Larch w Suuthnm Pine, reduxd nominal unit shear tapscilies shall hcdelennieed by mulliplyixg the lubulattd amainal daft shear Jpaci4y by the Specific Gmvity Adjustment Factor = [!-(0.5-G]], when: G = Specific Gravity of the ft riing lumber from the NDS (Table 123.3A)_ lite Specific Gravity Adjustment Faerurshall not be SrWlrr r1�n L 4. Apparent shear sfffners v3hlcs G., arc based on nail slip in fiarning rvilll moisture xwu[enl leas than or equal 10 19% at time of fabrication and panel sfiffncss ,alues forshear wails cve,lrueted with either OSB or 3 -ply plywood panels. 1When 4 -ply or 5 -ply plywood pinus- cmnposite panels are used G. values shall be permined to be multiplied by 1.2. 5. Where m[iislmo content er the rtaming is grcawr than 19% al time o f fabrication, Co. values shall he muiliplicd by 0.5. 6. Where panels ale applied on batt faces of a shear wall and nail spacing is less Than 6" on censer on either side, panel joints sh8L1 be -offset Id fall an di11'e7ent framing members as shown below. AliaYnativcly, ehe width of the nailed face of framing rnemixrs shall be 3- norainsl nrgreatcr at adjoining panes edges and nails at all panes odgm shall he itangcred. 7. Galvatuad nails shaU be hot dipped or tumbled. 1. Reduction Factor= 2 2. 16"oc studs - use values for 15/32 3. G = 0.42 (SPF or Hem Fir)... Adjustment Factor = [1-(0.5-0.42)] = 0.92 Wall Type Blocked Sheathing (1) or (2) Sides Nail Spacing Edge/Intermediate Framing Sill Plate Seismic Capacity h/b, = 2 Seismic Capacity h/b, = 3.5 Wind Capacity h/b, = 2 Wind Capacity h/b, = 3.5 ®M© ea.side MMMM== ®M© -• side ®® �I• • ® •• • • • ®M© -• side ®® :• • ® • • L3.2 SS 55 i 2018 IBC/NDS 2015 - Shear Wall Framing Clips Model No. Type of Fasteners Connection (in.) Direction of Load DF/5P Allowable Loads SPF/HF Allowable Loads Floor (100) Root (125) {t60j Floor (100) Roof (125) (160) 540# 1❑ (8) 0.131 x 1'/z Ft 395 465 465 340 400 400 Fes 395 430 430 340 370 370 A34 540# (8) #9 x 1'/x SD Ft 640 640 640 550 550 550 F2 495 495 495 425 425 425 Uplift 240 240 240 170 170 170 0 (9) 0.131 x 1'A At 295 350 350 255 300 300 E 295 360 385 255 310 330 C} 185 185 185 160 160 160 2 rows 8" oc [3 (12) 0.131 x 11/s A2 295 325 325 255 280 280 C2 295 330 330 255 285 285 D 225 225 225 195 195 195 (12) 0.131 x 1'/a Ft 590 650 650 510 560 '560 Fes 590 670 670 510 575 575 ❑5 (12) PH6121 Fi 420 420 420 360 360 360 (12) 0.131 x 1'h G 580 625 625 500 540 fMl H 580 525 525 500 450 450 LTP5 n7 (12) 0131 x 1'/zG 580 565 565 500 485 485 H 545 490 490 470 420 420 1. Allowable loads are for one angle. When angles are installed on each side of the joist, the minimum joist thickness is 3". 2. Some illustrations show connections that could cause cross -grain tension or bending of the wood during loading if not reinforced sufficiently. In this case, mechanical reinforcement should be considered. 3. LTP4 can be installed over 3/8" wood structural panel sheathing with 0.131" x 1 1/2" nails and achieve 0.72 of the listed load, or over 1/2" sheathing and achieve 0.64 of the listed load. 0.131" x 2 1/2" nails will achieve 100% load. 4. LTP4 satisfies the IRC continuously sheathed portal frame (CS -PF) framing anchor requirements when installed over raised wood floor framing per Figure R602.10.6.4. 5. The LTP5 may be installed over wood structural panel sheathing up to 1/2" thick using 0.131" x 1 1/2" nails with no reduction in load. 6. Connectors are required on both sides to achieve F2 loads in both directions. 7. Fasteners: Nail dimensions in the table are diameter by length. SD screws are Simpson Strong -Tie° Strong -Drive° screws. PH6121 is a pan -head #6 x 1/2" screw available from Simpson Strong -Tie. For additional information, see Fastener Types and Sizes Specified for Simpson Strong -Tie Connectors. P1 -6U 144-plf (E) 560# 44" oc 540# 44" oc P1-6 240 If E 560# 27" oc 540# 27" oc Pl-4 350 If E 560# 18" oc 540# 18" oc P1-3 450-plf E 560# 14" oc 540# 14" oc P1-2 I 820 If W 560# 7'/2" oc 540# 7'/2" oc LTP5 18" oc + P2-4 700-plf (E) 560# 9" oc 540# A35 18" oc LTP5 14" oc + P2-3 900-plf (E) 560# 7" oc 540# A35 14" oc LTP5 8" oc + P2-2 