Loading...
SWPPP (2) Civil Engineers ● Structural Engineers ● Landscape Architects ● Community Planners ● Land Surveyors Construction Stormwater Pollution Prevention Plan PREPARED FOR: Mr. Evan Mann Copper Ridge LLC PO Box 73790 Puyallup, WA 98373-0790 PROJECT: Crystal Springs Preliminary Plat Yelm, Washington 2210633.10 PREPARED BY: Michael Lesmeister, PE Project Engineer REVIEWED BY: J. Matthew Weber, PE. Principal DATE March 2022 Construction Stormwater Pollution Prevention Plan PREPARED FOR: Mr. Evan Mann Copper Ridge LLC PO Box 73790 Puyallup, WA 98373-0790 PROJECT: Crystal Springs Preliminary Plat Yelm, Washington 2210633.10 PREPARED BY: Michael Lesmeister, PE Project Engineer REVIEWED BY: J. Matthew Weber, PE. Principal DATE: March 2022 I hereby state that this Construction Stormwater Pollution Prevention Plan for Crystal Springs Plat project has been prepared by me or under my supervision, and meets the standard of care and expertise that is usual and customary in this community for professional engineers. I understand that City of Yelm does not and will not assume liability for the sufficiency, suitability, or performance of drainage facilities prepared by me. 03/28/2022 Construction Stormwater Pollution Prevention Plan Crystal Springs Preliminary Plat 2210633.10 Table of Contents Section Page 1.0 Introduction .................................................................................................................................... 1 2.0 Project Description ........................................................................................................................ 2 3.0 Existing Site Conditions ................................................................................................................ 2 4.0 Adjacent Areas and Drainage ....................................................................................................... 2 5.0 Critical Areas .................................................................................................................................. 2 6.0 Soils ................................................................................................................................................. 2 7.0 Potential Erosion Problems .......................................................................................................... 2 8.0 Construction Stormwater Pollution Prevention Elements ......................................................... 3 8.1 Mark Clearing Limits ........................................................................................................... 3 8.2 Establish Construction Access ............................................................................................ 3 8.3 Control Flow Rates.............................................................................................................. 3 8.4 Install Sediment Controls .................................................................................................... 3 8.5 Stabilize Soils ...................................................................................................................... 3 8.6 Protect Slopes ..................................................................................................................... 3 8.7 Protect Drain Inlets.............................................................................................................. 4 8.8 Stabilize Channels and Outlets ........................................................................................... 4 8.9 Control Pollutants ................................................................................................................ 4 8.10 Control Dewatering ............................................................................................................. 6 8.11 Maintain BMPs .................................................................................................................... 6 8.12 Manage the Project ............................................................................................................. 6 8.13 Protect Low Impact Development BMPs ............................................................................ 7 9.0 Construction Sequence and Phasing .......................................................................................... 7 9.1 Construction Sequence ....................................................................................................... 7 9.2 Construction Phasing .......................................................................................................... 8 10.0 Construction Schedule .................................................................................................................. 8 11.0 Financial/Ownership Responsibilities ......................................................................................... 8 12.0 Certified Erosion and Sediment Control Lead (CESCL) ............................................................ 8 Construction Stormwater Pollution Prevention Plan Crystal Springs Preliminary Plat 2210633.10 Exhibits Exhibit 1 NRCS Soils Map Exhibit 2 TESC Calculations Exhibit 3 Inspection Logs Exhibit 4 Selected Best Management Practices (BMPs) Construction Stormwater Pollution Prevention Plan Crystal Springs Preliminary Plat 1 2210633.10 1.0 Introduction In 1972, Congress passed the Federal Water Pollution Control Act (FWPCA), also known as the Clean Water Act (CWA), to restore and maintain the quality of the nation's waterways. The ultimate goal was to make sure that rivers and streams were fishable, swimmable, and drinkable. In 1987, the Water Quality Act (WQA) added provisions to the CWA that allowed the Environmental Protection Agency (EPA) to govern stormwater discharges from construction sites. The National Pollutant Discharge Elimination System (NPDES) General Permit includes provisions for development of a Stormwater Pollution Prevention Plan (SWPPP) to maximize the potential benefits of pollution prevention and sediment and erosion control measures at construction sites. The proposed project will disturb more than 1 acre of area, and therefore is required to obtain an NPDES General Permit for Stormwater Associated with Construction Activities. The most recent Department of Ecology Stormwater Management Manual for Western Washington (SMMWW), as adopted by the City of Yelm, requires a Construction Stormwater Pollution Prevention Plan (CSWPPP) for projects that add or replace more than 2,000 square feet of impervious surface. The proposed project will exceed this threshold; therefore, a CSWPPP is required. Development, implementation, and maintenance of the CSWPPP will provide the selected General Contractor with the framework for reducing soil erosion and minimizing pollutants in stormwater during construction. The CSWPPP will: • Define the characteristics of the site and the type of construction that will occur. • Describe the practices that will be implemented to control erosion and the release of pollutants in stormwater. • Create an implementation schedule to ensure that the practices descr ibed in this CSWPPP are in fact implemented, and to evaluate the plan's effectiveness in reducing erosion, sediment, and pollutant levels in stormwater discharged from the site. • Describe the final stabilization/termination design to minimize erosion and prevent stormwater impacts after construction is complete. This CSWPPP: • Identifies the CSWPPP Coordinator with a description of this person's duties. • Identifies the Stormwater Pollution Prevention Team (SWPP Team) that will assist in implementation of the CSWPPP during construction. • Describes the existing site conditions, including existing land use, soil types at the site, and the location of surface waters that are located on or next to the site. • Identifies the body or bodies of water that will receive runoff from the construction site, including the ultimate body of water that receives the stormwater. • Identifies the drainage areas and potential stormwater contaminants. • Describes the stormwater management controls and various Best Management Practices (BMPs) necessary to reduce erosion, sediment, and pollutants in stormwater discharge. • Describes the facility monitoring plan and how controls will be coordinated with construction activities. • Describes the implementation schedule and provisions for amendment of the plan. Construction Stormwater Pollution Prevention Plan Crystal Springs Preliminary Plat 2 2210633.10 2.0 Project Description This CSWPPP accompanies the civil engineering plans submitted for a site development permit for the proposed project, Crystal Springs Plat. The 4.89-acre site is located in Section 19, Township 17 North, Range 02 East, W. M. The Thurston County tax parcel number associated with the project is 22719210403. The project includes the addition of 30 residential lots for single- family homes, a new roadway and sidewalks, sewer, water services, and stormwater facilities to treat and dispose of the project's stormwater. The proposed roadway features and utilities will be extended from NW Crystal Springs Road, as well as connecting to Woodland Court SE 3.0 Existing Site Conditions The site is presently covered with grass and a few deciduous trees, along with an existing building on the south end of the site, with slopes ranging from 0 to 5 percent The existing residence and outbuildings, located in the center of the site, will be demolished. Presently, the site infiltrates directly into the ground with no offsite runoff. 4.0 Adjacent Areas and Drainage Review of available GIS topographic information and topographic survey data indicates that there is minimal potential of runoff from pervious surfaces of adjacent properties. The entire proposed project runoff will be infiltrated on-site. To our knowledge there are no existing or anticipated impacts to the downstream basin area. 5.0 Critical Areas The project site is within an aquifer recharge area. To our knowledge, no environmentally sensitive areas, including creeks, lakes, ponds, wetlands, ravines, gullies, steep slopes, or springs, are located on or immediately down gradient of the property. 6.0 Soils Site soils are identified by the Natural Resources Conservation Service (NRCS) Web Soil Survey as Spanaway gravelly sandy loam, a Type A soil . This soil is characterized as very deep, somewhat excessively drained. Earth Solutions NW conducted a site investigation to confirm subsurface soil conditions and establish a design infiltration rate. Soil test holes were dug in the vicinity of the proposed infiltration basins of the project and observations confirm that the soil types match the SCS soil description. A soil log map showing the location of the test holes is included in the geotechnical report. The report recommends a design infiltration rate of 36 inches per hour. Please see Exhibit 5 for the complete Earth Solutions NW report. 7.0 Potential Erosion Problems There are no known historical erosion problems on the site. There are no known potential erosion problems that will be created onsite. Construction Stormwater Pollution Prevention Plan Crystal Springs Preliminary Plat 3 2210633.10 8.0 Construction Stormwater Pollution Prevention Elements The purpose of this section is to describe how each of the 1 3 Construction Stormwater Pollution Prevention elements has been addressed and to identify the type and location of BMPs used to satisfy the required element. If an element is not applicable to the project, a reason is provided. 8.1 Mark Clearing Limits Prior to beginning land-disturbing activities, clearing limits will be marked with high visibility plastic or metal fence (BMP C103). Significant vegetation to remain will be marked and protected by fencing. 8.2 Establish Construction Access The existing paved driveway access from Crystal Springs St. NW will serve as the sites construction entrance (BMP C105). If sediment tracking should occur, the Contractor will be required to sweep the impacted roadways. Dump trucks hauling material to and from the site will be covered by a tarp. 8.3 Control Flow Rates An infiltration sediment trap (BMP C240) will utilize infiltration to control flows during construction. The proposed sediment trap will infiltrate 100-percent of construction phase runoff with a maximum design water depth of less than 3ft in the 10-year design event. Sizing of the facility is found in Exhibit 2. 8.4 Install Sediment Controls As part of the initial construction activities, BMPs will be installed to trap sediment onsite. The identified BMPs include sediment trap (BMP C240) and silt fencing (BMP C233). 8.5 Stabilize Soils To protect soil from the erosive forces of raindrops, flowing water, and wind, the following BMPs will be implemented: • All disturbed areas that will remain unworked will be stabilized with temporary hydroseed (BMP C120) or mulch (BMP C121) within 2 days (October 1 - April 30) or 7 days (May 1 - September 30). • After fertilizing, all areas that will not be impacted by construction will be seeded (BMP C120). • Topsoil stockpiles will be stabilized with plastic coverings (BMP C123). • Dust control (BMP C140) will be provided by sprinkling the site with water. • Permanent erosion control measures will include site paving and seeding of exposed soils. 8.6 Protect Slopes Slopes on the site will be protected to minimize erosion. Temporary and permanent seeding (BMP C120) will be used to reduce erosion of exposed soils on slopes. Runoff collection methods include temporary interceptor swales (BMP C200). Construction Stormwater Pollution Prevention Plan Crystal Springs Preliminary Plat 4 2210633.10 8.7 Protect Drain Inlets Proposed drain inlets shall be protected until final site stabilization. Any storm drain inlets downstream shall be protected so that surface water runoff does not enter the conveyance system without first being filtered. Inlets shall be inspected weekly, at a minimum, and daily during storm events. Storm Drain Inlet Protection (BMP C220) will be provided. 8.8 Stabilize Channels and Outlets Interceptor swales are proposed for the project to divert stormwater away from the construction area and direct it to the sediment traps. Stabilized channels will be provided for interceptor swales descending the slopes associated with the proposed daylight lots . Outlets to the sediment traps will be stabilized to prevent erosion and check dams (BMP C207) will be provided. 8.9 Control Pollutants All waste materials will be collected and stored in a securely closed metal dumpster. All trash and construction debris from the site will be deposited in the dumpster. The dumpster will be emptied a minimum of once per week, and the trash will be hauled to the local landfill. No construction materials will be buried onsite. All personnel will be instructed regarding the correct procedure for waste disposal. All sanitary waste will be collected from the portable un its a minimum of three times per week. Good housekeeping and spill control practices will be followed during construction to minimize stormwater contamination from petroleum products, fertilizers, and concrete. Table 1 below lists several pollutants that are commonly found on construction sites that have the potential to contaminate storm runoff. These pollutants will be present, mainly in areas of building and pavement construction. The Contractor and the CSWPPP/TESC coordinator will be responsible for identifying areas where these pollutants are being used and monitor runoff coming from these areas. Pollutant sources will be covered with plastic if contaminated runoff is observed from these areas. If contaminated runoff is found in the sediment trap or soils, the Certified Erosion and Sedimentation Control Lead (CESCL) will direct the Contractor to remove the polluted water/soil and dispose of it in an approved area offsite. Table 1 – Potential Construction Site Stormwater Pollutants Trade Name Material Chemical/Physical Description(1) Stormwater Pollutants(1) Pesticides (insecticides, fungicides, herbicide, rodenticides) Various colored to colorless liquid, powder, pellets, or grains Chlorinated hydrocarbons, organophosphates, carbamates, arsenic Fertilizer Liquid or solid grains Nitrogen, phosphorous Plaster White granules or powder Calcium sulphate, calcium carbonate, sulfuric acid Cleaning solvents Colorless, blue, or yellow-green liquid Perchloroethylene, methylene chloride, trichloroethylene, petroleum distillates Asphalt Black solid Oil, petroleum distillates Concrete White solid Limestone, sand Glue, adhesives White or yellow liquid Polymers, epoxies Paints Various colored liquid Metal oxides, Stoddard solvent, talc, calcium carbonate, arsenic Curing compounds Creamy white liquid Naphtha Wastewater from construction equipment washing Water Soil, oil & grease, solids Construction Stormwater Pollution Prevention Plan Crystal Springs Preliminary Plat 5 2210633.10 Trade Name Material Chemical/Physical Description(1) Stormwater Pollutants(1) Wood preservatives Clear amber or dark brown liquid Stoddard solvent, petroleum distillates, arsenic, copper, chromium Hydraulic oil/fluids Brown oily petroleum hydrocarbon Mineral oil Gasoline Colorless, pale brown or pink petroleum hydrocarbon Benzene, ethyl benzene, toluene, xylene, MTBE Diesel fuel Clear, blue-green to yellow liquid Petroleum distillate, oil & grease, naphthalene, xylenes Kerosene Pale yellow liquid petroleum hydrocarbon Coal oil, petroleum distillates Antifreeze/coolant Clear green/yellow liquid Ethylene glycol, propylene glycol, heavy metals (copper, lead, zinc) Erosion Solid Particles Soil, Sediment (1) Data obtained from MSDS when available 8.9.1 Required BMPs The following BMPs or equivalent measures are required of all businesses and agencies during concrete pouring and asphalt application at temporary sites: • Employees must be educated on the pollution hazards of concrete and asphalt application and cutting. • Loose aggregate chunks and dust must be swept or shoveled and collected (not hosed down a storm drain) for recycling or proper disposal at the end of each work day, especially at work sites such as streets, driveways, parking lots, sidewalks, curbs, and gutters where rain can readily pick up the loose material and carry it to the nearest stormwater conveyance. Small amounts of excess concrete, grout, and mortar can be disposed of in the trash. • Storm drain covers or similarly effective containment devices must be placed over all nearby drains at the beginning of each day. Shovel or vacuum slurry and remove from the site. All accumulated runoff and solids must be collected and properly disposed at the end of each workday, or more often if necessary. • Exposed aggregate washing, where the top layer of unhardened concrete is hosed or scraped off to leave a rough finish, must be done with a mechanism for containment and collection of the discarded concrete slurry (such as the storm drain covers mentioned above). The easiest way to contain the wash water will be to direct the washings to a hole in the ground where the water can percolate into the ground and the solids later covered with soil. • If directed to a drain, a catch basin filter insert must be used to remove the solids. This is especially useful if the activity must proceed on rainy days. • Cleaning of concrete application and mixing equipment or concrete vehicles on the work site must be done in a designated area where the rinse water is controlled. The rinse water must either be collected for proper disposal or put into a hole in the ground where the water can percolate away and the solids later covered with soil or recovered and disposed or recycled. The use of any treatment BMP must not result in the violation of groundwater, surface water, or drinking water quality standards. Construction Stormwater Pollution Prevention Plan Crystal Springs Preliminary Plat 6 2210633.10 8.10 Control Dewatering Dewatering is not anticipated for the project. 