1640-p1f (W) 560# 2 rows 8" oc 540# A35 8" oc L3.3 2018 IBC/NDS 2018 - Shear Wall Bolts Table 12E 80LTS: Reference Lateral Design Values, Z, far Single Shear (two member) Cannectians'•�•'•4 for sawn lumger or SCL to concrete Tfttciuteea 2. Tabulated lateral design values, Z, are for "full-body Jinn, let" bolts (see Appettd= Table Ll) with batt beading yield sumgth, F,e, of 35.000 psi 3. Tabulated latual design values. Z, are based on domel bearing strength. F,, of 7.500 psi For 49 0 4- Six such anchor embedment assumed C g Sill 2x IAxdd Uncrecked CoNOM 5/8"4) Anchor Bolt Spacing 60" oc SIH Site �• Sides Top Wind and SDC A89'•° SOC C -F, Wind and SOC A&8t" SOC C. -_F_' c Uplift Fr F2 Standard I nstal Iatlon - Attached to ONS P Sill P late 1376# 2xa, x6, xB, xip l3} 0.148 x 1'h (6} 0.148 x 1'h 920 11.47511051 7451,235. 1 045 750 ;1,475 875 ■ MASAor 660 11.2351 705 WSAP x4. 3x6 1 (5) 0-148 x 1 K 1410.146 x 1'h 630 1,166 725 556 1,020 725 475 1.165 725 415 1,026 646 One -Lep -Up WaNation -Attached to OF15P Sill Plate 2x 12 4. ZL Zy 21 Zl Zl Al Zs 4. 4 n in. in. in. Ids lbs ba. b& lbs. lbs. lbs. lbs. lbs Ihs 2x4, M. f1 P2-4 112 590 340 590 340 550 310 640 290 530 290 P2-3 ■ MASA or MAW3M, 518 860 420 860 410 810 360 500 330 780 320 565 1-1/2 314 1200 460 11-0 450 1130 37[1 1120 360 1100 350 3x8 718 1580 500 1540 4910 1360 410 1330 M 1280 370 I 5911 1 1800 540 1760 530 1500 440 1520 420 1400 410 Twu-Legs-Op kslaNation -Ham Fir SNI Plata incl HFIS" 8imhoard 111 640 360 630 350 580 320 580 310 580 310 u :1,• •'"` 0"t" 2x4, ■ A1ASAor MASAP Double 2x8 (5) 0.146 x 115 C1) 0.148 x 1 h 899 720 675 630 775 875 545 BAO 675 516 910 490 8100 480 840 400 830 380 810 370 1-314 314 1230 540 1220 530 1160 430 1140 4201120 410 Go 716 16,30 S80 1610 570 1540 470 1520 450. 1490 43D 1 2096 0 2060 610 1820 510 1770 4901 1710 470 and greater 112 730 00 730 400 700 380 890 340 680 340 5/8 7070 540 106n 530 980 480 960 470 940 46D 2-1/1 314 1400 710 13811 700 1290 620 1270 600 1240 W 718 17W 830 1770 010 1660 660 1640 660 1500 610 1 2230 goo 2210 880 2080 TM 2060 700 2030 GM 912 730 470 730 470 700431D GM 410 690 400 518 1140 620 1140 610 1090 550 1080 530 1070 620 3-1/2 314 1650 180 1640 770 1540 680 1510 670 1470 660 718 2100 960 2070 960 1910 870 1880 850 1940 820 1 2550 1190 2520 1180 2340 1020 2310 980 2260 950 1. Tabulated lateral design values, Z. for bolted connections shall be multzplted by all applicable adjustment factors (see Table 113.1). 2. Tabulated lateral design values, Z, are for "full-body Jinn, let" bolts (see Appettd= Table Ll) with batt beading yield sumgth, F,e, of 35.000 psi 3. Tabulated latual design values. Z, are based on domel bearing strength. F,, of 7.500 psi For concrete with minimum F'=2.700 psi 4- Six such anchor embedment assumed Wall ._Plate P1 -6U Fasteners lin.} Allowable Loads Sill 2x IAxdd Uncrecked CoNOM 5/8"4) Anchor Bolt Spacing 60" oc SIH Site �• Sides Top Wind and SDC A89'•° SOC C -F, Wind and SOC A&8t" SOC C. -_F_' . . Fr Fp F7 F2 0plih F. F2. I Uplltt1uplilt=T- Uplift Fr F2 Standard I nstal Iatlon - Attached to ONS P Sill P late 1376# 2xa, x6, xB, xip l3} 0.148 x 1'h (6} 0.148 x 1'h 920 11.47511051 7451,235. 1 045 750 ;1,475 875 ■ MASAor 660 11.2351 705 WSAP x4. 3x6 1 (5) 0-148 x 1 K 1410.146 x 1'h 630 1,166 725 556 1,020 725 475 1.165 725 415 1,026 646 One -Lep -Up WaNation -Attached to OF15P Sill Plate 2x ■ MASA or MASAP 2Y4, x6, x$. Y70 1610.148 x 1§i 1310.148 x 1'h1 755 1 965 1 M I 9F0 8M15 995 570 965 930 5tlp 845 910 3x4, 3x8 1710.148 x f 13 0.146 x 1 'k— � i,!1 — — 885 — — — — — 885 Two -Legs -Up Installatton -Attached to ON Sill Plate and Rbnhoard 450-plf E ■ MASA or MASAP 2x4, x8, x$, 00 .n 0.146 x 1+h — I S10 1,105 885 740 965 755 UC 1,105 630 1 560 1 065 550 Double 2% irwtaAatim -Attached to DF/SP Sill Plate 1060# ■ MASAor MASAP Doutle 2x4• (5) 0.148 x 154(2) 0.148 x 1 R I 840 I 1,030 1 785 735 900 785 1 635 1 1,030 785 Double 2x6 1 555 1 900 1 785 4aerci6r roan ree.e�e 7IX OnE iE9 Standard Inotall0cri - Attached to Noun Fir Sill Plate xeraa Iso nbkl ■ 0.146 x 116 1 R 0.148 x 1 V5 1 790 1.250 940 640 11,060 1 900 1 650 