8.11 Maintain BMPs Temporary and permanent erosion and sediment control BMPs shall be maintained and repaired as needed to assure performance of their intended functions. Sediment control BMPs such as silt fencing, slope blankets, and drain inlet protection shall be inspected weekly or after a runoff-producing event. Temporary erosion and sediment control BMPs will be removed within 30 days after final site stabilization is achieved. The following inspection and maintenance practices will be used to maintain erosion and sediment controls: • Built-up sediment will be removed from silt fencing when it has reached one-third the height of the fence. • Silt fences will be inspected for depth of sediment, tears in the fabric, and attachment to the fence posts, and to determine that fence posts are firmly in the ground. Accumulated sediment will be removed from behind the fence. • Check dams will be inspected for depth of sediment. Accumulated sediment will be removed when it reaches 6 inches in depth. • Temporary and permanent seeding will be inspected for bare spots, washouts, and healthy growth. • The Contractor Certified Erosion and Sedimentation Control Lead (CESCL) (BMP C160) will provide erosion control inspection services and stormwater disposal monitoring through construction. The City Inspector will be notified of daily construction activities and scheduled meetings between the Erosion Control Inspector and the Contractor. The maintenance inspection report will be made after each inspection. Copies of the report forms to be completed by the CSWPPP coordinator are attached as Exhibit 3 of this CSWPPP. Completed forms will be provided to the City Inspector and will also be maintained onsite during the entire construction project. If construction activities or design modifications are made to the site plan that could impact stormwater, or if AHBL determines that the measures are not adequate to prevent erosion and the discharge of sediment from the site (based on turbidity measurements), this CSWPPP will be amended appropriately. The amended CSWPPP will have a description of the new activities that contribute to the increased pollutant loading and the planned source control activities. 8.12 Manage the Project The following practices will be required during construction to properly manage activities: • Comply with seasonal work limitations. • Inspect, maintain, and repair BMPs. • Identify a CESCL (BMP C160). • Maintain the CSWPPP onsite at all times, including narrative and plans. Construction Stormwater Pollution Prevention Plan Crystal Springs Preliminary Plat 7 2210633.10 8.13 Protect Low Impact Development BMPs • Proposed infiltration location will be protected from construction vehicles and equipment to the maximum extent practical. • Proposed sediment traps designed to not impact infiltration interface of future infiltration facility. • All Low Impact Development (LID) BMPs should be kept clean of sediment and equipment to the maximum extent practical. 9.0 Construction Sequence and Phasing 9.1 Construction Sequence The construction sequence is described below: 1. Stake/flag clearing and construction limits. 2. Arrange and attend a pre-construction meeting with City of Yelm. 3. Install construction entrance. 4. Provide demolition as required to install all temporary erosion control BMPs according to the TESC plan. Install inlet sediment protection in existing catch basins. 5. Provide all perimeter erosion control and site barrier fencing including filter fabric fence prior to start of any clearing or grading activities. 6. Excavate temporary TESC ponds (protect subgrades from compaction – used for infiltration). 7. Demolish remainder of existing site features as designated for demolition on the plans. 8. Maintain erosion control measures as site development progresses. 9. Rough grade site and provide erosion control BMPs to stabilize the site and direct all surface runoff to the TESC plans. 10. Apply erosion control mulch and seeding, straw mulch or equal to areas that will not be brought to final grade or permanently vegetated within 7 days of exposure, during the dry season and 2 days of exposure during the wet season (October 1 – Aril 30). 11. Relocate erosion control measures or install new measures so that as the site conditions change, the erosion and sediment control is always in accordance with the SWPPP minimum requirements. 12. Construct storm system and misc. utilities and install inlet sediment protectio n to new catch basins. 13. Fine grade asphalt paved areas, place curb and gutters, and pave. 14. After site is stabilized, complete bio-retention construction: Construction Stormwater Pollution Prevention Plan Crystal Springs Preliminary Plat 8 2210633.10 14.1. Scarify bio-retention sub-grade (do not compact bio-retention bottoms). Schedule geotechnical engineer for infiltration testing to ensure bio-retention functions per design. Provide infiltration testing to include a minimum of 2 tests per bio-retention system. 14.2. Upon approval of infiltration testing results, provide bio-retention treatment soil mix per plans. Bio-retention soil mix placement and bio-retention excavation shall not be conducted during wet or saturated conditions. 15. Provide landscape plantings and final bio-retention stabilization per landscape design. 16. Remove remaining temporary erosion control items once site has been stabilized and upon approval from the city. 17. Perform final close-out items as required by city and owner. 9.2 Construction Phasing No phasing is proposed. The proposed construction will be done as one project. 10.0 Construction Schedule Construction is anticipated to begin in Summer 2022 and be completed in Spring 2023. Based on the construction schedule, construction may be ongoing during the wet season. During construction, measures will be taken to prevent the transportation of sediment from the site to receiving waters. These measures include the use of, but are not limited to, the BMPs listed in Exhibit 4. 11.0 Financial/Ownership Responsibilities The Developer is the party responsible for initiation of bonds and other financial securities. The project must comply with City of Yelm financial liability requirements. 12.0 Certified Erosion and Sediment Control Lead (CESCL) The General Contractor shall be required to provide a CESCL prior to permit issuance. The CESCL can be identified at the preconstruction meeting. Once this individual is identified, the City Inspector will be notified. The contractor will designate their CESCL here: Name: _____________________________________________ Address: _____________________________________________ Phone: _____________________________________________ Fax Number: _____________________________________________ The CESCL is required to meet Washington State Department of Ecology certification requirements. The City Inspector will be provided with CESCL information. The duties of the CESCL include: Construction Stormwater Pollution Prevention Plan Crystal Springs Preliminary Plat 9 2210633.10 • Implementing the CSWPPP/TESC plan with the aid of the SWPP Team. • Overseeing maintenance practices identified as BMPs in the CSWPPP. • Conducting or providing for inspection and monitoring activities. • Sampling stormwater for turbidity using a turbidity meter. • Identifying other potential pollutant sources and ensuring they are added to the plan. • Identifying any deficiencies in the CSWPPP and ensuring they are corrected. • Ensuring that any changes in construction plans are addressed in the CSWPPP. To aid in the implementation of the CSWPPP, the members of the SWPP Team include the following: General Contractor, CESCL, City of Yelm Inspector, the geotechnical engineering consultant, and AHBL. The General Contractor will ensure that all housekeeping and monitoring procedures are implemented, while the CESCL will ensure the integrity of the structural BMPs. The SWPP Team will observe construction and erosion control practices and rec ommend revisions or additions to the CSWPPP and drawings. This analysis is based on data and records either supplied to or obtained by AHBL, Inc. These documents are referenced within the text of the analysis. The analysis has been prepared utilizing procedures and practices within the standard accepted practices of the industry. We conclude that this project, as proposed, will not create any new problems within the existing downstream drainage system. This project will not noticeably aggravate any existing downstream problems due to either water quality or quantity. AHBL, Inc. Michael Lesmeister, PE ML/ March 2022 Q:\2021\2210633\10_CIV\NON_CAD\REPORTS\SWPPP\20220326 Rpt (SWPPP) 2210633.10.docx Construction Stormwater Pollution Prevention Plan Crystal Springs Preliminary Plat 2210633.10 Exhibit 1 NRCS Soils Map Soil Map—Thurston County Area, Washington (A-2) Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 10/5/2021 Page 1 of 35199540519956051995805199600519962051996405199660519968051997005199720519974051997605199780519980051995405199560519958051996005199620519964051996605199680519970051997205199740519976051997805199800530070530090530110530130530150530170530190530210530230 530070 530090 530110 530130 530150 530170 530190 530210 530230 46° 57' 4'' N 122° 36' 17'' W46° 57' 4'' N122° 36' 9'' W46° 56' 55'' N 122° 36' 17'' W46° 56' 55'' N 122° 36' 9'' WN Map projection: Web Mercator Corner coordinates: WGS84 Edge tics: UTM Zone 10N WGS84 0 35 70 140 210 Feet 0 10 20 40 60 Meters Map Scale: 1:766 if printed on B portrait (11" x 17") sheet. Soil Map may not be valid at this scale. MAP LEGEND MAP INFORMATION Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Special Point Features Blowout Borrow Pit Clay Spot Closed Depression Gravel Pit Gravelly Spot Landfill Lava Flow Marsh or swamp Mine or Quarry Miscellaneous Water Perennial Water Rock Outcrop Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot Spoil Area Stony Spot Very Stony Spot Wet Spot Other Special Line Features Water Features Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads Background Aerial Photography The soil surveys that comprise your AOI were mapped at 1:24,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Thurston County Area, Washington Survey Area Data: Version 15, Aug 31, 2021 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Jul 18, 2020—Jul 20, 2020 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. Soil Map—Thurston County Area, Washington (A-2) Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 10/5/2021 Page 2 of 3 Map Unit Legend Map Unit Symbol Map Unit Name Acres in AOI Percent of AOI 110 Spanaway gravelly sandy loam, 0 to 3 percent slopes 4.5 63.1% 111 Spanaway gravelly sandy loam, 3 to 15 percent slopes 2.6 36.9% Totals for Area of Interest 7.1 100.0% Soil Map—Thurston County Area, Washington A-2 Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 10/5/2021 Page 3 of 3 Construction Stormwater Pollution Prevention Plan Crystal Springs Preliminary Plat 2210633.10 Exhibit 2 TESC Calculations History Cleared: 13:14:25 Saturday, March 26, 2022 LPOOLCOMPUTE [Pond] SUMMARY using Puls Start of live storage: 333.0000 ft Dev Event Summary Record Id: Dev Event Match Q (cfs)Peak Q (cfs)Peak Stg (ft)Vol (cf)Vol (acft)Time to Empty 10 year 0.2167 0.2167 335.5026 1909.82 0.0438 26.83 Event Peak Q (cfs)Peak T (hrs)Hyd Vol (acft)Area (ac)Method Raintype 2 year 0.5301 8.00 0.1872 1.5500 SBUH TYPE1A other 0.5595 8.00 0.1984 1.5500 SBUH TYPE1A 5 year 0.6797 8.00 0.2439 1.5500 SBUH TYPE1A 10 year 0.8346 8.00 0.3020 1.5500 SBUH TYPE1A 25 year 0.9920 8.00 0.3611 1.5500 SBUH TYPE1A 100 year 1.1513 8.00 0.4210 1.5500 SBUH TYPE1A Design Method SBUH Rainfall type TYPE1A Hyd Intv 10.00 min Peaking Factor 484.00 Abstraction Coeff 0.20 Pervious Area (AMC 2)0.34 ac DCIA 1.21 ac Pervious CN 72.00 DC CN 98.00 Pervious TC 32.22 min DC TC 6.65 min Pervious CN Calc Description SubArea Sub cn Pervious 0.34 ac 72.00 Pervious Composited CN (AMC 2)72.00 Pervious TC Calc Type Description Length Slope Coeff Misc TT Sheet Short prairie grass and lawns.: 0.15 300.00 ft 1.25%0.1500 2.50 in 32.22 min Pervious TC 32.22 min Directly Connected CN Calc Description SubArea Sub cn Hard Surface 1.21 ac 98.00 DC Composited CN (AMC 2)98.00 Page 1 of 2 3/26/2022file:///Q:/2021/2210633/10_CIV/NON_CAD/CALCS/StormShed/20220325%20TESC.html Record Id: Pond Dimensions Licensed to: AHBL Directly Connected TC Calc Type Description Length Slope Coeff Misc TT Sheet Smooth Surfaces.: 0.011 100.00 ft 1.25%0.0110 2.50 in 1.65 min Fixed Ditch 5.00 min Directly Connected TC 6.65min Descrip:Prototype Record Increment 0.10 ft Start El.333.0000 ft Max El.336.0000 ft Length 52.0000 ft Width 5.0000 ft Length ss1 3.00h:1v Length ss2 3.0000h:1v Width ss1 3.00h:1v Width ss2 3.0000h:1v Only consider bottom area for infiltration Stage Storage Rating Curve 333.0000 ft 0.0000 cf 334.6000 ft 902.9120 cf 333.1000 ft 27.7220 cf 334.7000 ft 995.1460 cf 333.2000 ft 58.9360 cf 334.8000 ft 1092.0240 cf 333.3000 ft 93.7140 cf 334.9000 ft 1193.6180 cf 333.4000 ft 132.1280 cf 335.0000 ft 1300.0000 cf 333.5000 ft 174.2500 cf 335.1000 ft 1411.2420 cf 333.6000 ft 220.1520 cf 335.2000 ft 1527.4160 cf 333.7000 ft 269.9060 cf 335.3000 ft 1648.5940 cf 333.8000 ft 323.5840 cf 335.4000 ft 1774.8480 cf 333.9000 ft 381.2580 cf 335.5000 ft 1906.2500 cf 334.0000 ft 443.0000 cf 335.6000 ft 2042.8720 cf 334.1000 ft 508.8820 cf 335.7000 ft 2184.7860 cf 334.2000 ft 578.9760 cf 335.8000 ft 2332.0640 cf 334.3000 ft 653.3540 cf 335.9000 ft 2484.7780 cf 334.4000 ft 732.0880 cf 336.0000 ft 2643.0000 cf Page 2 of 2 3/26/2022file:///Q:/2021/2210633/10_CIV/NON_CAD/CALCS/StormShed/20220325%20TESC.html Construction Stormwater Pollution Prevention Plan Crystal Springs Preliminary Plat 2210633.10 Exhibit 3 Inspection Logs Construction Stormwater Pollution Prevention Plan Crystal Springs Preliminary Plat 2210633.10 Crystal Springs Plat Construction Stormwater Pollution Prevention Plan Inspection and Maintenance Report Form To be completed every 7 days and within 24 hours of a rainfall event of 0.5 inches or more Inspector: Date: Inspector's Qualifications: Days since last rainfall: Amount of last rainfall: inches Stabilization Measures Drainage Area Date Since Last Disturbance Date of Disturbance Stabilized (yes/No) Stabilized With Condition Stabilization required: To be performed by: On or before: Construction Stormwater Pollution Prevention Plan Crystal Springs Preliminary Plat 2210633.10 Crystal Springs Plat Construction Stormwater Pollution Prevention Plan Inspection and Maintenance Report Form Perimeter Structural Controls: Date: Silt Fence Drainage Area Perimeter Has Silt Reached 1/3 of Fence Height? Is Fence Properly Secured? Is There Evidence of Washout or Overtopping? Maintenance required for silt fence and straw bales: To be performed by: On or before: Construction Stormwater Pollution Prevention Plan Crystal Springs Preliminary Plat 2210633.10 Crystal Springs Plat Construction Stormwater Pollution Prevention Plan Inspection and Maintenance Report Form Changes required to the pollution prevention plan: Reasons for changes: I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Signature: Date: ____________________ Construction Stormwater Pollution Prevention Plan Crystal Springs Preliminary Plat 2210633.10 Exhibit 4 Selected Best Management Practices (BMPs) • High Visibility Fence (BMP C103) • Stabilized Construction Access (BMP C105) • Temporary and Permanent Seeding (BMP C120) • Mulching (BMP C121) • Nets and Blankets (BMP C122) • Plastic Covering (BMP C123) • Dust Control (BMP C140) • Materials on Hand (BMP C150) • Concrete Handling (BMP C151) • Sawcutting and Surfacing Pollution Prevention (BMP C152) • Material Delivery, Storage, and Containment (BMP C153) • Concrete Washout Area (BMP C154) • Certified Erosion and Sediment Control Lead (BMP C160) • Scheduling (BMP C162) • Interceptor Dike and Swale (BMP C200) • Riprap Channel Lining (BMP C202) • Check Dams (BMP C207) • Outlet Protection (BMP C209) • Inlet Protection (BMP C220) • Silt Fence (BMP C233) • Sediment Trap (BMP C240) BMP C103: High-Visibility Fence Purpose High-visibility fencing is intended to: l Restrict clearing to approved limits. l Prevent disturbance of sensitive areas, their buffers, and other areas required to be left undis- turbed. l Limit construction traffic to designated construction entrances, exits, or internal roads. l Protect areas where marking with survey tape may not provide adequate protection. Conditions of Use To establish clearing limits plastic, fabric, or metal fence may be used: l At the boundary of sensitive areas, their buffers, and other areas required to be left uncleared. l As necessary to control vehicle access to and on the site. Design and Installation Specifications High-visibility plastic fence shall be composed of a high-density polyethylene material and shall be at  least four feet in height. Posts for the fencing shall be steel or wood and placed every 6 feet on center  (maximum) or as needed to ensure rigidity. The fencing shall be fastened to the post every six inches  with a polyethylene tie. On long continuous lengths of fencing, a tension wire or rope shall be used as  a top stringer to prevent sagging between posts. The fence color shall be high-visibility orange. The  fence tensile strength shall be 360 lbs/ft using the ASTM D4595 testing method. If appropriate install fabric silt fence in accordance with BMP C233:  Silt Fence to act as high-visibility  fence. Silt fence shall be at least 3 feet high and must be highly visible to meet the requirements of  this BMP. Metal fences shall be designed and installed according to the manufacturer's specifications. Metal fences shall be at least 3 feet high and must be highly visible. Fences shall not be wired or stapled to trees. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 274 Maintenance Standards If the fence has been damaged or visibility reduced, it shall be repaired or replaced immediately and  visibility restored. BMP C105: Stabilized Construction Access Purpose Stabilized construction accesses are established to reduce the amount of sediment transported onto  paved roads outside the project site by vehicles or equipment. This is done by constructing a sta- bilized pad of quarry spalls at entrances and exits for project sites. Conditions of Use Construction accesses shall be stabilized wherever traffic will be entering or leaving a construction  site if paved roads or other paved areas are within 1,000 feet of the site. For residential subdivision construction sites, provide a stabilized construction access for each res- idence, rather than only at the main subdivision entrance. Stabilized surfaces shall be of sufficient  length/width to provide vehicle access/parking, based on lot size and configuration. On large commercial, highway, and road projects, the designer should include enough extra mater- ials in the contract to allow for additional stabilized accesses not shown in the initial Construction  SWPPP. It is difficult to determine exactly where access to these projects will take place; additional  materials will enable the contractor to install them where needed. Design and Installation Specifications See Figure II-3.1: Stabilized Construction Access for details. Note: the 100’ minimum length of the  access shall be reduced to the maximum practicable size when the size or configuration of the site  does not allow  the full length (100’). Construct stabilized construction accesses with a 12-inch thick pad of 4-inch to 8-inch quarry spalls,  a 4-inch course of asphalt treated base (ATB), or use existing pavement. Do not use crushed con- crete, cement, or calcium chloride for construction access stabilization because these products raise  pH levels in stormwater and concrete discharge to waters of the State is prohibited. A separation geotextile shall be placed under the spalls to prevent fine sediment from pumping up  into the rock pad. The geotextile shall meet the standards listed in Table II-3.2: Stabilized Con- struction Access Geotextile Standards. Geotextile Property Required Value Grab Tensile  Strength (ASTM D4751)200  psi min. Table II-3.2: Stabilized Construction Access Geotextile Standards 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 275 Geotextile Property Required Value Grab Tensile  Elongation (ASTM D4632)30%  max. Mullen Burst  Strength (ASTM D3786-80a)400  psi min. AOS (ASTM D4751)20-45  (U.S. standard sieve size) Table II-3.2: Stabilized Construction Access Geotextile Standards (continued)  l Consider early installation of the first lift of asphalt in areas that will be paved; this can be used  as a stabilized access. Also consider the installation of excess concrete as a stabilized access.  During large concrete pours, excess concrete is often available for this purpose.  l Fencing (see BMP C103:  High-Visibility Fence) shall be installed as necessary to restrict  traffic to the construction access.  l Whenever possible, the access shall be constructed on a firm, compacted subgrade. This can  substantially increase the effectiveness of the pad and reduce the need for maintenance.  l Construction accesses should avoid crossing existing sidewalks and back of walk drains if at  all possible. If a construction access must cross a sidewalk or back of walk drain, the full length  of the sidewalk and back of walk drain must be covered and protected from sediment leaving  the site. Alternative Material Specification WSDOT has raised safety concerns about the Quarry Spall rock specified above. WSDOT observes  that the 4-inch to 8-inch rock sizes can become trapped between Dually truck tires, and then  released off-site at highway speeds. WSDOT has chosen to use a modified specification for the rock  while continuously verifying that the Stabilized Construction Access remains effective. To remain  effective, the BMP must prevent sediment from migrating off site. To date, there has been no per- formance testing to verify operation of this new  specification. Jurisdictions may use the alternative  specification, but must perform increased off-site inspection if they use, or allow others to use, it. Stabilized Construction Accesses may use material that meets the requirements of WSDOT's Stand- ard Specifications for Road, Bridge, and Municipal Construction Section 9-03.9(1) (WSDOT, 2016)  for ballast except for the following special requirements. The grading and quality requirements are listed in Table II-3.3: Stabilized Construction Access  Alternative Material Requirements. Sieve Size Percent Passing 2½″99-100 Table II-3.3: Stabilized Construction Access Alternative Material Requirements 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 276 Sieve Size Percent Passing 2″65-100 ¾″40-80 No. 4 5 max. No. 100 0-2 % Fracture 75 min. Table II-3.3: Stabilized Construction Access Alternative Material Requirements (continued)  l All percentages are by weight.  l The sand equivalent value and dust ratio requirements do not apply.  l The fracture requirement shall be at least one fractured face and will apply the combined  aggregate retained on the No. 4 sieve in accordance with FOP for AASHTO T 335. Maintenance Standards Quarry spalls shall be added if the pad is no longer in accordance with the specifications.  l If the access is not preventing sediment from being tracked onto pavement, then alternative  measures to keep the streets free of sediment shall be used. This may include replace- ment/cleaning of the existing quarry spalls, street sweeping, an increase in the dimensions of  the access, or the installation of BMP C106: Wheel Wash.  l Any sediment that is tracked onto pavement shall be removed by shoveling or street sweep- ing. The sediment collected by sweeping shall be removed or stabilized on site. The pavement  shall not be cleaned by washing down the street, except when high efficiency sweeping is inef- fective and there is a threat to public safety. If it is necessary to wash the streets, the con- struction of a small sump to contain the wash water shall be considered. The sediment would  then be washed into the sump where it can be controlled.  l Perform street sweeping by hand or with a high efficiency sweeper. Do not use a non-high effi- ciency mechanical sweeper because this creates dust and throws soils into storm systems or  conveyance ditches.  l Any quarry spalls that are loosened from the pad, which end up on the roadway shall be  removed immediately.  l If vehicles are entering or exiting the site at points other than the construction access(es),  BMP C103:  High-Visibility Fence shall be installed to control traffic. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 277  l Upon project completion and site stabilization, all construction accesses intended as per- manent access for maintenance shall be permanently stabilized. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 278 Figure II-3.1: Stabilized Construction Access 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 279 Approved as Functionally Equivalent Ecology has approved products as able to meet the requirements of this BMP. The products did not  pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions  may choose not to accept these products, or may require additional testing prior to consideration for  local use. Products that Ecology has approved as functionally equivalent are available for review on  Ecology’s website at:  https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-per- mittee-guidance-resources/Emerging-stormwater-treatment-technologies 2019 Stormwater Management Manual for Western Washington Volume II - Chapter 3 - Page 280 BMP C120: Temporary and Permanent Seeding Purpose Seeding reduces erosion by stabilizing exposed soils. A well-established vegetative cover is one  of the most effective methods of reducing erosion. Conditions of Use Use seeding throughout the project on disturbed areas that have reached final grade or that will  remain unworked for more than 30 days. The optimum seeding windows for western Washington are April 1 through June 30 and  September 1 through October 1. Between July 1 and August 30 seeding requires irrigation until 75 percent grass cover is  established. Between October 1 and March 30 seeding requires a cover of mulch or an erosion control blanket  until 75 percent grass cover is established. Review all disturbed areas in late August to early September and complete all seeding by the end  of September. Otherwise, vegetation will not establish itself enough to provide more than average  pro-tection. Mulch is required at all times for seeding because it protects seeds from heat, moisture loss, and  transport due to runoff. Mulch can be applied on top of the seed or simultaneously by  hydroseeding. See BMP C121: Mulching for specifications. Seed and mulch all disturbed areas not otherwise vegetated at final site stabilization. Final sta- bilization means the completion of all soil disturbing activities at the site and the establishment of a  permanent vegetative cover, or equivalent permanent stabilization measures (such as pavement,  riprap, gabions, or geotextiles) which will prevent erosion. See BMP T5.13: Post-Construction Soil  Quality and Depth. Design and Installation Specifications General l Install channels intended for vegetation before starting major earthwork and hydroseed with a Bonded Fiber Matrix. For vegetated channels that will have high flows, install erosion control blankets over the top of hydroseed. Before allowing water to flow in vegetated channels, establish 75 percent vegetation cover. If vegetated channels cannot be established by seed 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 284 before water flow; install sod in the channel bottom — over top of hydromulch and erosion con- trol blankets. l Confirm the installation of all required surface water control measures to prevent seed from washing away. l Hydroseed applications shall include a minimum of 1,500 pounds per acre of mulch with 3 per- cent tackifier. See BMP C121: Mulching for specifications. l Areas that will have seeding only and not landscaping may need compost or meal-based mulch included in the hydroseed in order to establish vegetation. Re-install native topsoil on the disturbed soil surface before application. See BMP T5.13: Post-Construction Soil Quality and Depth. l When installing seed via hydroseeding operations, only about 1/3 of the seed actually ends up in contact with the soil surface. This reduces the ability to establish a good stand of grass quickly. To overcome this, consider increasing seed quantities by up to 50 percent. l Enhance vegetation establishment by dividing the hydromulch operation into two phases: o Phase 1- Install all seed and fertilizer with 25-30 percent mulch and tackifier onto soil in the first lift. o Phase 2- Install the rest of the mulch and tackifier over the first lift. Or, enhance vegetation by: o Installing the mulch, seed, fertilizer, and tackifier in one lift. o Spread or blow straw over the top of the hydromulch at a rate of 800-1000 pounds per acre. o Hold straw in place with a standard tackifier. Both of these approaches will increase cost moderately but will greatly improve and enhance  vegetative establishment. The increased cost may be offset by the reduced need for: o Irrigation. o Reapplication of mulch. o Repair of failed slope surfaces. This technique works with standard hydromulch (1,500 pounds per acre minimum) and Bon- ded Fiber Matrix/ Mechanically Bonded Fiber Matrix (BFM/MBFMs) (3,000 pounds per acre  minimum). l Seed may be installed by hand if: o Temporary and covered by straw, mulch, or topsoil. o Permanent in small areas (usually less than 1 acre) and covered with mulch, topsoil, or erosion blankets. l The seed mixes listed in Table II-3.4: Temporary and Permanent Seed Mixes include 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 285 recommended mixes for both temporary and permanent seeding.  l Apply these mixes, with the exception of the wet area seed mix, at a rate of 120 pounds per  acre. This rate can be reduced if soil amendments or slow-release fertilizers are used. Apply  the wet area seed mix at a rate of 60 pounds per acre.  l Consult the local suppliers or the local conservation district for their recommendations. The  appropriate mix depends on a variety of factors, including location, exposure, soil type, slope,  and expected foot traffic. Alternative seed mixes approved by the local authority may be used,  depending on the soil type and hydrology of the area. Common Name Latin Name % Weight % Purity % Germination Temporary Erosion Control Seed Mix A standard mix for areas requiring a temporary vegetative cover. Chewings or   annual blue grass Festuca rubra var. commutata or Poa anna 40 98 90 Perennial rye  Lolium perenne 50 98 90 Redtop or colonial  bentgrass  Agrostis alba or  Agrostis tenuis 5 92 85 White dutch clover Trifolium repens 5 98 90 Landscaping Seed Mix A recommended mix for landscaping seed. Perennial rye blend Lolium perenne 70 98 90 Chewings and red  fescue blend Festuca rubra var. commutata or Fes- tuca rubra 30 98 90 Low-Growing Turf Seed Mix A turf seed mix for dry situations where there is no need for watering. This mix requires very little main- tenance. Dwarf tall fescue  (several  varieties) Festuca arundin- acea var. 45 98 90 Dwarf perennial  rye (Barclay) Lolium perenne var. barclay 30 98 90 Red fescue Festuca rubra 20 98 90 Colonial bentgrass Agrostis tenuis 5 98 90 Bioswale Seed Mix A seed mix for bioswales and other intermittently wet areas. Tall or meadow fes-Festuca arundin-75-80 98 90 Table II-3.4: Temporary and Permanent Seed Mixes 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 286 Common Name Latin Name % Weight % Purity % Germination cue acea or   Festuca elatior Seaside/Creeping  bentgrass Agrostis palustris 10-15 92 85 Redtop bentgrass Agrostis alba or  Agrostis gigantea 5-10 90 80 Wet Area Seed Mix A low-growing, relatively non-invasive seed mix appropriate for very wet areas that are not regulated wet- lands. Consult Hydraulic Permit Authority (HPA) for seed mixes if applicable. Tall or meadow fes- cue Festuca arundin- acea or Festuca elatior 60-70 98 90 Seaside/Creeping  bentgrass Agrostis palustris 10-15 98 85 Meadow foxtail Alepocurus praten- sis 10-15 90 80 Alsike clover Trifolium hybridum 1-6 98 90 Redtop bentgrass Agrostis alba 1-6 92 85 Meadow Seed Mix A recommended meadow seed mix for infrequently maintained areas or non-maintained areas where col- onization by native plants is desirable. Likely applications include rural road and utility right-of-way. Seed- ing should take place in September or very early October in order to obtain adequate establishment prior to  the winter months. Consider the appropriateness of clover, a fairly invasive species, in the mix. Amending  the soil can reduce the need for clover. Redtop or Oregon  bentgrass Agrostis alba or  Agrostis ore- gonensis 20 92 85 Red fescue Festuca rubra 70 98 90 White dutch clover Trifolium repens 10 98 90 Table II-3.4: Temporary and Permanent Seed Mixes (continued) Roughening and Rototilling  l The seedbed should be firm and rough. Roughen all soil no matter what the slope. Track walk  slopes before seeding if engineering purposes require compaction. Backblading or smoothing  of slopes greater than 4H:1V is not allowed if they are to be seeded.  l Restoration-based landscape practices require deeper incorporation than that provided by a  simple single-pass rototilling treatment. Wherever practical, initially rip the subgrade to  improve long-term permeability, infiltration, and water inflow qualities. At a minimum,  2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 287 permanent areas shall use soil amendments to achieve organic matter and permeability per- formance defined in engineered soil/landscape systems. For systems that are deeper than 8  inches complete the rototilling process in multiple lifts, or prepare the engineered soil system  per specifications and place to achieve the specified depth. Fertilizers  l Conducting soil tests to determine the exact type and quantity of fertilizer is recommended.  This will prevent the over-application of fertilizer.  l Organic matter is the most appropriate form of fertilizer because it provides nutrients (includ- ing nitrogen, phosphorus, and potassium) in the least water-soluble form.  l In general, use 10-4-6 N-P-K (nitrogen-phosphorus-potassium) fertilizer at a rate of 90  pounds per acre. Always use slow-release fertilizers because they are more efficient and  have fewer environmental impacts. Do not add fertilizer to the hydromulch machine, or agit- ate, more than 20 minutes before use. Too much agitation destroys the slow-release coating.  l There are numerous products available that take the place of chemical fertilizers. These  include several with seaweed extracts that are beneficial to soil microbes and organisms. If  100 percent cottonseed meal is used as the mulch in hydroseed, chemical fertilizer may not be  necessary. Cottonseed meal provides a good source of long-term, slow-release, available  nitrogen. Bonded Fiber Matrix and Mechanically Bonded Fiber Matrix  l On steep slopes use Bonded Fiber Matrix (BFM) or Mechanically Bonded Fiber Matrix  (MBFM) products. Apply BFM/MBFM products at a minimum rate of 3,000 pounds per acre  with approximately 10 percent tackifier. Achieve a minimum of 95 percent soil coverage during  application. Numerous products are available commercially. Most products require 24-36  hours to cure before rainfall and cannot be installed on wet or saturated soils. Generally,  products come in 40-50 pound bags and include all necessary ingredients except for seed and  fertilizer.  l Install products per manufacturer's instructions.  l BFMs and MBFMs provide good alternatives to blankets in most areas requiring vegetation  establishment. Advantages over blankets include:  o BFM and MBFMs do not require surface preparation.  o Helicopters can assist in installing BFM and MBFMs in remote areas.  o On slopes steeper than 2.5H:1V, blanket installers may require ropes and harnesses  for safety.  o Installing BFM and MBFMs can save at least $1,000 per acre compared to blankets. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 288 Maintenance Standards Reseed any seeded areas that fail to establish at least 75 percent cover (100 percent cover for areas  that receive sheet or concentrated flows). If reseeding is ineffective, use an alternate method such  as sodding, mulching, nets, or blankets.  l Reseed and protect by mulch any areas that experience erosion after achieving adequate  cover. Reseed and protect by mulch any eroded area.  l Supply seeded areas with adequate moisture, but do not water to the extent that it causes run- off. Approved as Functionally Equivalent Ecology has approved products as able to meet the requirements of this BMP. The products did not  pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions  may choose not to accept these products, or may require additional testing prior to consideration for  local use. Products that Ecology has approved as functionally equivalent are available for review on  Ecology’s website at:  https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-per- mittee-guidance-resources/Emerging-stormwater-treatment-technologies BMP C121: Mulching Purpose Mulching soils provides immediate temporary protection from erosion. Mulch also enhances plant  establishment by conserving moisture, holding fertilizer, seed, and topsoil in place, and moderating  soil temperatures. There are a variety of mulches that can be used. This section discusses only the  most common types of mulch. Conditions of Use As a temporary cover measure, mulch should be used:  l For less than 30 days on disturbed areas that require cover.  l At all times for seeded areas, especially during the wet season and during the hot summer  months.  l During the wet season on slopes steeper than 3H:1V with more than 10 feet of vertical relief. Mulch may be applied at any time of the year and must be refreshed periodically. For seeded areas, mulch may be made up of 100 percent:   l cottonseed meal;   l fibers made of wood, recycled cellulose, hemp, or kenaf;  2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 289  l compost;   l or blends of these. Tackifier shall be plant-based, such as guar or alpha plantago, or chemical-based such as poly- acrylamide or polymers.  Generally, mulches come in 40-50 pound bags. Seed and fertilizer are added at time of application. Recycled cellulose may contain polychlorinated biphenyl (PCBs). Ecology recommends that  products should be evaluated for PCBs prior to use. Refer to BMP C126:  Polyacrylamide (PAM) for Soil Erosion Protection for conditions of use. PAM  shall not be directly applied to water or allowed to enter a water body. Any mulch or tackifier product used shall be installed per the manufacturer’s instructions. Design and Installation Specifications For mulch materials, application rates, and specifications, see Table II-3.6: Mulch Standards and  Guidelines. Consult with the local supplier or the local conservation district for their recom- mendations. Increase the application rate until the ground is 95% covered (i.e. not visible under the  mulch layer). Note: Thickness may be increased for disturbed areas in or near sensitive areas or  other areas highly susceptible to erosion. Where the option of “Compost” is selected, it should be a coarse compost that meets the size grad- ations listed in Table II-3.5: Size Gradations of Compost as Mulch Material when tested in accord- ance with Test Method 02.02-B found in Test Methods for the Examination of Composting and Compost (Thompson, 2001). Sieve Size Percent Passing 3"100% 1"90% - 100% 3/4"70% - 100% 1/4"40% - 100% Table II-3.5: Size Gradations of Compost as Mulch Material Mulch used within the ordinary high-water mark of surface waters should be selected to minimize  potential flotation of organic matter. Composted organic materials have higher specific gravities  (densities) than straw, wood, or chipped material. Consult the Hydraulic Permit Authority (HPA) for  mulch mixes if applicable. Maintenance Standards The thickness of the mulch cover must be maintained. Any areas that experience erosion shall be remulched and/or protected with a net or blanket. If the  erosion problem is drainage related, then the problem shall be fixed and the eroded area remulched. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 290 Mulch Mater- ial Guideline Description Straw Quality Standards Air-dried; free from undesirable seed and coarse material. Application Rates 2"-3" thick; 5 bales per 1,000 sf or 2-3 tons per acre Remarks Cost-effective protection when applied with adequate thickness. Hand- application generally requires greater thickness than blown straw. The  thickness of straw may be reduced by half when used in conjunction with  seeding. In windy areas straw must be held in place by crimping, using a  tackifier, or covering with netting. Blown straw always has to be held in  place with a tackifier as even light winds will blow it away. Straw, however,  has several deficiencies that should be considered when selecting mulch  materials. It often introduces and/or encourages the propagation of weed  species and it has no significant long-term benefits It should also not be  used within the ordinary high-water elevation of surface waters (due to flot- ation). Hydromulch Quality Standards No growth inhibiting factors. Application Rates Approx. 35-45 lbs per 1,000 sf or 1,500 - 2,000 lbs per acre Remarks Shall be applied with hydromulcher. Shall not be used without seed and  tackifier unless the application rate is at least doubled. Fibers longer than  about 3/4 - 1 inch clog hydromulch equipment. Fibers should be kept to less  than 3/4 inch. Compost Quality Standards No visible water or dust during handling. Must be produced per WAC 173- 350, Solid Waste Handling Standards, but may have up to 35% biosolids. Application Rates 2" thick min.; approx. 100 tons per acre (approx. 750 lbs per cubic yard) Remarks More effective control can be obtained by increasing thickness to 3". Excel- lent mulch for protecting final grades until landscaping because it can be dir- ectly seeded or tilled into soil as an amendment. Compost used for mulch  has a coarser size gradation than compost used for BMP C125: Topsoiling  / Composting or BMP T5.13: Post-Construction Soil Quality and Depth. It  is more stable and practical to use in wet areas and during rainy weather  conditions. Do not use near wetlands or near phosphorous impaired water  bodies. Chipped Site Veget- ation Quality Standards Gradations from fines to 6 inches in length for texture, variation, and inter- locking properties. Include a mix of various sizes so that the average size  is between 2- and 4- inches. Application Rates 2" thick min.; Table II-3.6: Mulch Standards and Guidelines 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 291 Mulch Mater- ial Guideline Description Remarks This is a cost-effective way to dispose of debris from clearing and grub- bing, and it eliminates the problems associated with burning. Generally, it  should not be used on slopes above approx. 10% because of its tendency  to be transported by runoff. It is not recommended within 200 feet of sur- face waters. If permanent seeding or planting is expected shortly after  mulch, the decomposition of the chipped vegetation may tie up nutrients  important to grass establishment.  Note: thick application of this material over existing grass, herbaceous spe- cies, and some groundcovers could smother and kill vegetation. Wood- Based Mulch Quality Standards No visible water or dust during handling. Must be purchased from a supplier  with a Solid Waste Handling Permit or one exempt from solid waste reg- ulations. Application Rates 2" thick min.; approx. 100 tons per acre (approx. 750 lbs. per cubic yard) Remarks This material is often called "wood straw" or "hog fuel". The use of mulch  ultimately improves the organic matter in the soil. Special caution is  advised regarding the source and composition of wood-based mulches. Its  preparation typically does not provide any weed seed control, so evidence  of residual vegetation in its composition or known inclusion of weed plants  or seeds should be monitored and prevented (or minimized). Wood Strand Mulch Quality Standards A blend of loose, long, thin wood pieces derived from native conifer or  deciduous trees with high length-to-width ratio. Application Rates 2" thick min. Remarks Cost-effective protection when applied with adequate thickness. A min- imum of 95-percent of the wood strand shall have lengths between 2 and  10-inches, with a width and thickness between 1/16 and 1/2-inches. The  mulch shall not contain resin, tannin, or other compounds in quantities that  would be detrimental to plant life. Sawdust or wood shavings shall not be  used as mulch. [Specification 9-14.4(4) from the Standard Specifications for Road, Bridge, and Municipal Construction (WSDOT, 2016) Table II-3.6: Mulch Standards and Guidelines (continued) BMP C122: Nets and Blankets Purpose Erosion control nets and blankets are intended to prevent erosion and hold seed and mulch in place  on steep slopes and in channels so that vegetation can become well established. In addition, some  nets and blankets can be used to permanently reinforce turf to protect drainage ways during high  flows.  2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 292 Nets (commonly called matting) are strands of material woven into an open, but high-tensile strength  net (for example, coconut fiber matting). Blankets are strands of material that are not tightly woven,  but instead form a layer of interlocking fibers, typically held together by a biodegradable or pho- todegradable netting (for example, excelsior or straw  blankets). They generally have lower tensile  strength than nets, but cover the ground more completely. Coir (coconut fiber) fabric comes as both  nets and blankets. Conditions of Use Erosion control netting and blankets shall be made of natural plant fibers unaltered by synthetic  materials. Erosion control nets and blankets should be used:  l To aid permanent vegetated stabilization of slopes 2H:1V or greater and with more than 10  feet of vertical relief.  l For drainage ditches and swales (highly recommended). The application of appropriate net- ting or blanket to drainage ditches and swales can protect bare soil from channelized runoff  while vegetation is established. Nets and blankets also can capture a great deal of sediment  due to their open, porous structure. Nets and blankets can be used to permanently stabilize  channels and may provide a cost-effective, environmentally preferable alternative to riprap. Disadvantages of nets and blankets include:  l Surface preparation is required.  l On slopes steeper than 2.5H:1V, net and blanket installers may need to be roped and har- nessed for safety.  l They cost at least $4,000-6,000 per acre installed. Advantages of nets and blankets include:  l Installation without mobilizing special equipment.  l Installation by anyone with minimal training  l Installation in stages or phases as the project progresses.  l Installers can hand place seed and fertilizer as they progress down the slope.  l Installation in any weather.  l There are numerous types of nets and blankets that can be designed with various parameters  in mind. Those parameters include: fiber blend, mesh strength, longevity, biodegradability,  cost, and availability. An alternative to nets and blankets in some limited conditions is BMP C202:  Riprap Channel Lining.  Ensure that BMP C202:  Riprap Channel Lining is appropriate before using it as a substitute for nets  and blankets. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 293 Design and Installation Specifications  l See Figure II-3.3: Channel Installation (Clackamas County et al., 2008) and Figure II-3.4:  Slope Installation for typical orientation and installation of nets and blankets used in channels  and as slope protection. Note: these are typical only; all nets and blankets must be installed  per manufacturer’s installation instructions.  l Installation is critical to the effectiveness of these products. If good ground contact is not  achieved, runoff can concentrate under the product, resulting in significant erosion.  l Installation of nets and blankets on slopes:  1. Complete final grade and track walk up and down the slope.  2. Install hydromulch with seed and fertilizer.  3. Dig a small trench, approximately 12 inches wide by 6 inches deep along the top of the  slope.  4. Install the leading edge of the net/blanket into the small trench and staple approximately  every 18 inches. NOTE: Staples are metal, “U”-shaped, and a minimum of 6 inches  long. Longer staples are used in sandy soils. Biodegradable stakes are also available.  5. Roll the net/blanket slowly down the slope as the installer walks backward. NOTE: The  net/blanket rests against the installer’s legs. Staples are installed as the net/blanket is  unrolled. It is critical that the proper staple pattern is used for the net/blanket being  installed. The net/blanket is not to be allowed to roll down the slope on its own as this  stretches the net/blanket, making it impossible to maintain soil contact. In addition, no  one is allowed to walk on the net/blanket after it is in place.  6. If the net/blanket is not long enough to cover the entire slope length, the trailing edge of  the upper net/blanket should overlap the leading edge of the lower net/blanket and be  stapled. On steeper slopes, this overlap should be installed in a small trench, stapled,  and covered with soil.  l With the variety of products available, it is impossible to cover all the details of appropriate use  and installation. Therefore, it is critical that the designer consult the manufacturer's inform- ation and that a site visit takes place in order to ensure that the product specified is appro- priate. Information is also available in WSDOT's Standard Specifications for Road, Bridge, and Municipal Construction Division 8-01 and Division 9-14 (WSDOT, 2016).  l Use jute matting in conjunction with mulch (BMP C121: Mulching). Excelsior, woven straw  blankets and coir (coconut fiber) blankets may be installed without mulch. There are many  other types of erosion control nets and blankets on the market that may be appropriate in cer- tain circumstances.  l In general, most nets (e.g., jute matting) require mulch in order to prevent erosion because  they have a fairly open structure. Blankets typically do not require mulch because they usually  provide complete protection of the surface.  l Extremely steep, unstable, wet, or rocky slopes are often appropriate candidates for use of  synthetic blankets, as are riverbanks, beaches and other high-energy environments. If  2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 294 synthetic blankets are used, the soil should be hydromulched first.  l 100-percent biodegradable blankets are available for use in sensitive areas. These organic  blankets are usually held together with a paper or fiber mesh and stitching which may last up  to a year.  l Most netting used with blankets is photodegradable, meaning it breaks down under sunlight  (not UV stabilized). However, this process can take months or years even under bright sun.  Once vegetation is established, sunlight does not reach the mesh. It is not uncommon to find  non-degraded netting still in place several years after installation. This can be a problem if  maintenance requires the use of mowers or ditch cleaning equipment. In addition, birds and  small animals can become trapped in the netting. Maintenance Standards  l Maintain good contact with the ground. Erosion must not occur beneath the net or blanket.  l Repair and staple any areas of the net or blanket that are damaged or not in close contact with  the ground.  l Fix and protect eroded areas if erosion occurs due to poorly controlled drainage. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 295 Figure II-3.3: Channel Installation 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 296 Figure II-3.4: Slope Installation 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 297 BMP C123: Plastic Covering Purpose Plastic covering provides immediate, short-term erosion protection to slopes and disturbed areas. Conditions of Use Plastic covering may be used on disturbed areas that require cover measures for less than 30 days,  except as stated below.  l Plastic is particularly useful for protecting cut and fill slopes and stockpiles. However, the rel- atively rapid breakdown of most polyethylene sheeting makes it unsuitable for applications  greater than six months.  l Due to rapid runoff caused by plastic covering, do not use this method upslope of areas that  might be adversely impacted by concentrated runoff. Such areas include steep and/or  unstable slopes.  l Plastic sheeting may result in increased runoff volumes and velocities, requiring additional on- site measures to counteract the increases. Creating a trough with wattles or other material  can convey clean water away from these areas.  l To prevent undercutting, trench and backfill rolled plastic covering products.  l Although the plastic material is inexpensive to purchase, the cost of installation, maintenance,  removal, and disposal add to the total costs of this BMP.  l Whenever plastic is used to protect slopes, install water collection measures at the base of the  slope. These measures include plastic-covered berms, channels, and pipes used to convey  clean rainwater away from bare soil and disturbed areas. Do not mix clean runoff from a  plastic covered slope with dirty runoff from a project.  l Other uses for plastic include:  o Temporary ditch liner.  o Pond liner in temporary sediment pond.  o Liner for bermed temporary fuel storage area if plastic is not reactive to the type of fuel  being stored.  o Emergency slope protection during heavy rains.  o Temporary drainpipe (“elephant trunk”) used to direct water. Design and Installation Specifications  l Plastic slope cover must be installed as follows:  1. Run plastic up and down the slope, not across the slope.  2. Plastic may be installed perpendicular to a slope if the slope length is less than 10 feet. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 298 3.Provide a minimum of 8-inch overlap at the seams. 4.On long or wide slopes, or slopes subject to wind, tape all seams. 5.Place plastic into a small (12-inch wide by 6-inch deep) slot trench at the top of the slope and backfill with soil to keep water from flowing underneath. 6.Place sand filled burlap or geotextile bags every 3 to 6 feet along seams and tie them together with twine to hold them in place. 7.Inspect plastic for rips, tears, and open seams regularly and repair immediately. This prevents high velocity runoff from contacting bare soil, which causes extreme erosion. 8.Sandbags may be lowered into place tied to ropes. However, all sandbags must be staked in place. l Plastic sheeting shall have a minimum thickness of 0.06 millimeters. l If erosion at the toe of a slope is likely, a gravel berm, riprap, or other suitable protection shall be installed at the toe of the slope in order to reduce the velocity of runoff. Maintenance Standards l Torn sheets must be replaced and open seams repaired. l Completely remove and replace the plastic if it begins to deteriorate due to ultraviolet radi- ation. l Completely remove plastic when no longer needed. l Dispose of old tires used to weight down plastic sheeting appropriately. Approved as Functionally Equivalent Ecology has approved products as able to meet the requirements of this BMP. The products did not  pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions  may choose not to accept these products, or may require additional testing prior to consideration for  local use. Products that Ecology has approved as functionally equivalent are available for review on  Ecology’s website at:  https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-per- mittee-guidance-resources/Emerging-stormwater-treatment-technologies 2019 Stormwater Management Manual for Western Washington Volume II - Chapter 3 - Page 299 BMP C140: Dust Control Purpose Dust control prevents wind transport of dust from disturbed soil surfaces onto roadways, drainage  ways, and surface waters. Conditions of Use Use dust control in areas (including roadways) subject to surface and air movement of dust where  on-site or off-site impacts to roadways, drainage ways, or surface waters are likely. Design and Installation Specifications  l Vegetate or mulch areas that will not receive vehicle traffic. In areas where planting, mulching,  or paving is impractical, apply gravel or landscaping rock.  l Limit dust generation by clearing only those areas where immediate activity will take place,  leaving the remaining area(s) in the original condition. Maintain the original ground cover as  long as practical.  l Construct natural or artificial windbreaks or windscreens. These may be designed as enclos- ures for small dust sources.  l Sprinkle the site with water until the surface is wet. Repeat as needed. To prevent carryout of  mud onto the street, refer to BMP C105:  Stabilized Construction Access and BMP C106:  Wheel Wash.  l Irrigation water can be used for dust control. Irrigation systems should be installed as a first  step on sites where dust control is a concern.  l Spray exposed soil areas with a dust palliative, following the manufacturer’s instructions and  cautions regarding handling and application. Used oil is prohibited from use as a dust sup- pressant. Local governments may approve other dust palliatives such as calcium chloride or  PAM.  l PAM (BMP C126:  Polyacrylamide (PAM) for Soil Erosion Protection) added to water at a rate  of 0.5 pounds per 1,000 gallons of water per acre and applied from a water truck is more effect- ive than water alone. This is due to increased infiltration of water into the soil and reduced  evaporation. In addition, small soil particles are bonded together and are not as easily trans- ported by wind. Adding PAM may reduce the quantity of water needed for dust control. Note  that the application rate specified here applies to this BMP, and is not the same application  rate that is specified in BMP C126:  Polyacrylamide (PAM) for Soil Erosion Protection, but the  downstream protections still apply. Refer to BMP C126:  Polyacrylamide (PAM) for Soil Erosion Protection for conditions of use.  PAM shall not be directly applied to water or allowed to enter a water body.  l Contact your local Air Pollution Control Authority for guidance and training on other dust con- trol measures. Compliance with the local Air Pollution Control Authority constitutes  2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 313 compliance with this BMP.  l Use vacuum street sweepers.  l Remove mud and other dirt promptly so it does not dry and then turn into dust.  l Techniques that can be used for unpaved roads and lots include:  o Lower speed limits. High vehicle speed increases the amount of dust stirred up from  unpaved roads and lots.  o Upgrade the road surface strength by improving particle size, shape, and mineral types  that make up the surface and base materials.  o Add surface gravel to reduce the source of dust emission. Limit the amount of fine  particles (those smaller than .075 mm) to 10 to 20 percent.  