65 570 2x4, M. f1 P2-4 (5} D-148 x 159 1410.148 x 1'h 535 1,005 625 475 875 6x5410 25 355 5511 .r �m 0, 3* 28" oc One -Leg -Op Installation - Attached to Hent Fir SRI Plate and HFISPF Slud 15" oc P2-3 ■ MASA or MAW3M, 2x4, x8, x8, x1 D (6} 0.148 x 114 (310.148 x 1'h 550 830 855 565 725 855 499 830 795 430 725 695 3x8 S7) 0.148 x f 54 (21 D.148 x 11i — 1 670 1 — I — I 5911 Twu-Legs-Op kslaNation -Ham Fir SNI Plata incl HFIS" 8imhoard ■ htASAw kSASAP 2x4, x8, x8, 910 (9} 0.148 x 1 768 1 956 1 745695 830 650 545 950 640 480 930 475 Double 2x kmtaladen -Attached to Hem Fir Sill Plate r u :1,• •'"` 0"t" 2x4, ■ A1ASAor MASAP Double 2x8 (5) 0.146 x 115 C1) 0.148 x 1 h 899 720 675 630 775 875 545 BAO 675 555 776 6T5 :" '1 1..,e• L3.4 Wall ._Plate P1 -6U Capac 144-p1f (E) Sill 2x Single S/BTIC� Bolt Capacity 1376# 5/8"4) Anchor Bolt Spacing 60" oc MASAP Anchor Capacity 1060# MASAP Anchor Spacing 60" oc P 1-6 240- If E 2x 1376# 60" oc 1060# 52" oc P1-4 350- If E 2x 1376# 46" oc 1060# 36" oc P1-3 450-plf E 2x 1376# 36" oc 1060# 28" oc P1-2 820- If W 2x 1376# 20" oc 1250# 18" oc P2-4 700- If E 3x 1712# 28" oc 875# 15" oc P2-3 900- If E 3x 1712# 22" oc 875# 11 " oc P2-2 1640- If W 3x 1712# 12" oc 1005# 7" oc L3.4 SHEAR WALL SCHEDULE (IN ACCORDANCE w/ ANSI/AF$PA SDPWS-2015 SECTION 4.3) Updated 1/20/2021 PANEL MINIMUM WIDTH OF NAILED FACE OF FRAMING@ ANCHORAGE TO CONCRETE SEISMIC WIND ,Ai I SHEATHING EDGE ADJOINING PANEL EDGES Q MUDSILL FACENAILING FRAMINGCLIPS CAPACITY CAPACITY TYPE NAILING PLATE Q Q SINGLE BUILT-UP ANCHOR BOLTS MUDSILL ANCHORS 0 h/b=2 h/b-3.5 h/b=2 h/b-3.5 MEMBER MEMBER A35 @ 27" oc 240-PIf 240-PIf P1 -b 1 SIDE fi" oc 2. 2. 2. 6".. or LTP4 @ 27' oc 60" oc MASAP @ 52".c 194-pif 194-pif A35 @ 18 oc 350 -pH 350-PIf P1-4 1 SIDE 4" oc 2. 2. 2x 4" oc or LTP4 @ 18".c %"0 @ 46" oc MASAP @ 36"- 284-pif 284-plf A35 @ 14" oc 450-PIf 450-p f P1-3 1 SIDE 3" oc 3. (2)2x 2x 3" oc or LTP4 @ 14".c %..o @ 36" oc MASAP @ 28" oc 3656 -pH 366-plf Pi -2 1 SIDE 2" oc 3. (2)2x 2. 2" oc A35 @ oc %"0 @ 20" ac MASAP @ 18" oc 590 -pH If 820-p1f LTP4 @r7X" oc 478 -p 6569-plf A35 @ 18" oc 700 -pH 700-pif P2-4 2 SIDES 4"oc 3. (2)2x 3. (2) Rows, 4" oc antl LTP4 @ 18".c %"0 @ 28" oc MASAP @ 15" oc 5658 -pH 568-PIf A35 @ 14" oc 900 -pH 900-pif P2.3 2 SIDES 3" oc 3. (2)2x 3. (2) Rows, 3" oc antl LTP4 @ 114' ac %¢"0 @ 22" oc MASAP @ 11- oc 733 -pH 733-plf P2-2 2 SIDES 2" oc 3x (2)2x 3x (2) Rows, 2' oc A35 @ 8" oc antl �¢"0 @ 12" oc MASAP @ 7" oc 1180-p1f 16540-pIf LTP4 @ 8- ac 957 -pH 1338-p1i SHEAR WALL SCHEDULE NOTES (SECTION 4.3.7.1.1) X.. OSB o"X2 PLYWOOD SHEATHING OR SIDING EXCEPT GROUP 5 SPECIES. MINIMUM PANEL SPAN RATING OF (24/0). PANELS SHALL NOT BE LESS THAN 4'x8', EXCEPT AT BOUNDARIES AND CHANGES IN FRAMING. ALL EDGES OF ALL PANELS SHALL BE SUPPORTED BY AND FASTENED TO FRAMING MEMBERS OR BLOCKING. © (SECTION 4.3.7.1.2.8 SECTION 4.3.7.1.3) PAN EL EDGE NAILING APPLIES TO ALL SHEATHING PANEL EDGES. NAIL SHEATHING TO INTERMEDIATE FRAMING MEMBERS WITH SHEATHING NAILS @12'oc. MAXIMUM STUD SPACING SHALL BE 16'oc. SHEATHING NAILS SHALL BE 0.131"O x2Z". PLYWOOD EDGE NAILING SHALL BE STAGGERED. NAILS SHALL BE LOCATED AT LEAST X" FROM THE PANEL EDGES. I I I INTERMEDIATE NAILING (12" oc) 1 j it I I 1 MIN PANEL EDGE NAILING PER SCHEDULE (STAGGERED) Q (SECTION 4.3.7.1.4) THE MINIMUM NOMINAL WIDTH OF THE NAILED FACE OF FRAMING AND BLOCKING AT ADJOINING PANEL EDGES SHALL BE AS INDICATED IN THE SCHEDULE. SINGLE MEMBER (FLATWISE) t -j- PERQ STUD, PLATE, BLOCKING, RIM, PERQ W_--OROTHERF MING MEMBER . Q Q 1_ 11 MIN IIIN ADJOINING PANEL EDGES BUILT-UP MEMBER PERQ STUD, PLATE, BLOCKING, RIM, ® OR OTHER FRAMING MEMBER 01 y Q Li Q MIN ADJOINING PANEL EDGES ADJOINING PANEL EDGES Q FACE NAILING APPLIES TO CONDITIONS WHERE FRAMING NAILS CAN BE STRAIGHT DRIVEN THRU FIRST MEMBER AND PENETRATE MAIN MEMBER MINIMUM OF lx FRAMING NAILS SHALL BE 0.131"0 x 3y". 0.131'0 x 3" NAILS MAYBE USED WHEN STITCHING TOGETHER (2)2x MEMBERS WITH NO SPACERS. Q AT ADJOINING PANEL EDGES WHERE SHEATHING CANNOT LAP ON SINGLE MEMBER AND FACE NAILING CANNOT BE ACCOMPLISHED, FRAMING CLIPS SHALL BE USED TO FASTEN BUILT-UP MEMBERS. USE 0.131"0 x 2A" NAILS AT LTP4 CLIP WHEN INSTALLED OVERN SHEATHING. ® 0 Q Q Q LAP RIM OPTION LAP PLATE OPTION A35 OPTION LTP4 OPTION ® (SECTION 4.3.6.4.3) ANCHOR BOLTS EMBEDMENT SHALL BE T', U.O.N. ALL ANCHORS SHALL HAVE 3'. 3'. 0.229" PLATE WASHERS. PLATE WASHER SHALL EXTEND TO WITHIN Y" OF THE EDGE OF THE BOTTOM PLATE ON THE SIDE WITH SHEATHING. IF SHEATHING IS ON BOTH SIDES OF THE WALL, STAGGER THE ANCHOR BOLTS, AS REQUIRED, SO THAT HALF OF THE PLATE WASHERS ARE WITHIN X" OF THE EDGE OF THE BOTTOM PLATE ON EACH SIDE. HOLE IN PLATE WASHERS MAYBE DIAGONALLY SLOTTED. 3"x3"x0.229"PLATE ANCHOR BOLT OPTION MUDSILL ANCHOR OPTION W MAX °•' CONCRETE STEM WALL.. :.: +4F°•'�"'" CONCRETE STEM WALL PER PLAN -'�'" - PER PLAN P.T. MUDSILL P.T. MUDSILL (ANCHOR BOLT OPTION) LV (MUDSILL ANCHOR OPTION) L3.5 BTL 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: (425) 814-8448 ENGINEERING Fax: (425) 821-2120 Miscellaneous Stud Wall Design Based on 2018 NDS Combined axial and bending formula: [fc/Fc']2 + fb/Fb'[1-(fc/FcE)] < 1 in which: FcE = 0.822(Emin')/(e/d)2 Wall: Exterior Walls Wall Height:9 ft Desired Stud Spacing:24 in oc Design Axial Dead Load:683 plf Design Axial Live Load:960 plf Design Axial Snow Load:538 plf Design Lateral Pressure (0.6W):15 psf Deflection Criteria: L/240 STUD CHECK l e/d < 50 OK D+0.6W (CD = 1.60) [fc/Fc']2 + fb/Fb'[1-(fc/FcE)] =0.53 < 1 OK fc/FcE2 + (fb/FbE)2 =0.00 <1 OK D+0.75L+0.75(0.6W)+0.75S (CD = 1.60) [fc/Fc']2 + fb/Fb'[1-(fc/FcE)] =0.92 < 1 OK fc/FcE2 + (fb/FbE)2 =0.00 <1 OK D+0.75L+0.75S (CD = 1.15) fc/Fc' =0.72 <1 OK D+L (CD = 1.0) fc/Fc' =0.71 < 1 OK Deflection (No Increase for Load Duration): Defl: L/ 240 = 0.45 0.18 < 0.45 OK SPF Stud 2x6 @ 24 oc OK PLATE CRUSHING CHECK1 Checks Crushing for Stud Spacing 2 No Stress Increase for Load Duration Hem Fir Plates:fc/Fc^' =0.87 < 1 OK Douglas Fir Plates:fc/Fc^' =0.56 <1 OK 1 Plate must also be checked for bending. 2 Check on crushing only applies to stud spacing. Joists above must also be checked for crushing effect on plate. Also, no stress increase is allowed due to load duration. 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 Date: 1/27/2021 Page: ________ M1.1 Stud Wall Design Based on 2018 NDS Combined axial and bending formula: [fc/Fc']2 + fb/Fb'[1-(fc/FcE)] < 1 in which: FcE = 0.822(Emin')/(e/d)2 Wall: Exterior Walls Wall Height:19.25 ft Desired Stud Spacing:16 in oc Design Axial Dead Load:323 plf Design Axial Live Load:0 plf Design Axial Snow Load:538 plf Design Lateral Pressure (0.6W):15 psf Deflection Criteria: L/180 STUD CHECK l e/d < 50 OK D+0.6W (CD = 1.60) [fc/Fc']2 + fb/Fb'[1-(fc/FcE)] =0.70 < 1 OK fc/FcE2 + (fb/FbE)2 =0.00 <1 OK D+0.75L+0.75(0.6W)+0.75S (CD = 1.60) [fc/Fc']2 + fb/Fb'[1-(fc/FcE)] =0.71 < 1 OK fc/FcE2 + (fb/FbE)2 =0.00 <1 OK D+0.75L+0.75S (CD = 1.15) fc/Fc' =0.30 <1 OK D+L (CD = 1.0) fc/Fc' =0.14 < 1 OK Deflection (No Increase for Load Duration): Defl: L/ 180 = 1.28 1.24 < 1.28 OK SPF Stud (2)2x6@ 16 oc OK PLATE CRUSHING CHECK1 Checks Crushing for Stud Spacing 2 No Stress Increase for Load Duration Hem Fir Plates:fc/Fc^' =0.13 < 1 OK Douglas Fir Plates:fc/Fc^' =0.08 <1 OK 1 Plate must also be checked for bending. 2 Check on crushing only applies to stud spacing. Joists above must also be checked for crushing effect on plate. Also, no stress increase is allowed due to load duration. 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 Date: 1/27/2021 Page: ________ M1.2 Stud Wall Design Based on 2018 NDS Combined axial and bending formula: [fc/Fc']2 + fb/Fb'[1-(fc/FcE)] < 1 in which: FcE = 0.822(Emin')/(e/d)2 Wall: Interior Walls Wall Height:9 ft Desired Stud Spacing:24 in oc Design Axial Dead Load:203 plf Design Axial Live Load:540 plf Design Axial Snow Load:0 plf Design Lateral Pressure (0.6W):5 psf Deflection Criteria: L/180 STUD CHECK l e/d < 50 OK D+0.6W (CD = 1.60) [fc/Fc']2 + fb/Fb'[1-(fc/FcE)] =0.41 < 1 OK fc/FcE2 + (fb/FbE)2 =0.00 <1 OK D+0.75L+0.75(0.6W)+0.75S (CD = 1.60) [fc/Fc']2 + fb/Fb'[1-(fc/FcE)] =0.99 < 1 OK fc/FcE2 + (fb/FbE)2 =0.00 <1 OK D+0.75L+0.75S (CD = 1.15) fc/Fc' =0.69 <1 OK D+L (CD = 1.0) fc/Fc' =0.86 < 1 OK Deflection (No Increase for Load Duration): Defl: L/ 180 = 0.60 0.23 < 0.60 OK SPF Stud 2x4 @ 24 oc OK PLATE CRUSHING CHECK1 Checks Crushing for Stud Spacing 2 No Stress Increase for Load Duration Hem Fir Plates:fc/Fc^' =0.46 < 1 OK Douglas Fir Plates:fc/Fc^' =0.30 <1 OK 1 Plate must also be checked for bending. 