o Use geotextile fabrics to increase the strength of new  roads or roads undergoing recon- struction.  o Encourage the use of alternate, paved routes, if available.  o Apply chemical dust suppressants using the admix method, blending the product with  the top few inches of surface material. Suppressants may also be applied as surface  treatments.  o Limit dust-causing work on windy days.  o Pave unpaved permanent roads and other trafficked areas. Maintenance Standards Respray area as necessary to keep dust to a minimum. BMP C150: Materials on Hand Purpose Keep quantities of erosion prevention and sediment control materials on the project site at all times  to be used for regular maintenance and emergency situations such as unexpected heavy rains. Hav- ing these materials on-site reduces the time needed to replace existing or implement new  BMPs  when inspections indicate that existing BMPs are not meeting the Construction SWPPP require- ments. In addition, contractors can save money by buying some materials in bulk and storing them at  their office or yard. Conditions of Use  l Construction projects of any size or type can benefit from having materials on hand. A small  commercial development project could have a roll of plastic and some gravel available for  immediate protection of bare soil and temporary berm construction. A large earthwork project,  such as highway construction, might have several tons of straw, several rolls of plastic, flexible  2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 314 pipe, sandbags, geotextile fabric and steel “T” posts.  l Materials should be stockpiled and readily available before any site clearing, grubbing, or  earthwork begins. A large contractor or project proponent could keep a stockpile of materials  that are available for use on several projects.  l If storage space at the project site is at a premium, the contractor could maintain the materials  at their office or yard. The office or yard must be less than an hour from the project site. Design and Installation Specifications Depending on project type, size, complexity, and length, materials and quantities will vary. A good  minimum list of items that will cover numerous situations includes:  l Clear Plastic, 6 mil  l Drainpipe, 6 or 8 inch diameter  l Sandbags, filled  l Straw Bales for mulching  l Quarry Spalls  l Washed Gravel  l Geotextile Fabric  l Catch Basin Inserts  l Steel "T" Posts  l Silt fence material  l Straw Wattles Maintenance Standards  l All materials with the exception of the quarry spalls, steel “T” posts, and gravel should be kept  covered and out of both sun and rain.  l Re-stock materials as needed. BMP C151: Concrete Handling Purpose Concrete work can generate process water and slurry that contain fine particles and high pH, both of  which can violate water quality standards in the receiving water. Concrete spillage or concrete dis- charge to waters of the State is prohibited. Use this BMP to minimize and eliminate concrete, con- crete process water, and concrete slurry from entering waters of the State. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 315 Conditions of Use Any time concrete is used, utilize these management practices. Concrete construction project com- ponents include, but are not limited to:  l Curbs  l Sidewalks  l Roads  l Bridges  l Foundations  l Floors  l Runways Disposal options for concrete, in order of preference are:  1. Off-site disposal  2. Concrete wash-out areas (see BMP C154: Concrete Washout Area)  3. De minimus washout to formed areas awaiting concrete Design and Installation Specifications  l Wash concrete truck drums at an approved off-site location or in designated concrete  washout areas only. Do not wash out  concrete trucks onto the ground (including formed areas  awaiting concrete), or into storm drains, open ditches, streets, or streams. Refer to BMP  C154: Concrete Washout Area for information on concrete washout areas.  o Return unused concrete remaining in the truck and pump to the originating batch plant  for recycling. Do not dump excess concrete on site, except in designated concrete  washout areas as allowed in BMP C154: Concrete Washout Area.  l Wash small concrete handling equipment (e.g. hand tools, screeds, shovels, rakes, floats,  trowels, and wheelbarrows) into designated concrete washout areas or into formed areas  awaiting concrete pour.  l At no time shall concrete be washed off into the footprint of an area where an infiltration fea- ture will be installed.  l Wash equipment difficult to move, such as concrete paving machines, in areas that do not dir- ectly drain to natural or constructed stormwater conveyance or potential infiltration areas.  l Do not allow washwater from areas, such as concrete aggregate driveways, to drain directly  (without detention or treatment) to natural or constructed stormwater conveyances.  l Contain washwater and leftover product in a lined container when no  designated concrete  washout areas (or formed areas, allowed as described above) are available. Dispose of con- tained concrete and concrete washwater (process water) properly. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 316  l Always use forms or solid barriers for concrete pours, such as pilings, within 15-feet of surface  waters.  l Refer to BMP C252:  Treating and Disposing of High pH Water for pH adjustment require- ments.  l Refer to the Construction Stormwater General Permit (CSWGP) for pH monitoring require- ments if the project involves one of the following activities:  o Significant concrete work (as defined in the CSWGP).  o The use of soils amended with (but not limited to) Portland cement-treated base,  cement kiln dust or fly ash.  o Discharging stormwater to segments of water bodies on the 303(d) list (Category 5) for  high pH. Maintenance Standards Check containers for holes in the liner daily during concrete pours and repair the same day. BMP C152: Sawcutting and Surfacing Pollution Prevention Purpose Sawcutting and surfacing operations generate slurry and process water that contains fine particles  and high pH (concrete cutting), both of which can violate the water quality standards in the receiving  water. Concrete spillage or concrete discharge to waters of the State is prohibited. Use this BMP to  minimize and eliminate process water and slurry created through sawcutting or surfacing from enter- ing waters of the State. Conditions of Use Utilize these management practices anytime sawcutting or surfacing operations take place. Saw- cutting and surfacing operations include, but are not limited to:  l Sawing  l Coring  l Grinding  l Roughening  l Hydro-demolition  l Bridge and road surfacing 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 317 Design and Installation Specifications  l Vacuum slurry and cuttings during cutting and surfacing operations.  l Slurry and cuttings shall not remain on permanent concrete or asphalt pavement overnight.  l Slurry and cuttings shall not drain to any natural or constructed drainage conveyance includ- ing stormwater systems. This may require temporarily blocking catch basins.  l Dispose of collected slurry and cuttings in a manner that does not violate ground water or sur- face water quality standards.  l Do not allow process water generated during hydro-demolition, surface roughening or similar  operations to drain to any natural or constructed drainage conveyance including stormwater  systems. Dispose of process water in a manner that does not violate ground water or surface  water quality standards.  l Handle and dispose of cleaning waste material and demolition debris in a manner that does  not cause contamination of water. Dispose of sweeping material from a pick-up sweeper at an  appropriate disposal site. Maintenance Standards Continually monitor operations to determine whether slurry, cuttings, or process water could enter  waters of the state. If inspections show  that a violation of water quality standards could occur, stop  operations and immediately implement preventive measures such as berms, barriers, secondary  containment, and/or vacuum trucks. BMP C153: Material Delivery, Storage, and Containment Purpose Prevent, reduce, or eliminate the discharge of pollutants to the stormwater system or watercourses  from material delivery and storage. Minimize the storage of hazardous materials on-site, store mater- ials in a designated area, and install secondary containment. Conditions of Use Use at construction sites with delivery and storage of the following materials:  l Petroleum products such as fuel, oil and grease  l Soil stabilizers and binders (e.g., Polyacrylamide)  l Fertilizers, pesticides and herbicides  l Detergents  l Asphalt and concrete compounds 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 318  l Hazardous chemicals such as acids, lime, adhesives, paints, solvents, and curing compounds  l Any other material that may be detrimental if released to the environment Design and Installation Specifications  l The temporary storage area should be located away from vehicular traffic, near the con- struction entrance(s), and away from waterways or storm drains.  l Safety Data Sheets (SDS) should be supplied for all materials stored. Chemicals should be  kept in their original labeled containers.  l Hazardous material storage on-site should be minimized.  l Hazardous materials should be handled as infrequently as possible.  l During the wet weather season (Oct 1 – April 30), consider storing materials in a covered  area.  l Materials should be stored in secondary containments, such as an earthen dike, horse trough,  or even a children’s wading pool for non-reactive materials such as detergents, oil, grease,  and paints. Small amounts of material may be secondarily contained in “bus boy” trays or con- crete mixing trays.  l Do not store chemicals, drums, or bagged materials directly on the ground. Place these items  on a pallet and, when possible, within secondary containment.  l If drums must be kept uncovered, store them at a slight angle to reduce ponding of rainwater  on the lids to reduce corrosion. Domed plastic covers are inexpensive and snap to the top of  drums, preventing water from collecting.  l Liquids, petroleum products, and substances listed in 40 CFR Parts 110, 117, or 302 shall be  stored in approved containers and drums and shall not be overfilled. Containers and drums  shall be stored in temporary secondary containment facilities.  l Temporary secondary containment facilities shall provide for a spill containment volume able  to contain 10% of the total enclosed container volume of all containers, or 110% of the capa- city of the largest container within its boundary, whichever is greater.  l Secondary containment facilities shall be impervious to the materials stored therein for a min- imum contact time of 72 hours.  l Sufficient separation should be provided between stored containers to allow for spill cleanup  and emergency response access.  l During the wet weather season (Oct 1 – April 30), each secondary containment facility shall  be covered during non-working days, prior to and during rain events.  l Keep material storage areas clean, organized and equipped with an ample supply of appro- priate spill clean-up material (spill kit).  l The spill kit should include, at a minimum: 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 319  o 1-Water Resistant Nylon Bag  o 3-Oil Absorbent Socks 3”x 4’  o 2-Oil Absorbent Socks 3”x 10’  o 12-Oil Absorbent Pads 17”x19”  o 1-Pair Splash Resistant Goggles  o 3-Pair Nitrile Gloves  o 10-Disposable Bags with Ties  o Instructions Maintenance Standards  l Secondary containment facilities shall be maintained free of accumulated rainwater and spills.  In the event of spills or leaks, accumulated rainwater and spills shall be collected and placed  into drums. These liquids shall be handled as hazardous waste unless testing determines  them to be non-hazardous.  l Re-stock spill kit materials as needed. BMP C154: Concrete Washout Area Purpose Prevent or reduce the discharge of pollutants from concrete waste to stormwater by conducting  washout off-site, or performing on-site washout in a designated area. Conditions of Use Concrete washout areas are implemented on construction projects where:  l Concrete is used as a construction material  l It is not possible to dispose of all concrete wastewater and washout off-site (ready mix plant,  etc.).  l Concrete truck drums are washed on-site. Note that auxiliary concrete truck components (e.g. chutes and hoses) and small concrete  handling equipment (e.g. hand tools, screeds, shovels, rakes, floats, trowels, and wheel- barrows) may be washed into formed areas awaiting concrete pour. At no time shall concrete be washed off into the footprint of an area where an infiltration feature will  be installed. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 320 Design and Installation Specifications Implementation  l Perform washout of concrete truck drums at an approved off-site location or in designated con- crete washout areas only.  l Do not wash out concrete onto non-formed areas, or into storm drains, open ditches, streets,  or streams.  l Wash equipment difficult to move, such as concrete paving machines, in areas that do not dir- ectly drain to natural or constructed stormwater conveyance or potential infiltration areas.  l Do not allow excess concrete to be dumped on-site, except in designated concrete washout  areas as allowed above.  l Concrete washout areas may be prefabricated concrete washout containers, or self-installed  structures (above-grade or below-grade).  l Prefabricated containers are most resistant to damage and protect against spills and leaks.  Companies may offer delivery service and provide regular maintenance and disposal of solid  and liquid waste.  l If self-installed concrete washout areas are used, below-grade structures are preferred over  above-grade structures because they are less prone to spills and leaks.  l Self-installed above-grade structures should only be used if excavation is not practical.  l Concrete washout areas shall be constructed and maintained in sufficient quantity and size to  contain all liquid and concrete waste generated by washout operations. Education  l Discuss the concrete management techniques described in this BMP with the ready-mix con- crete supplier before any deliveries are made.  l Educate employees and subcontractors on the concrete waste management techniques  described in this BMP.  l Arrange for the contractor’s superintendent or Certified Erosion and Sediment Control Lead  (CESCL) to oversee and enforce concrete waste management procedures.  l A sign should be installed adjacent to each concrete washout area to inform concrete equip- ment operators to utilize the proper facilities. Contracts Incorporate requirements for concrete waste management into concrete supplier and subcontractor  agreements. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 321 Location and Placement  l Locate concrete washout areas at least 50 feet from sensitive areas such as storm drains,  open ditches, water bodies, or wetlands.  l Allow convenient access to the concrete washout area for concrete trucks, preferably near the  area where the concrete is being poured.  l If trucks need to leave a paved area to access the concrete washout area, prevent track-out  with a pad of rock or quarry spalls (see BMP C105:  Stabilized Construction Access). These  areas should be far enough away from other construction traffic to reduce the likelihood of acci- dental damage and spills.  l The number of concrete washout areas you install should depend on the expected demand  for storage capacity.  l On large sites with extensive concrete work, concrete washout areas should be placed in mul- tiple locations for ease of use by concrete truck drivers. Concrete Truck Washout Procedures  l Washout of concrete truck drums shall be performed in designated concrete washout areas  only.  l Concrete washout from concrete pumper bins can be washed into concrete pumper trucks  and discharged into designated concrete washout areas or properly disposed of off-site. Concrete Washout Area Installation  l Concrete washout areas should be constructed as shown in the figures below, with a recom- mended minimum length and minimum width of 10 ft, but with sufficient quantity and volume to  contain all liquid and concrete waste generated by washout operations.  l Plastic lining material should be a minimum of 10 mil polyethylene sheeting and should be free  of holes, tears, or other defects that compromise the impermeability of the material.  l Lath and flagging should be commercial type.  l Liner seams shall be installed in accordance with manufacturers’ recommendations.  l Soil base shall be prepared free of rocks or other debris that may cause tears or holes in the  plastic lining material. Maintenance Standards Inspection and Maintenance  l Inspect and verify that concrete washout areas are in place prior to the commencement of con- crete work.  l Once concrete wastes are washed into the designated washout area and allowed to harden,  2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 322 the concrete should be broken up, removed, and disposed of per applicable solid waste reg- ulations. Dispose of hardened concrete on a regular basis.  l During periods of concrete work, inspect the concrete washout areas daily to verify continued  performance.  o Check overall condition and performance.  o Check remaining capacity (% full).  o If using self-installed concrete washout areas, verify plastic liners are intact and side- walls are not damaged.  o If using prefabricated containers, check for leaks.  l Maintain the concrete washout areas to provide adequate holding capacity with a minimum  freeboard of 12 inches.  l Concrete washout areas must be cleaned, or new concrete washout areas must be con- structed and ready for use once the concrete washout area is 75% full.  l If the concrete washout area is nearing capacity, vacuum and dispose of the waste material in  an approved manner.  l Do not discharge liquid or slurry to waterways, storm drains or directly onto ground.  l Do not discharge to the sanitary sewer without local approval.  l Place a secure, non-collapsing, non-water collecting cover over the concrete washout  area prior to predicted wet weather to prevent accumulation and overflow of pre- cipitation.  l Remove and dispose of hardened concrete and return the structure to a functional con- dition. Concrete may be reused on-site or hauled away for disposal or recycling.  l When you remove materials from a self-installed concrete washout area, build a new struc- ture; or, if the previous structure is still intact, inspect for signs of weakening or damage, and  make any necessary repairs. Re-line the structure with new  plastic after each cleaning. Removal of Concrete Washout Areas  l When concrete washout areas are no longer required for the work, the hardened concrete,  slurries and liquids shall be removed and properly disposed of.  l Materials used to construct concrete washout areas shall be removed from the site of the work  and disposed of or recycled.  l Holes, depressions or other ground disturbance caused by the removal of the concrete  washout areas shall be backfilled, repaired, and stabilized to prevent erosion. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 323 Figure II-3.7: Concrete Washout Area with Wood Planks 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 324 Figure II-3.8: Concrete Washout Area with Straw Bales 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 325 Figure II-3.9: Prefabricated Concrete Washout Container w/Ramp 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 326 BMP C160: Certified Erosion and Sediment Control Lead Purpose The project proponent designates at least one person as the responsible representative in charge of  erosion and sediment control (ESC), and water quality protection. The designated person shall be  responsible for ensuring compliance with all local, state, and federal erosion and sediment control  and water quality requirements. Construction sites one acre or larger that discharge to waters of the  State must designate a Certified Erosion and Sediment Control Lead (CESCL) as the responsible  representative. Conditions of Use A CESCL shall be made available on projects one acre or larger that discharge stormwater to sur- face waters of the state. Sites less than one acre may have a person without CESCL certification  conduct inspections. The CESCL shall:  l Have a current certificate proving attendance in an erosion and sediment control training  course that meets the minimum ESC training and certification requirements established by  Ecology. Ecology has provided the minimum requirements for CESCL course training, as well as a list  of ESC training and certification providers at:  https://ecology.wa.gov/Regulations-Permits/Permits-certifications/Certified-erosion-sed- iment-control  OR  l Be a Certified Professional in Erosion and Sediment Control (CPESC). For additional inform- ation go to:  http://www.envirocertintl.org/cpesc/ Specifications  l CESCL certification shall remain valid for three years.  l The CESCL shall have authority to act on behalf of the contractor or project proponent and  shall be available, or on-call, 24 hours per day throughout the period of construction.  l The Construction SWPPP shall include the name, telephone number, fax number, and  address of the designated CESCL. See II-2 Construction Stormwater Pollution Prevention  Plans (Construction SWPPPs).  l A CESCL may provide inspection and compliance services for multiple construction projects  in the same geographic region, but must be on site whenever earthwork activities are  2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 327 occurring that could generate release of turbid water.  l Duties and responsibilities of the CESCL shall include, but are not limited to the following:  o Maintaining a permit file on site at all times which includes the Construction SWPPP  and any associated permits and plans.  o Directing BMP installation, inspection, maintenance, modification, and removal.  o Updating all project drawings and the Construction SWPPP with changes made.  o Completing any sampling requirements including reporting results using electronic Dis- charge Monitoring Reports (WebDMR).  o Facilitate, participate in, and take corrective actions resulting from inspections per- formed by outside agencies or the owner.  o Keeping daily logs, and inspection reports. Inspection reports should include:  n Inspection date/time.  n Weather information; general conditions during inspection and approximate  amount of precipitation since the last inspection.  n Visual monitoring results, including a description of discharged stormwater. The  presence of suspended sediment, turbid water, discoloration, and oil sheen shall  be noted, as applicable.  n Any water quality monitoring performed during inspection.  n General comments and notes, including a brief description of any BMP repairs,  maintenance or installations made as a result of the inspection.  n A summary or list of all BMPs implemented, including observations of all  erosion/sediment control structures or practices. The following shall be noted:  1. Locations of BMPs inspected.  2. Locations of BMPs that need maintenance.  3. Locations of BMPs that failed to operate as designed or intended.  4. Locations of where additional or different BMPs are required. BMP C162: Scheduling Purpose Sequencing a construction project reduces the amount and duration of soil exposed to erosion by  wind, rain, runoff, and vehicle tracking. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 328 Conditions of Use The construction sequence schedule is an orderly listing of all major land-disturbing activities  together with the necessary erosion and sedimentation control measures planned for the project.  This type of schedule guides the contractor on work to be done before other work is started so that  serious erosion and sedimentation problems can be avoided. Following a specified work schedule that coordinates the timing of land-disturbing activities and the  installation of control measures is perhaps the most cost-effective way of controlling erosion during  construction. The removal of ground cover leaves a site vulnerable to erosion. Construction sequen- cing that limits land clearing, provides timely installation of erosion and sedimentation controls, and  restores protective cover quickly can significantly reduce the erosion potential of a site. Design Considerations  l Minimize construction during rainy periods.  l Schedule projects to disturb only small portions of the site at any one time. Complete grading  as soon as possible. Immediately stabilize the disturbed portion before grading the next por- tion. Practice staged seeding in order to revegetate cut and fill slopes as the work progresses. II-3.3 Construction Runoff BMPs BMP C200: Interceptor Dike and Swale Purpose Provide a dike of compacted soil or a swale at the top or base of a disturbed slope or along the peri- meter of a disturbed construction area to convey stormwater. Use the dike and/or swale to intercept  the runoff from unprotected areas and direct it to areas where erosion can be controlled. This can  prevent storm runoff from entering the work area or sediment-laden runoff from leaving the con- struction site. Conditions of Use Use an interceptor dike or swale where runoff from an exposed site or disturbed slope must be con- veyed to an erosion control BMP which can safely convey the stormwater.  l Locate upslope of a construction site to prevent runoff from entering the disturbed area.  l When placed horizontally across a disturbed slope, it reduces the amount and velocity of run- off flowing down the slope.  l Locate downslope to collect runoff from a disturbed area and direct it to a sediment  BMP (e.g.  BMP C240:  Sediment Trap or BMP C241:  Sediment Pond (Temporary)). 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 329 Design and Installation Specifications  l Dike and/or swale and channel must be stabilized with temporary or permanent vegetation or  other channel protection during construction.  l Steep grades require channel protection and check dams.  l Review construction for areas where overtopping may occur.  l Can be used at the top of new  fill before vegetation is established.  l May be used as a permanent diversion channel to carry the runoff.  l Contributing area for an individual dike or swale should be one acre or less.  l Design the dike and/or swale to contain flows calculated by one of the following methods:  o Single Event Hydrograph Method: The peak volumetric flow rate calculated using a 10- minute time step from a Type 1A, 10-year, 24-hour frequency storm for the worst-case  land cover condition. OR  o Continuous Simulation Method: The 10-year peak flow rate, as determined by an  approved continuous runoff model with a 15-minute time step for the worst-case land  cover condition. Worst-case land cover conditions (i.e., producing the most runoff) should be used for analysis  (in most cases, this would be the land cover conditions just prior to final landscaping). Interceptor Dikes Interceptor dikes shall meet the following criteria:  l Top Width: 2 feet minimum.  l Height:  1.5 feet minimum on berm.  l Side Slope: 2H:1V or flatter.  l Grade: Depends on topography, however, dike system minimum is 0.5%, and maximum is  1%.  l Compaction: Minimum of 90 percent ASTM D698 standard proctor.  l Stabilization: Depends on velocity and reach. Inspect regularly to ensure stability.  l Ground Slopes <5%: Seed and mulch applied within 5 days of dike construction (see BMP  C121: Mulching).  l Ground Slopes 5 - 40%: Dependent on runoff velocities and dike materials. Stabilization  should be done immediately using either sod or riprap, or other measures to avoid erosion.  l The upslope side of the dike shall provide positive drainage to the dike outlet. No erosion shall  2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 330 occur at the outlet. Provide energy dissipation measures as necessary. Sediment-laden runoff  must be released through a sediment trapping facility.  l Minimize construction traffic over temporary dikes. Use temporary cross culverts for channel  crossing.  l See Table II-3.8: Horizontal Spacing of Interceptor Dikes Along Ground Slope for recom- mended horizontal spacing between dikes. Average Slope Slope Percent Flowpath Length 20H:1V or less 3-5%300  feet (10 to 20)H:1V 5-10%200  feet (4 to 10)H:1V 10-25%100  feet (2 to 4)H:1V 25-50%50  feet Table II-3.8: Horizontal Spacing of Interceptor Dikes Along Ground Slope Interceptor Swales Interceptor swales shall meet the following criteria:  l Bottom Width: 2 feet minimum; the cross-section bottom shall be level.  l Depth: 1-foot minimum.  l Side Slope: 2H:1V or flatter.  l Grade: Maximum 5 percent, with positive drainage to a suitable outlet (such as BMP C241:   Sediment Pond (Temporary)).  l Stabilization: Seed as per BMP C120: Temporary and Permanent Seeding, or BMP C202:   Riprap Channel Lining, 12 inches thick riprap pressed into the bank and extending at least 8  inches vertical from the bottom. Maintenance Standards  l Inspect diversion dikes and interceptor swales once a week and after every rainfall. Imme- diately remove sediment from the flow area.  l Damage caused by construction traffic or other activity must be repaired before the end of  each working day.  l Check outlets and make timely repairs as needed to avoid gully formation. When the area  below the temporary diversion dike is permanently stabilized, remove the dike and fill and sta- bilize the channel to blend with the natural surface. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 331 BMP C202: Riprap Channel Lining Purpose To protect channels by providing a channel liner using riprap. Conditions of Use Use this BMP when natural soils or vegetated stabilized soils in a channel are not adequate to pre- vent channel erosion. Use this BMP when a permanent ditch or pipe system is to be installed and a temporary measure is  needed. An alternative to riprap channel lining is BMP C122:  Nets and Blankets. The Federal Highway Administration recommends not using geotextile liners whenever the slope  exceeds 10 percent or the shear stress exceeds 8 lbs/ft2. Design and Installation Specifications  l Since riprap is typically used where erosion potential is high, construction must be sequenced  so that the riprap is put in place with the minimum possible delay.  l Disturb areas awaiting riprap only when final preparation and placement of the riprap can fol- low immediately behind the initial disturbance. Where riprap is used for outlet protection, the  riprap should be placed before or in conjunction with the construction of the pipe or channel so  that it is in place when the pipe or channel begins to operate.  l The designer, after determining the riprap size that will be stable under the flow  conditions,  shall consider that size to be a minimum size and then, based on riprap gradations actually  available in the area, select the size or sizes that equal or exceed the minimum size. The pos- sibility of drainage structure damage by others shall be considered in selecting a riprap size,  especially if there is nearby water or a gully in which to toss the stones.  l Stone for riprap shall consist of field stone or quarry stone of approximately rectangular  shape. The stone shall be hard and angular and of such quality that it will not disintegrate on  exposure to water or weathering and it shall be suitable in all respects for the purpose inten- ded. See Section 9-13 of WSDOT's Standard Specifications for Road, Bridge, and Municipal Construction (WSDOT, 2016).  l A lining of engineering filter fabric (geotextile) shall be placed between the riprap and the  underlying soil surface to prevent soil movement into or through the riprap. The geotextile  should be keyed in at the top of the bank.  l Filter fabric shall not be used on slopes greater than 1.5H:1V as slippage may occur. It should  be used in conjunction with a layer of coarse aggregate (granular filter blanket) when the  riprap to be placed is 12 inches and larger. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 337 Maintenance Standards Replace riprap as needed. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 338 BMP C207: Check Dams Purpose Construction of check dams across a swale or ditch reduces the velocity of concentrated flow and dis- sipates energy at the check dam. Conditions of Use Use check dams where temporary or permanent channels are not yet vegetated, channel lining is  infeasible, and/or velocity checks are required.  l Check dams may not be placed in streams unless approved by the State Department of Fish  and Wildlife.   l Check dams may not be placed in wetlands without approval from a permitting agency.  l Do not place check dams below the expected backwater from any salmonid bearing water  between October 1 and May 31 to ensure that there is no loss of high flow refuge habitat for  overwintering juvenile salmonids and emergent salmonid fry. Design and Installation Specifications  l Construct rock check dams from appropriately sized rock. The rock used must be large  enough to stay in place given the expected design flow  through the channel. The rock must be  placed by hand or by mechanical means (do not dump the rock to form the dam) to achieve  complete coverage of the ditch or swale and to ensure that the center of the dam is lower than  the edges.  l Check dams may also be constructed of either rock or pea-gravel filled bags. Numerous new  products are also available for this purpose. They tend to be re-usable, quick and easy to  install, effective, and cost efficient.  l Place check dams perpendicular to the flow of water.  l The check dam should form a triangle when viewed from the side. This prevents undercutting  as water flows over the face of the check dam rather than falling directly onto the ditch bottom.  l Before installing check dams, impound and bypass upstream water flow away from the work  area. Options for bypassing include pumps, siphons, or temporary channels.  l Check dams combined with sumps work more effectively at slowing flow  and retaining sed- iment than a check dam alone. A deep sump should be provided immediately upstream of the  check dam.  l In some cases, if carefully located and designed, check dams can remain as permanent install- ations with very minor regrading. They may be left as either spillways, in which case accu- mulated sediment would be graded and seeded, or as check dams to prevent further  sediment from leaving the site.  l The maximum spacing between check dams shall be such that the downstream toe of the  2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 351 upstream dam is at the same elevation as the top of the downstream dam.  l Keep the maximum height at 2 feet at the center of the check dam.  l Keep the center of the check dam at least 12 inches lower than the outer edges at natural  ground elevation.  l Keep the side slopes of the check dam at 2H:1V or flatter.  l Key the stone into the ditch banks and extend it beyond the abutments a minimum of 18  inches to avoid washouts from overflow around the dam.  l Use filter fabric foundation under a rock or sand bag check dam. If a blanket ditch liner is used,  filter fabric is not necessary. A piece of organic or synthetic blanket cut to fit will also work for  this purpose.  l In the case of grass-lined ditches and swales, all check dams and accumulated sediment shall  be removed when the grass has matured sufficiently to protect the ditch or swale - unless the  slope of the swale is greater than 4 percent. The area beneath the check dams shall be  seeded and mulched immediately after dam removal.  l Ensure that channel appurtenances, such as culvert entrances below check dams, are not  subject to damage or blockage from displaced stones.   l See Figure II-3.16: Rock Check Dam. Maintenance Standards Check dams shall be monitored for performance and sediment accumulation during and after each  rainfall that produces runoff. Sediment shall be removed when it reaches one half the sump depth.  l Anticipate submergence and deposition above the check dam and erosion from high flows  around the edges of the dam.  l If significant erosion occurs between dams, install a protective riprap liner in that portion of the  channel. See BMP C202:  Riprap Channel Lining. Approved as Functionally Equivalent Ecology has approved products as able to meet the requirements of this BMP. The products did not  pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions  may choose not to accept these products, or may require additional testing prior to consideration for  local use. Products that Ecology has approved as functionally equivalent are available for review on  Ecology’s website at:  https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-per- mittee-guidance-resources/Emerging-stormwater-treatment-technologies 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 352 Figure II-3.16: Rock Check Dam 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 353 BMP C209: Outlet Protection Purpose Outlet protection prevents scour at conveyance outlets and minimizes the potential for downstream  erosion by reducing the velocity of concentrated stormwater flows. Conditions of Use Use outlet protection at the outlets of all ponds, pipes, ditches, or other conveyances  that discharge  to a natural or manmade drainage feature such as a stream, wetland, lake, or ditch. Design and Installation Specifications l The receiving channel at the outlet of a pipe shall be protected from erosion by lining a min- imum of 6 feet downstream and extending up the channel sides a minimum of 1–foot above the maximum tailwater elevation, or 1-foot above the crown, whichever is higher. For pipes lar- ger than 18 inches in diameter, the outlet protection lining of the channel shall be four times the diameter of the outlet pipe. l Standard wingwalls, tapered outlets, and paved channels should also be considered when appropriate for permanent culvert outlet protection (WSDOT, 2015). l BMP C122:  Nets and Blankets or BMP C202:  Riprap Channel Lining provide suitable options for lining materials. l With low flows, BMP C201: Grass-Lined Channels can be an effective alternative for lining material. l The following guidelines shall be used for outlet protection with riprap: o If the discharge velocity at the outlet is less than 5 fps, use 2-inch to 8-inch riprap. Min- imum thickness is 1-foot. o For 5 to 10 fps discharge velocity at the outlet, use 24-inch to 48-inch riprap. Minimum 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 355 thickness is 2 feet.  o For outlets at the base of steep slope pipes (pipe slope greater than 10 percent), use an  engineered energy dissipator.  o Filter fabric or erosion control blankets should always be used under riprap to prevent  scour and channel erosion. See BMP C122:  Nets and Blankets.  l Bank stabilization, bioengineering, and habitat features may be required for disturbed areas.  This work may require a Hydraulic Project Approval (HPA) from the Washington State Depart- ment of Fish and Wildlife. See I-2.11 Hydraulic Project Approvals. Maintenance Standards  l Inspect and repair as needed.  l Add rock as needed to maintain the intended function.  