2 Check on crushing only applies to stud spacing. Joists above must also be checked for crushing effect on plate. Also, no stress increase is allowed due to load duration. 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 Date: 1/27/2021 Page: ________ M1.3 Stud Wall Design Based on 2018 NDS Combined axial and bending formula: [fc/Fc']2 + fb/Fb'[1-(fc/FcE)] < 1 in which: FcE = 0.822(Emin')/(e/d)2 Wall: Interior Walls Wall Height:9 ft Desired Stud Spacing:16 in oc Design Axial Dead Load:338 plf Design Axial Live Load:900 plf Design Axial Snow Load:0 plf Design Lateral Pressure (0.6W):5 psf Deflection Criteria: L/180 STUD CHECK l e/d < 50 OK D+0.6W (CD = 1.60) [fc/Fc']2 + fb/Fb'[1-(fc/FcE)] =0.31 < 1 OK fc/FcE2 + (fb/FbE)2 =0.00 <1 OK D+0.75L+0.75(0.6W)+0.75S (CD = 1.60) [fc/Fc']2 + fb/Fb'[1-(fc/FcE)] =0.99 < 1 OK fc/FcE2 + (fb/FbE)2 =0.00 <1 OK D+0.75L+0.75S (CD = 1.15) fc/Fc' =0.76 <1 OK D+L (CD = 1.0) fc/Fc' =0.95 < 1 OK Deflection (No Increase for Load Duration): Defl: L/ 180 = 0.60 0.15 < 0.60 OK SPF Stud 2x4 @ 16 oc OK PLATE CRUSHING CHECK1 Checks Crushing for Stud Spacing 2 No Stress Increase for Load Duration Hem Fir Plates:fc/Fc^' =0.51 < 1 OK Douglas Fir Plates:fc/Fc^' =0.33 <1 OK 1 Plate must also be checked for bending. 2 Check on crushing only applies to stud spacing. Joists above must also be checked for crushing effect on plate. Also, no stress increase is allowed due to load duration. 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 Date: 1/27/2021 Page: ________ M1.4 2018 NDS 3.7-SOLID COLUMNS and 15.3-BUILT-UP COLUMNS F c =800 psi Emin =440 ksi C D =1.00 Emin' =440 ksi C M =1.00 l =9.0 ft C t =1.00 d =5 1/2 in C F =1.00 Ke =1.0 le =108.0 in F c ' =F c * C P le/d =19.6 F c * =F c C D C M C t C F F c * =800 psi C p =0.743 F c ' =594 psi F cE =938 c = 0.8 K f =1.0 (1) 2x6 (2) 2x6 (3) 2x6 (4) 2x6 (5) 2x6 14711 10313 15469 20625 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 19614 25781 DF Plate Crushing 5156 24518 13365 16706 STUD 4904 10024 HF Plate Crushing 3341 66839807 2 min'822.0 = d l EF e cE - + - + = c F F c F F c F F KC c cE c cE c cE fp * 2 ** 2 1 2 1 Date: 1/27/2021 Page: __________M1.5 2018 NDS 3.7-SOLID COLUMNS and 15.3-BUILT-UP COLUMNS F c =800 psi Emin =440 ksi C D =1.00 Emin' =440 ksi C M =1.00 l =9.0 ft C t =1.00 d =3 1/2 in C F =1.00 Ke =1.0 le =108.0 in F c ' =F c * C P le/d =30.9 F c * =F c C D C M C t C F F c * =800 psi C p =0.416 F c ' =333 psi F cE =380 c = 0.8 K f =1.0 (1) 2x4 (2) 2x4 (3) 2x4 (4) 2x4 (5) 2x4 5237 6563 9844 13125 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 6983 16406 DF Plate Crushing 3281 8729 8505 10631 STUD 1746 6379 HF Plate Crushing 2126 42533492 2 min'822.0 = d l EF e cE - + - + = c F F c F F c F F KC c cE c cE c cE fp * 2 ** 2 1 2 1 Date: 1/27/2021 Page: __________M1.6 BIL E i` GT NEE RIN Project: Continuous Strip Footing 18" wide x 8" thick 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 IBC Section 13.3.2: One-way shallow foundations Footing width, B = 18 in Footing Thickness, t = 8 in Stem Wall width, C = 8 in Stem Wall Height = 24 in Normalweiqht 2500 psi Uncoated fy = 40000 psi Longintudinal Reinforcement: (2) #4 v Bar Diameter = 0.500 in = Bar Area = 0.20 int As = 0.40 int Cover: 3 in Stem Wall Reinforcement: #4 - @ 24 "oc Straight Dowels Bar Diameter = 0.500 in qu Bar Area = 0.20 int A, = 0.00 int Cover: 3 in 2 bw = 12 in (per ft) — Clz d = 4.75 in Footing + Stem Wall Weight - Weight of Displaced Soil = 240 plf One-way shear, no shear reinforcement: [22.5.5.1] Vc = 2A f, bwd — 5700 # per foot length [22.5.10.1] Vu <_ q5V, CB—C— Vu=qubw 2 d � qu= B — C bw d) qu = 51300 psf ( 2 — Max Uniform Load on Stem = 76950 plf [Ultimate] 48094 plf [Service] Moment Strip footing V .P_ 0.75 [22.2.1.1] Mn = Asfy(d — a/2) = 0.000 k -ft per foot length = 0.90 M. 0M. 2 Asfy B—C a= = 0.00 in qubw ( 2 ) 2cpMn 0.85f,b Mu � qu 2 — Clz b w (B 2 J qu = NO MOMENT Max Uniform Load on Stem = 12000 plf [Ultimate] 7500 plf [Service] Development of Reinforcement: [25.4.2.3] ld = 3 fY V)t0'0s1 db = N/A (40 ATbd tr�J OK b Allowable Soil Bearing Pressure 1500 psf 2000 psf 2500 psf 3000 psf 3500 psf 4000 psf Max Uniform Load, Soil 2010 plf 2760 plf 3510 plf 4260 plf 5010 plf 5760 plf Max Uniform Load, Shear 48094 plf 48094 plf 48094 plf 48094 plf 48094 plf 48094 plf Max Uniform Load, Moment 7500 plf 7500 plf 7500 plf 7500 plf 7500 plf 7500 plf Max Uniform Load (Service) 2010 plf 2760 plf 3510 plf 4260 plf 5010 plf 5760 plf Max Uniform Load (Ultimate) 3216 plf 4416 plf 5616 plf 6816 plf 8016 plf 9216 plf Max Point Load (Service) 16080 # 22080 # 28080 # 34080 # 40080 # 46080 # Max Point Load (Ultimate) 25728 # 35328 # 44928 # 54528 # 64128 # 73728 # Date: 3/19/2018 Page: M2.1 B'TIL ENCTNEERING Project: Typical Footing Footing: 18" x 18" x 8" thick Footing B = 1.50 ft z — C2)/2) t=8in or Reinforcement R = (2) #4 1w 24908 ASI = 0.40 int 4 in d = 4.25 in Column C 1 = 3.50 in Materials f, = 2500 psi Normalweight Max Load (lbs), Two -Way Shear fy = 40000 psi Uncoated Net Footing Weight Max Load (ASD) PFrc = 0.06 k 5304 Soil Pressure: PASD = gaB2 — PFTG = Cover: 3 in C2=3.50 in . Al = 1.00 0e = 1.00 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 �t Isolated footing One-way shear: 0 = 0.75 Vc=2A1-Bd= 7.65k Vu<_OVc OV,= 5.74k (B—C2— 1 _ 0Vc (B — Cl — 1 0Vc 2 Vu _ —quB d� qu B—C Vu=quB 2 d� qu B — C B( 2 z—d) B( 2 i—d) qu = 10392 psf or 10392 psf Pu = quB2 = 23383 # Two-way shear: 0 = 0.75 [22.6.5.2(a)] vc = 4A1 f1 = 200 psi a [22.6.5.2(b)] vc = (2 + 4).1 fc = 300 psi '6 = 1.00 Q a,, = 40 [22.6.5.2(c)] vc = (2 + bo) Al 374 psi bo = 2(Cl+d)+2(C2+d) fc = 31 Vu <— 0Vc OVc = Ovcbod = 19.76 k 0Vc Vu = qu[B2 — (Ci + d)(Cz + d)] - qu = [Bz — (Cl + d)(Cz + d)] qu = 10782 psf Pu = quB2 = 24260 # Moment: 0 = 0.90 Mn = Asfy(d — a/2) = 5.4 k -ft a=ASfy/(0.85f,B) = 0.42 in Mu < OMn OOM,,= 4.8 k -ft — B—Cz z quB (" ) 20Mn 2 Mu= �qu= 2 B((B z — C2)/2) qu = 17712 psf or Development of Reinforcement: 15162 3 fy iptip,ol 24908 1 __ d )dL, 40 a 1(cb + Kt,. 4 in db Adjusted Soil Bearing Pressure 1500 psf Max Load (lbs), Soil 3315 Max Load (lbs), One -Way Shear 14614 Max Load (lbs), Two -Way Shear 15162 Max Load (lbs), Moment 24908 Max Load (ASD) 3315 Max Load (Factored) 5304 _ z quB (B 2 C1) 20Mn Mu 2 qu B((B — Ci)/2�z 17712 psf Pu = quB2 = 39853 # 4 in available OK 2000 psf 2500 psf 3000 psf 4440 5565 6690 14614 14614 14614 15162 15162 15162 24908 24908 24908 4440 5565 6690 7104 8904 10704 3500 psf 4000 psf 7815 8940 14614 14614 15162 15162 24908 24908 7815 8940 12504 14304 Date: 3/19/2018 Page: M2.2 B'TIL ENCTNEERING Project: Typical Footing Footing: 24" x 24" x 8" thick Footing B = 2.00 ft 10.20k t=8in 7.65 k Reinforcement R = (2) #4 1w _ � au B—C C2d) B( ASI = 0.40 int qu = 5649 psf or d = 4.25 in Column C 1 = 3.50 in Materials f, = 2500 psi Normalweight Adjusted fy = 40000 psi Uncoated Net Footing Weight 5893 PFrc = 0.11 k Max Load (lbs), Two -Way Shear Soil Pressure: Max Load (lbs), Moment 16830 PASD = gaB2 — PFTG = Max Load (Factored) One-way shear: 0 = 0.75 V,=2A1-Bd= 10.20k Vu <_ 0 V OV, = 7.65 k (B — Cz 1 0Vc _ — Vu—auB l\ 2 d/I _ � au B—C C2d) B( 2 Mu 2 qu = B((B — C2)/2)2 2 qu = 5649 psf or Two-way shear: 0 = 0.75 [22.6.5.2(a)] vc = 4A1 f1 _ [22.6.5.2(b)] vc = 2+ R) Al fc = [22.6.5.2(c)] v, _ (2 + E�Lb d).1 f" _ 0 Vu < oVc OVA = Ov�bod = Cover: 3 in C2=3.50 in 1.00 1.00 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 �t Isolated footing (B — Cl — 1 _ 0Vc Vu— _ quB 2 d qu B—C B( 2 d) 56495649 psf Pu = quB2 = 22597 # 200 psi a 300 psi Q = 1.00 a,, = 40 374 psi bo = 2(Cl+d)+2(Cz+d) 31 19.76 k OVA Vu = qu[B2 — (Ci + d)(C2 + d)] - qu = 2 — qu = 5516 psf Pu = quB2 = 22063 # Moment: 0 = 0.90 Mn = As fy(d — a/2) = 5.5 k -ft a = A S fy/(0.85f , B) = 0.31 in Mu <_ OMn OM, = 4.9 k -ft _z C2) quB (B 20Mn, 2 Mu 2 qu = B((B — C2)/2)2 qu = 6732 psf or Development of Reinforcement: 11893 3 fy �t�el�s 15829 1 __ d )dL, 40 a f(cb + Kt,. 7 in db Adjusted Soil Bearing Pressure 1500 psi Max Load (lbs), Soil 5893 Max Load (lbs), One -Way Shear 14123 Max Load (lbs), Two -Way Shear 13789 Max Load (lbs), Moment 16830 Max Load (ASD) 5893 Max Load (Factored) 9429 _ z quB (B 2 C1) 20M,, Mu 2 qu B((B — Ci)/2)z 6732 psf Pu = quB2 = 26929 # ...7 in available OK 2000 psf 2500 psf 3000 psf 7893 9893 11893 14123 14123 14123 13789 13789 13789 16830 16830 16830 7893 9893 11893 12629 15829 19029 3500 psf 4000 psf 13893 15893 14123 14123 13789 13789 16830 16830 12710 12710 20337 20337 Date: 3/19/2018 Page: M2.3 B'TIL ENCTNEERING Project: Typical Footing Footing: 30" x 30" x 8" thick Footing B = 2.50 ft 12.75k t=8in 9.56 k Reinforcement R = (3) #4 _ � au B — C C2d) B( ASI = 0.60 int qu = 3974 psf or d = 4.25 in Column C 1 = 3.50 in Materials f, = 2500 psi Normalweight db = fy = 40000 psi Uncoated Net Footing Weight Soil Bearing Pressure PFrc = 0.17 k 9208 Soil Pressure: 15524 Max Load (lbs), Two -Way Shear PASD = gaB2 — PFTG = 18740 One-way shear: 0 = 0.75 Vc=2A1-Bd= 12.75k Vu <_ 0 V oVc = 9.56 k (B — Cz 1 0Vc _ — Vu — auB l\ 2 d/I _ � au B — C C2d) B( 2 2 qu = 3974 psf or Two-way shear: 0 = 0.75 [22.6.5.2(a)] vc = 4A1 f1 _ [22.6.5.2(b)] vc = 2+ R) Al fc = [22.6.5.2(c)] vc = (2 + E�Lb d).1 f" _ 0 Cover: 3 in C2=3.50 in 1.00 1.00 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 �t Isolated footing (B — Cl — 1 _ 0Vc Vu— _ quB 2 d qu B—C B( 2 d) 39743974 psf Pu = quB2 = 24838 # 200 psi a 300 psi Q = 1.00 a,, = 40 374 psi bo = 2(Cl+d)+2(Cz+d) 31 Vu <_ 0Vc OVc = Ovcbod = 19.76 k 0 V Vu = quLB2 — (Cl + d)(C2 + d)] - qu = LBZ — (Ci + d)(Cz + d)] qu = 3388 psf Pu = quB2 = 21176 # Moment: 0 = 0.90 Mn = Asfy(d — a/2) = 8.1 k -ft a=ASfy/(0.85f',B)= 0.38 in Mu <_ om" OM, = 7.3 k -ft _z C2) quB (B 20Mn 2 13235 Mu 2 qu B((B — C2)/2 )2 qu = 4797 psf or Development of Reinforcement: 18740 3 fy oto, Ips 18740 _ Id 40 b + K Al fc (C Kt, db = 10 in db 1 13235 Soil Bearing Pressure 1500 psf Max Load (Ibs), Soil 9208 Max Load (lbs), One -Way Shear 15524 Max Load (lbs), Two -Way Shear 13235 Max Load (Ibs), Moment 18740 Max Load (ASD) 9208 Max Load (Factored) 14733 _ z quB (B 2 C1) 20M,, Mu 2 qu B((B — Ci)/Z�z 4797 psf Pu =quB2 = 29984 # 10 in available OK 2000 psf 2500 psf 3000 psf 3500 psf 4000 psf 12333 15458 18583 21708 24833 15524 15524 15524 15524 15524 13235 13235 13235 13235 13235 18740 18740 18740 18740 18740 12333 13235 13235 13235 13235 19733 21176 21176 21176 21176 Date: 3/19/2018 Page: M2.4 B'TIL ENCTNEERING Project: Typical Footing Footing: 36" x 36" x 12" thick Footing B = 3.00 ft 16.2 k -ft t=12 in Reinforcement R = (3) #4 20Mn A si = 0.60 int or d = 8.25 in Column C 1 = 5.50 in Materials f, = 2500 psi Normalweight fy = 40000 psi Uncoated Net Footing Weight 13140 PFrc = 0.36 k Max Load (lbs), Two -Way Shear Soil Pressure: Max Load (Ibs), Moment 33825 PASD = gaB2 — PFTG = Max Load (Factored) One-way shear: 0 = 0.75 Vc=2A-Bd= 29.70k Vu <_ 0 V OV, = 22.28 k Vu_ aB (B — Cz — ) _ 0Vc —ul\ Z d � au B—C B( 2 C2d) qu = 7128 psf or Two-way shear: 0 = 0.75 [22.6.5.2(a)] vc = 4i1 f1 _ [22.6.5.2(b)] vc = 2+ [22.6.5.2(c)] vc = (2 + b 0 Vu < �Vc OVc = Ovcbod = Cover: 3 in C2=5.50 in 1.00 1.00 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 �t Isolated footing (B — Cl — 1 _ 0Vc Vu— _ quB 2 d qu B—C B( 2 d) 71287128 psf Pu = quB2 = 64152 # 200 psi a 300 psi /6 = 1.00 a,, = 40 400 psi bo = 2(Cl+d)+2(Cz+d) 55 68.06 k (A V_ Vu = qu[B2 — (CI + d)(C2 + d)] - qu = 2 — qu = 8854 psf Pu = quB2 = 79687 # Moment: 0 = 0.90 Mn = As fy(d — Q/2) = 16.2 k -ft a = A sfy/(0.85f,B) = 0.31 in Mu <_ om" OM, = 14.6 k -ft auB (B— Cz z ) 20Mn 2 __ Mu 2 qu B((B — C2)/2)2 qu = 6013 psf or Development of Reinforcement: 26640 fy s 35424 la = db = 40 bt+ K 1 f� (c tr) 12 in dI, / Soil Bearing Pressure 1500 psf Max Load (lbs), Soil 13140 Max Load (lbs), One -Way Shear 40095 Max Load (lbs), Two -Way Shear 49805 Max Load (Ibs), Moment 33825 Max Load (ASD) 13140 Max Load (Factored) 21024 — z auB (B C1 2 ) 20Mn Mu 2 qu B((B — Ci)/2)z 6013 psf Pu = quB2 = 54121 # ...12 in available OK 2000 psf 2500 psf 3000 psf 17640 22140 26640 40095 40095 40095 49805 49805 49805 33825 33825 33825 17640 22140 26640 28224 35424 42624 3500 psf 4000 psf 31140 35640 40095 40095 49805 49805 33825 33825 31140 33825 49824 54121 Date: 3/19/2018 Page: M2.5 IL iEN INNER N- 0 Project: Typical Footing Footing: 42" x 42" x 12" thick Footing B = 3.50 ft t=12 in Reinforcement R = (4) it4 A S1 = 0.80 int d = 8.25 in Cover: 3 in Column C 1 = 5.50 in C2 = 5.50 in Materials fc = 2500 psi Normalweight !j = 1.00 Vu=qu8 f y = 40000 psi uncoated 1.00 Net Footing Weight 2 qu = 5606 psf or PFTs = 0.49 k quBz = Soil Pressure: Two-way shear: 0 = 0.75 PASD = gaB2 — PFTG = 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 Isolated footing One-way shear: 0 = 0.75 Vc=2A1-Bd= 34.65k Vu <_ 0 V OV, = 25.99 k 0Vc (B — Cl 1 0Vc (B—C2— ) _ Vu _ —qu8 d� qu B—C 2 z—d) B( Vu=qu8 2 — d� qu B — C B( 2 i—d) 2 qu = 5606 psf or 5606 psf Pu = quBz = 68677 # Two-way shear: 0 = 0.75 [22.6.5.2(a)] vc = 4A1 f1 = 200 psi a [22.6.5.2(b)] vc = (2 + 4).1 fc = 300 psi '6 = 1.00 Q a,, = 40 [22.6.5.2(c)] vc = (2 + bo) Al fc = 400 psi bo = 2(Cl+d)+2(C2+d) 55 Vu Vc OVc = gvcbod = 68.06 k 0Vc Vu = qu[B2 — (Cl + d)(Cz + d)] - qu= z _ [B (Cl + d)(Cz + d)] qu = 6223 psf Pu = quBz = 76233 # Moment: 0 = 0.90 Mn = As fy(d — Q/2) = 21.5 k -ft a = A S fy/(0.85f , B) = 0.36 in Mu <_ om" OM,, = 19.4 k -ft B—Cz 2 qu8 (") 20Mn B—C1 qu8 ( )z 20Mn 2 2 MU = ---> qu l2 2 B((B — Cz)/21 MU = 2 �qu= 2 B((B — CJ12) qu = 4785 psf or 4785 psf Pu = quBz = 58622 # Development of Reinforcement: fy S Id=(3 db = 12 in 40 bt+ K 1 f_ (c t,-) ...15 in available OK db Soil Bearing Pressure 1500 psf 2000 psf 2500 psf 3000 psf 3500 psf 4000 psf Max Load (lbs), Soil 17885 24010 30135 36260 42385 48510 Max Load (lbs), One -Way Shear 42923 42923 42923 42923 42923 42923 Max Load (lbs), Two -Way Shear 47646 47646 47646 47646 47646 47646 Max Load (Ibs), Moment 36639 36639 36639 36639 36639 36639 Max Load (ASD) 17885 24010 30135 36260 36639 36639 Max Load (Factored) 28616 38416 48216 58016 58622 58622 Date: 3 /19 /2018 Page: M2.6 B'TIL ENCTNEERING Project: Typical Footing Footing: 48" x 48" x 12" thick Footing B = 4.00 ft Vc=2A1-Bd= 39.60k t=12 in Reinforcement R = (5) #4 (B — CZ — \ _ 0Vc Vu _ —que d� qu B—C 2 z—d) B( ASI = 1.00 int 2 qu = 4644 psf or d = 8.25 in Column C 1 = 5.50 in Materials f, = 2500 psi Normalweight [22.6.5.2(b)] vc = (2 + 4).1 fc = fy = 40000 psi Uncoated Net Footing Weight 23360 PFTs = 0.64 k 400 psi Soil Pressure: PASD = gaB2 — PFTG = 68.06 k Cover: 3 in C2=5.50 in . Al = 1.00 0e = 1.00 19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120 �t Isolated footing One-way shear: 0 = 0.75 B((B C — z / qu = 3853 psf Vc=2A1-Bd= 39.60k Development of Reinforcement: 46436 Vu <_ 0 V OV, = 29.70 k 46342 Id = (B — CZ — \ _ 0Vc Vu _ —que d� qu B—C 2 z—d) B( (B — Cl Vu=que 2 — 1 0Vc d� qu B—C B( 2 i — d) 2 qu = 4644 psf or 4644 psf Pu = quBz = 74298 # Two-way shear: 0 = 0.75 Max Load (lbs), Soil 23360 [22.6.5.2(a)] vc = 4A1 f1 = 200 psi a Max Load (lbs), Two -Way Shear [22.6.5.2(b)] vc = (2 + 4).1 fc = 300 psi '6 = 1.00 Q 23360 a,, = 40 [22.6.5.2(c)] vc = (2 + bo) Al fc = 400 psi bo = 2(Cl+d)+2(C2+d) 55 Vu Vc OVc = Ovcbod = 68.06 k Vu = qu[B2 — (Cl + d)(Cz + d)] - qu= z _ 0Vc [B (Cl + d)(Cz + d)] qu = 4634 psf Pu = quBz = 74147 # Moment: 0 = 0.90 Mn = Asfy(d — a/2) = 26.8 k -ft a=ASfy/(0.85f�B)= 0.39 in mu:5 OMn OM, = 24.2 k -ft _z qu8 (B 2 CZ) 20Mn _ qu8 (B 2 C1) z 20Mn Mu= 2 �qu=8((B C) 2)2 Mu= 2 ,qu= z 3853 psf Pu = quBz = 61640 # ...18 in available OK 2000 psf 2500 psf 3000 psf 31360 — z / qu = 3853 psf or Development of Reinforcement: 46436 fY S 46342 Id = 40 bt+ K .1 f1 (� II )) db = 12 in db 38525 Soil Bearing Pressure 1500 psi Max Load (lbs), Soil 23360 Max Load (lbs), One -Way Shear 46436 Max Load (lbs), Two -Way Shear 46342 Max Load (Ibs), Moment 38525 Max Load (ASD) 23360 Max Load (Factored) 37376 3853 psf Pu = quBz = 61640 # ...18 in available OK 2000 psf 2500 psf 3000 psf 31360 39360 47360 46436 46436 46436 46342 46342 46342 38525 38525 38525 31360 38525 38525 50176 61640 61640 3500 psf 4000 psf 55360 63360 46436 46436 46342 46342 38525 38525 38525 38525 61640 61640 Date: 3/19/2018 Page: M2.7