l Clean energy dissipator if sediment builds up. BMP C220: Inlet Protection Purpose Inlet protection prevents coarse sediment from entering drainage systems prior to permanent sta- bilization of the disturbed area. Conditions of Use Use inlet protection at inlets that are operational before permanent stabilization of the disturbed  areas that contribute runoff to the inlet. Provide protection for all storm drain inlets downslope and  within 500 feet of a disturbed or construction area, unless  those inlets are preceded by a sediment  trapping BMP. Also consider inlet protection for lawn and yard drains on new home construction. These small and  numerous drains coupled with lack of gutters can add significant amounts of sediment into the roof  drain system. If possible, delay installing lawn and yard drains until just before landscaping, or cap  these drains to prevent sediment from entering the system until completion of landscaping. Provide  18-inches of sod around each finished lawn and yard drain. Table II-3.10: Storm Drain Inlet Protection lists several options for inlet protection. All of the methods  for inlet protection tend to plug and require a high frequency of maintenance. Limit contributing drain- age areas for an individual inlet to one acre or less. If possible, provide emergency overflows with  additional end-of-pipe treatment where stormwater ponding would cause a hazard. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 356 Type of Inlet Pro- tection Emergency Overflow Applicable for Paved/ Earthen Sur- faces Conditions of Use Drop Inlet Protection Excavated  drop  inlet protection Yes, temporary  flooding may   occur Earthen Applicable for heavy flows. Easy   to maintain. Large area requirement:   30'x30'/acre Block  and gravel  drop inlet pro- tection Yes Paved or Earthen Applicable for heavy  concentrated flows.  Will not pond. Gravel and wire  drop inlet pro- tection No Paved or Earthen Applicable for  heavy concentrated flows.  Will pond. Can withstand traffic. Catch  basin filters Yes Paved or Earthen Frequent maintenance  required. Curb Inlet Protection Curb  inlet pro- tection with  wooden weir Small capacity  overflow Paved Used for sturdy, more compact  install- ation. Block and gravel  curb inlet pro- tection Yes Paved Sturdy, but  limited filtration. Culvert Inlet Protection Culvert  inlet sed- iment trap N/A N/A 18 month expected life. Table II-3.10: Storm Drain Inlet Protection Design and Installation Specifications Excavated Drop Inlet Protection Excavated drop inlet protection consists of an excavated impoundment around the storm drain inlet.  Sediment settles out of the stormwater prior to entering the storm drain. Design and installation spe- cifications for excavated drop inlet protection include:  l Provide a depth of 1-2 ft as measured from the crest of the inlet structure.  l Slope sides of excavation should be no steeper than 2H:1V.  l Minimum volume of excavation is 35 cubic yards.  l Shape the excavation to fit the site, with the longest dimension oriented toward the longest  inflow area.  l Install provisions for draining to prevent standing water.  l Clear the area of all debris. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 357  l Grade the approach to the inlet uniformly.  l Drill weep holes into the side of the inlet.  l Protect weep holes with screen wire and washed aggregate.  l Seal weep holes when removing structure and stabilizing area.  l Build a temporary dike, if necessary, to the down slope side of the structure to prevent bypass  flow. Block and Gravel Filter A block and gravel filter is a barrier formed around the inlet with standard concrete blocks and gravel.  See Figure II-3.17: Block and Gravel Filter. Design and installation specifications for block gravel fil- ters include:  l Provide a height of 1 to 2 feet above the inlet.  l Recess the first row of blocks 2-inches into the ground for stability.  l Support subsequent courses by placing a pressure treated wood 2x4 through the block open- ing.  l Do not use mortar.  l Lay some blocks in the bottom row on their side to allow  for dewatering the pool.  l Place hardware cloth or comparable wire mesh with ½-inch openings over all block openings.  l Place gravel to just below the top of blocks on slopes of 2H:1V or flatter.  l An alternative design is a gravel berm surrounding the inlet, as follows:  o Provide a slope of 3H:1V on the upstream side of the berm.  o Provide a slope of 2H:1V on the downstream side of the berm.  o Provide a 1-foot wide level stone area between the gravel berm and the inlet.  o Use stones 3 inches in diameter or larger on the upstream slope of the berm.  o Use gravel ½- to ¾-inch at a minimum thickness of 1-foot on the downstream slope of  the berm. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 358 Figure II-3.17: Block and Gravel Filter   2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 359 Gravel and Wire Mesh Filter Gravel and wire mesh filters are gravel barriers placed over the top of the inlet. This method does not  provide an overflow. Design and installation specifications for gravel and wire mesh filters include:  l Use a hardware cloth or comparable wire mesh with ½-inch openings.  o Place wire mesh over the drop inlet so that the wire extends a minimum of 1-foot bey- ond each side of the inlet structure.  o Overlap the strips if more than one strip of mesh is necessary.  l Place coarse aggregate over the wire mesh.  o Provide at least a 12-inch depth of aggregate over the entire inlet opening and extend at  least 18-inches on all sides. Catch Basin Filters Catch  basin filters are designed by manufacturers for construction sites. The limited sediment stor- age capacity increases the amount of inspection and maintenance required, which may be daily for  heavy sediment loads. To reduce maintenance requirements, combine a catch  basin filter with  another type of inlet protection. This type of inlet protection provides flow  bypass without overflow  and therefore may be a better method for inlets located along active rights-of-way. Design and install- ation specifications for catch basin filters include:  l Provides 5 cubic feet of storage.  l Requires dewatering provisions.  l Provides a high-flow bypass that will not clog under normal use at a construction site.  l Insert the catch  basin filter in the catch  basin just below the grating. Curb Inlet Protection with Wooden Weir Curb inlet protection with wooden weir is an option that consists of a barrier formed around a curb  inlet with a wooden frame and gravel. Design and installation specifications for curb inlet protection  with wooden weirs include:  l Use wire mesh with ½-inch openings.  l Use extra strength filter cloth.  l Construct a frame.  l Attach the wire and filter fabric to the frame.  l Pile coarse washed aggregate against the wire and fabric.  l Place weight on the frame anchors. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 360 Block and Gravel Curb Inlet Protection Block and gravel curb inlet protection is a barrier formed around a curb inlet with concrete blocks and  gravel. See Figure II-3.18: Block and Gravel Curb Inlet Protection. Design and installation spe- cifications for block and gravel curb inlet protection include:  l Use wire mesh with ½-inch openings.  l Place two concrete blocks on their sides abutting the curb at either side of the inlet opening.  These are spacer blocks.  l Place a 2x4 stud through the outer holes of each spacer block to align the front blocks.  l Place blocks on their sides across the front of the inlet and abutting the spacer blocks.  l Place wire mesh over the outside vertical face.  l Pile coarse aggregate against the wire to the top of the barrier. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 361 Figure II-3.18: Block and Gravel Curb Inlet Protection   2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 362 Curb and Gutter Sediment Barrier Curb and gutter sediment barrier is a sandbag or rock berm (riprap and aggregate) 3 feet high and 3  feet wide in a horseshoe shape. See Figure II-3.19: Curb and Gutter Barrier. Design and installation  specifications for curb and gutter sediment barrier include:  l Construct a horseshoe shaped berm, faced with coarse aggregate if using riprap, 3 feet high  and 3 feet wide, at least 2 feet from the inlet.  l Construct a horseshoe shaped sedimentation trap on the upstream side of the berm. Size the  trap to sediment trap standards for protecting a culvert inlet. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 363 Figure II-3.19: Curb and Gutter Barrier 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 364 Maintenance Standards l Inspect all forms of inlet protection frequently, especially after storm events. Clean and replace clogged catch basin filters. For rock and gravel filters, pull away the rocks from the inlet and clean or replace. An alternative approach would be to use the clogged rock as fill and put fresh rock around the inlet. l Do not wash sediment into storm drains while cleaning. Spread all excavated material evenly over the surrounding land area or stockpile and stabilize as appropriate. Approved as Functionally Equivalent Ecology has approved products as able to meet the requirements of this BMP. The products did not  pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions  may choose not to accept these products, or may require additional testing prior to consideration for  local use. Products that Ecology has approved as functionally equivalent are available for review on  Ecology’s website at:  https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-per- mittee-guidance-resources/Emerging-stormwater-treatment-technologies 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 365 BMP C233: Silt Fence Purpose Silt fence reduces the transport of coarse sediment from a construction site by providing a temporary  physical barrier to sediment and reducing the runoff velocities of overland flow. Conditions of Use Silt fence may be used downslope of all disturbed areas.  l Silt fence shall prevent sediment carried by runoff from going beneath, through, or over the  top of the silt fence, but shall allow the water to pass through the fence.  l Silt fence is not intended to treat concentrated flows, nor is it intended to treat substantial  amounts of overland flow. Convey any concentrated flows through the drainage system to a  sediment trapping BMP.  l Do not construct silt fences in streams or use in V-shaped ditches. Silt fences do not provide  an adequate method of silt control for anything deeper than sheet or overland flow. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 370 Figure II-3.22: Silt Fence 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 371 Design and Installation Specifications  l Use in combination with other construction stormwater BMPs.  l Maximum slope steepness (perpendicular to the silt fence line) 1H:1V.  l Maximum sheet or overland flow path length to the silt fence of 100 feet.  l Do not allow flows greater than 0.5 cfs.  l Use geotextile fabric that meets the following standards. All geotextile properties listed below  are minimum average roll values (i.e., the test result for any sampled roll in a lot shall meet or  exceed the values shown in Table II-3.11: Geotextile Fabric Standards for Silt Fence): Geotextile Property Minimum Average Roll Value Polymeric  Mesh AOS  (ASTM D4751) 0.60 mm maximum for slit film  woven (#30 sieve).  0.30 mm  maximum for all other geotextile types (#50 sieve).  0.15 mm minimum for all fabric  types (#100 sieve). Water  Permittivity  (ASTM D4491) 0.02 sec-1 minimum Grab  Tensile Strength  (ASTM D4632) 180 lbs. Minimum for extra  strength fabric.  100 lbs  minimum for standard strength fabric. Grab Tensile Strength  (ASTM D4632) 30% maximum Ultraviolet  Resistance  (ASTM D4355) 70%  minimum Table II-3.11: Geotextile Fabric Standards for Silt Fence  l Support standard strength geotextiles with wire mesh, chicken wire, 2-inch x 2-inch wire,  safety fence, or jute mesh to increase the strength of the geotextile. Silt fence materials are  available that have synthetic mesh backing attached.  l Silt fence material shall contain ultraviolet ray inhibitors and stabilizers to provide a minimum  of six months of expected usable construction life at a temperature range of 0°F to 120°F.  l One-hundred percent biodegradable silt fence is available that is strong, long lasting, and can  be left in place after the project is completed, if permitted by the local jurisdiction.  l Refer to Figure II-3.22: Silt Fence for standard silt fence details. Include the following Stand- ard Notes for silt fence on construction plans and specifications:  1. The Contractor shall install and maintain temporary silt fences at the locations shown in  the Plans.  2. Construct silt fences in areas of clearing, grading, or drainage prior to starting those  activities. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 372  3. The silt fence shall have a 2-feet min. and a 2½-feet max. height above the original  ground surface.  4. The geotextile fabric shall be sewn together at the point of manufacture to form fabric  lengths as required. Locate all sewn seams at support posts. Alternatively, two sections  of silt fence can be overlapped, provided  that the overlap is long enough and that the  adjacent silt fence sections are close enough together to prevent silt laden water from  escaping through the fence at the overlap.  5. Attach the geotextile fabric on the up-slope side of the posts and secure with staples,  wire, or in accordance with the manufacturer's recommendations. Attach the geotextile  fabric to the posts in a manner that reduces the potential for tearing.  6. Support the geotextile fabric with wire or plastic mesh, dependent on the properties of  the geotextile selected for use. If wire or plastic mesh is used, fasten the mesh securely  to the up-slope side of the posts with the geotextile fabric up-slope of the mesh.  7. Mesh support, if used, shall consist of steel wire with a maximum mesh spacing of 2- inches, or a prefabricated polymeric mesh. The strength of the wire or polymeric mesh  shall be equivalent to or greater than 180 lbs. grab tensile strength. The polymeric mesh  must be as resistant to the same level of ultraviolet radiation as the geotextile fabric it  supports.  8. Bury the bottom of the geotextile fabric 4-inches min. below the ground surface. Backfill  and tamp soil in place over the buried portion of the geotextile fabric, so that no flow can  pass beneath the silt fence and scouring cannot occur. When wire or polymeric back-up  support mesh is used, the wire or polymeric mesh shall extend into the ground 3-inches  min.  9. Drive or place the silt fence posts into the ground 18-inches min. A 12–inch min. depth  is allowed if topsoil or other soft subgrade soil is not present and 18-inches cannot be  reached. Increase fence post min. depths by 6 inches if the fence is located on slopes of  3H:1V or steeper and the slope is perpendicular to the fence. If required post depths  cannot be obtained, the posts shall be adequately secured by bracing or guying to pre- vent overturning of the fence due to sediment loading.  10. Use wood, steel or equivalent posts. The spacing of the support posts shall be a max- imum of 6-feet. Posts shall consist of either:  l Wood with minimum dimensions of 2 inches by 2 inches by 3 feet. Wood shall be  free of defects such as knots, splits, or gouges.  l No. 6 steel rebar or larger.  l ASTM A 120 steel pipe with a minimum diameter of 1-inch.  l U, T, L, or C shape steel posts with a minimum weight of 1.35 lbs./ft.  l Other steel posts having equivalent strength and bending resistance to the post  sizes listed above.  11. Locate silt fences on contour as much as possible, except at the ends of the fence,  2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 373 where the fence shall be turned uphill such that the silt fence captures the runoff water  and prevents water from flowing around the end of the fence.  12. If the fence must cross contours, with the exception of the ends of the fence, place  check dams perpendicular to the back of the fence to minimize concentrated flow and  erosion. The slope of the fence line where contours must be crossed shall not be  steeper than 3H:1V.  l Check dams shall be approximately 1-foot deep at the back of the fence. Check  dams shall be continued perpendicular to the fence at the same elevation until  the top of the check dam intercepts the ground surface behind the fence.  l Check dams shall consist of crushed surfacing base course, gravel backfill for  walls, or shoulder ballast. Check dams shall be located every 10 feet along the  fence where the fence must cross contours.  l Refer to Figure II-3.23: Silt Fence Installation by Slicing Method for slicing method details. The  following are specifications for silt fence installation using the slicing method:  1. The base of both end posts must be at least 2- to 4-inches above the top of the geo- textile fabric on the middle posts for ditch checks to drain properly. Use a hand level or  string level, if necessary, to mark base points before installation.  2. Install posts 3- to 4-feet apart in critical retention areas and 6- to 7-feet apart in standard  applications.  3. Install posts 24-inches deep on the downstream side of the silt fence, and as close as  possible to the geotextile fabric, enabling posts to support the geotextile fabric from  upstream water pressure.  4. Install posts with the nipples facing away from the geotextile fabric.  5. Attach the geotextile fabric to each post with three ties, all spaced within the top 8- inches of the fabric. Attach each tie diagonally 45 degrees through the fabric, with each  puncture at least 1-inch vertically apart. Each tie should be positioned to hang on a post  nipple when tightening to prevent sagging.  6. Wrap approximately 6-inches of the geotextile fabric around the end posts and secure  with 3 ties.  7. No more than 24-inches of a 36-inch geotextile fabric is allowed above ground level.  8. Compact the soil immediately next to the geotextile fabric with the front wheel of the  tractor, skid steer, or roller exerting at least 60 pounds per square inch. Compact the  upstream side first and then each side twice for a total of four trips. Check and correct  the silt fence installation for any deviation before compaction. Use a flat-bladed shovel  to tuck the fabric deeper into the ground if necessary. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 374 Figure II-3.23: Silt Fence Installation by Slicing Method 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 375 Maintenance Standards l Repair any damage immediately. l Intercept and convey all evident concentrated flows uphill of the silt fence to a sediment trap- ping BMP. l Check the uphill side of the silt fence for signs of the fence clogging and acting as a barrier to flow and then causing channelization of flows parallel to the fence. If this occurs, replace the fence and remove the trapped sediment. l Remove sediment deposits when the deposit reaches approximately one-third the height of the silt fence, or install a second silt fence. l Replace geotextile fabric that has deteriorated due to ultraviolet breakdown. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 376 BMP C240: Sediment Trap Purpose A sediment trap is a small temporary ponding area with a gravel outlet used to collect and store sed- iment from sites during construction. Sediment traps, along with other perimeter controls, shall be  installed before any land disturbance takes place in the drainage area. Conditions of Use l Sediment traps are intended for use on sites where the tributary drainage area is less than 3 acres, with no unusual drainage features, and a projected build-out time of six months or less. The sediment trap is a temporary measure (with a design life of approximately 6 months) and shall be maintained until the tributary area is permanently protected against erosion by veget- ation and/or structures. l Sediment traps are only effective in removing sediment down to about the medium silt size fraction. Runoff with sediment of finer grades (fine silt and clay) will pass through untreated, emphasizing the need to control erosion to the maximum extent first. l Projects that are constructing permanent Flow Control BMPs, or Runoff Treatment BMPs that use ponding for treatment, may use the rough-graded or final-graded permanent BMP footprint for the temporary sediment trap. When permanent BMP footprints are used as tem- porary sediment traps, the surface area requirement of the sediment trap must be met. If the surface area requirement of the sediment trap is larger than the surface area of the per- manent BMP, then the sediment trap shall be enlarged beyond the permanent BMP footprint to comply with the surface area requirement. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 383  l A floating pond skimmer may be used for the sediment trap outlet if approved by the Local Per- mitting Authority.  l Sediment traps may not be feasible on utility projects due to the limited work space or the  short-term nature of the work. Portable tanks may be used in place of sediment traps for utility  projects. Design and Installation Specifications  l See Figure II-3.26: Cross Section of Sediment Trap and Figure II-3.27: Sediment Trap Outlet  for details.  l To determine the sediment trap geometry, first calculate the design surface area (SA) of the  trap, measured at the invert of the weir. Use the following equation: SA = FS(Q2/Vs)   where Q2 =   o Option 1 - Single Event Hydrograph Method: Q2 = Peak volumetric flow rate calculated using a 10-minute time step from a Type 1A,  2-year, 24-hour frequency storm for the developed condition. The 10-year peak volu- metric flow rate shall be used if the project size, expected timing and duration of con- struction, or downstream conditions warrant a higher level of protection.   o Option 2 - For construction sites that are less than 1 acre, the Rational Method may be  used to determine Q2. Vs = The settling velocity of the soil particle of interest. The 0.02 mm (medium silt) particle with  an assumed density of 2.65 g/cm3 has been selected as the particle of interest and has a set- tling velocity (Vs) of 0.00096 ft/sec. FS = A safety factor of 2 to account for non-ideal settling. Therefore, the equation for computing sediment trap surface area becomes: SA  = 2 x Q2/0.00096  or 2080 square feet per cfs of inflow  l Sediment trap depth shall be 3.5 feet minimum from the bottom of the trap to the top of the  overflow weir.  l To aid in determining sediment depth, all sediment traps shall have a staff gauge with a prom- inent mark 1-foot above the bottom of the trap. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 384  l Design the discharge from the sediment trap by using the guidance for discharge from tem- porary sediment ponds in BMP C241:  Sediment Pond (Temporary). Maintenance Standards  l Sediment shall be removed from the trap when it reaches 1-foot in depth.  l Any damage to the trap embankments or slopes shall be repaired. 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 385 Figure II-3.26: Cross Section of Sediment Trap 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 386 Figure II-3.27: Sediment Trap Outlet 2019 Stormwater Management Manual for Western Washington Volume II -Chapter 3 -Page 387 Construction Stormwater Pollution Prevention Plan Crystal Springs Preliminary Plat 2210633.10 Exhibit 5 Geotechnical Report Earth Solutions NW, LLC, October 6, 2021 EarthSolutionsNWLLC EarthSolutions NW LLC 15365 N.E.90th Street,Suite 100 Redmond,WA 98052 (425)449-4704 Fax (425)449-4711 www.earthsolutionsnw.com Geotechnical Engineering Construction Observation/Testing Environmental Services GEOTECHNICAL ENGINEERING STUDY CRYSTAL SPRINGS 714 CRYSTAL SPRINGS STREET NORTHWEST YELM,WASHINGTON ES-8113 PREPARED FOR COPPER RIDGE, LLC October 6, 2021 _________________________ Scott S. Riegel, L.G., L.E.G. Senior Project Manager ________________________ Kyle R. Campbell, P.E. Principal Engineer GEOTECHNICAL ENGINEERING STUDY CRYSTAL SPRINGS 714 CRYSTAL SPRINGS STREET NORTHWEST YELM, WASHINGTON ES-8113 Earth Solutions NW, LLC 15365 Northeast 90th Street, Suite 100 Redmond, Washington 98052 Phone: 425-449-4704 | Fax: 425-449-4711 www.earthsolutionsnw.com 10/06/2021 Geotechnical-Engineering Report Important Information about This Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes. While you cannot eliminate all such risks, you can manage them. The following information is provided to help. The Geoprofessional Business Association (GBA) has prepared this advisory to help you – assumedly a client representative – interpret and apply this geotechnical-engineering report as effectively as possible. In that way, you can benefit from a lowered exposure to problems associated with subsurface conditions at project sites and development of them that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed herein, contact your GBA-member geotechnical engineer. Active engagement in GBA exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project. Understand the Geotechnical-Engineering Services Provided for this Report Geotechnical-engineering services typically include the planning, collection, interpretation, and analysis of exploratory data from widely spaced borings and/or test pits. Field data are combined with results from laboratory tests of soil and rock samples obtained from field exploration (if applicable), observations made during site reconnaissance, and historical information to form one or more models of the expected subsurface conditions beneath the site. Local geology and alterations of the site surface and subsurface by previous and proposed construction are also important considerations. Geotechnical engineers apply their engineering training, experience, and judgment to adapt the requirements of the prospective project to the subsurface model(s). Estimates are made of the subsurface conditions that will likely be exposed during construction as well as the expected performance of foundations and other structures being planned and/or affected by construction activities. The culmination of these geotechnical-engineering services is typically a geotechnical-engineering report providing the data obtained, a discussion of the subsurface model(s), the engineering and geologic engineering assessments and analyses made, and the recommendations developed to satisfy the given requirements of the project. These reports may be titled investigations, explorations, studies, assessments, or evaluations. Regardless of the title used, the geotechnical-engineering report is an engineering interpretation of the subsurface conditions within the context of the project and does not represent a close examination, systematic inquiry, or thorough investigation of all site and subsurface conditions. Geotechnical-Engineering Services are Performed for Specific Purposes, Persons, and Projects, and At Specific Times Geotechnical engineers structure their services to meet the specific needs, goals, and risk management preferences of their clients. A geotechnical-engineering study conducted for a given civil engineer will not likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared solely for the client. Likewise, geotechnical-engineering services are performed for a specific project and purpose. For example, it is unlikely that a geotechnical- engineering study for a refrigerated warehouse will be the same as one prepared for a parking garage; and a few borings drilled during a preliminary study to evaluate site feasibility will not be adequate to develop geotechnical design recommendations for the project. Do not rely on this report if your geotechnical engineer prepared it: • for a different client; • for a different project or purpose; • for a different site (that may or may not include all or a portion of the original site); or • before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations. Note, too, the reliability of a geotechnical-engineering report can be affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. If you are the least bit uncertain about the continued reliability of this report, contact your geotechnical engineer before applying the recommendations in it. A minor amount of additional testing or analysis after the passage of time – if any is required at all – could prevent major problems. Read this Report in Full Costly problems have occurred because those relying on a geotechnical- engineering report did not read the report in its entirety. Do not rely on an executive summary. Do not read selective elements only. Read and refer to the report in full. You Need to Inform Your Geotechnical Engineer About Change Your geotechnical engineer considered unique, project-specific factors when developing the scope of study behind this report and developing the confirmation-dependent recommendations the report conveys. Typical changes that could erode the reliability of this report include those that affect: • the site’s size or shape; • the elevation, configuration, location, orientation, function or weight of the proposed structure and the desired performance criteria; • the composition of the design team; or • project ownership. As a general rule, always inform your geotechnical engineer of project or site changes – even minor ones – and request an assessment of their impact. The geotechnical engineer who prepared this report cannot accept responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered. Most of the “Findings” Related in This Report Are Professional Opinions Before construction begins, geotechnical engineers explore a site’s subsurface using various sampling and testing procedures. Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing is performed. The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgement to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team through project completion to obtain informed guidance quickly, whenever needed. This Report’s Recommendations Are Confirmation-Dependent The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are not final, because the geotechnical engineer who developed them relied heavily on judgement and opinion to do so. Your geotechnical engineer can finalize the recommendations only after observing actual subsurface conditions exposed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation. This Report Could Be Misinterpreted Other design professionals’ misinterpretation of geotechnical- engineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a continuing member of the design team, to: • confer with other design-team members; • help develop specifications; • review pertinent elements of other design professionals’ plans and specifications; and • be available whenever geotechnical-engineering guidance is needed. You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction- phase observations. Give Constructors a Complete Report and Guidance Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, but be certain to note conspicuously that you’ve included the material for information purposes only. To avoid misunderstanding, you may also want to note that “informational purposes” means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect. Read Responsibility Provisions Closely Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. This happens in part because soil and rock on project sites are typically heterogeneous and not manufactured materials with well-defined engineering properties like steel and concrete. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled “limitations,” many of these provisions indicate where geotechnical engineers’ responsibilities begin and end, to help others recognize their own responsibilities and risks. Read these provisions closely. Ask questions. Your geotechnical engineer should respond fully and frankly. Geoenvironmental Concerns Are Not Covered The personnel, equipment, and techniques used to perform an environmental study – e.g., a “phase-one” or “phase-two” environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually provide environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Unanticipated subsurface environmental problems have led to project failures. If you have not obtained your own environmental information about the project site, ask your geotechnical consultant for a recommendation on how to find environmental risk-management guidance. Obtain Professional Assistance to Deal with Moisture Infiltration and Mold While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, the engineer’s services were not designed, conducted, or intended to prevent migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, proper implementation of the geotechnical engineer’s recommendations will not of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. Geotechnical engineers are not building-envelope or mold specialists. Copyright 2019 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA’s specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent or intentional (fraudulent) misrepresentation. Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org October 6, 2021 ES-8113 Copper Ridge, LLC P.O. Box 73790 Puyallup, Washington 98373 Attention: Mr. Evan Mann Dear Mr. Mann: Earth Solutions NW, LLC (ESNW) is pleased to present this report supporting the planned residential development for Yelm, Washington. In our opinion, the proposed residential development is feasible from a geotechnical standpoint. Based on the conditions observed during our fieldwork, the subject site is underlain primarily by recessional outwash deposits that are suitable for infiltration. The proposed structures can be supported on conventional spread and continuous foundations bearing on competent native soil, recompacted native soil, or new structural fill placed directly on competent native soil. In general, competent native soil suitable for support of foundations will likely be encountered at depths of about two to four feet below the existing ground surface (bgs). Where loose or unsuitable soil conditions are exposed at foundation subgrade elevations, compaction of soils to the specifications of structural fill, or overexcavation and replacement with suitable structural fill, will likely be necessary. This report provides recommendations for foundation subgrade preparation, foundation and retaining wall design parameters, drainage, infiltration recommendations, the suitability of the on- site soils for use as structural fill, and other geotechnical recommendations. The opportunity to be of service to you is appreciated. If you have any questions regarding the content of this geotechnical engineering study, please call. Sincerely, EARTH SOLUTIONS NW, LLC Scott S. Riegel, L.G., L.E.G. Senior Project Manager 15365 N.E. 90th Street, Suite 100 • Redmond, WA 98052 •(425) 449-4704 • FAX (425) 449-4711 Earth Solutions NW LLC Geotechnical Engineering, Construction Observation/Testing and Environmental Services Earth Solutions NW, LLC Table of Contents ES-8113 PAGE INTRODUCTION ................................................................................. 1 General..................................................................................... 1 Project Description ................................................................. 1 SITE CONDITIONS ............................................................................. 2 Surface ..................................................................................... 2 Subsurface .............................................................................. 2 Topsoil and Fill ............................................................. 2 Native Soil ..................................................................... 3 Geologic Setting ........................................................... 3 Groundwater ................................................................. 3 Geologically Hazardous Areas .............................................. 3 DISCUSSION AND RECOMMENDATIONS ....................................... 3 General..................................................................................... 3 Site Preparation and Earthwork ............................................. 4 Temporary Erosion Control ......................................... 4 In-Situ Soils .................................................................. 4 Wet Season Grading .................................................... 4 Structural Fill ................................................................ 4 Excavations and Slopes .............................................. 5 Foundations ............................................................................ 5 Seismic Design Considerations ............................................ 6 Slab-on-Grade Floors ............................................................. 7 Retaining Walls ....................................................................... 7 Drainage................................................................................... 8 Infiltration Evaluation ................................................... 8 Test Method .................................................................. 8 Test Results .................................................................. 9 Soil Types and Site Variability .................................... 9 Restrictive Layer .......................................................... 9 Summary and Recommendations............................... 9 Utility Support and Trench Backfill ....................................... 10 Pavement Sections ................................................................. 10 LIMITATIONS ...................................................................................... 11 Additional Services ................................................................. 11 Earth Solutions NW, LLC Table of Contents Cont’d ES-8113 GRAPHICS Plate 1 Vicinity Map Plate 2 Test Pit Location Plan Plate 3 Retaining Wall Drainage Detail Plate 4 Footing Drain Detail APPENDICES Appendix A Subsurface Exploration Test Pit Logs Appendix B Laboratory Test Results Earth Solutions NW, LLC GEOTECHNICAL ENGINEERING STUDY CRYSTAL SPRINGS 714 CRYSTAL SPRINGS STREET NORTHWEST YELM, WASHINGTON ES-8113 INTRODUCTION General This report was prepared for the proposed residential development to be constructed at 714 Crystal Springs Street Northwest in Yelm, Washington. The purpose of this study was to provide geotechnical recommendations for the proposed development. Our scope of services for completing this geotechnical engineering study included the following:  Observing, logging, and sampling test pits for purposes of characterizing site soil and groundwater conditions;  Laboratory testing of soil samples collected at the test pit locations;  Engineering analyses and recommendations for the proposed development, and;  Preparation of this report. The following documents and resources were reviewed as part of our report preparation:  Geologic Map of the Centralia Quadrangle, Washington, 1987;  Conceptual Site Plan, undated;  Web Soil Survey (WSS) online resource, maintained by the Natural Resources Conservation Service under the United States Department of Agriculture, and;  Yelm Municipal Code Title 18.21: Critical Areas and Resource Lands. Project Description Based on review of the referenced plans, the subject site will be redeveloped with up to 30 single- family residences and associated improvements. Grading plans were not available at the time this report was prepared; however, given the low topographic relief on this site, we anticipate grading may include cuts and fills of up to about five feet with deeper excavations required to install underground utilities. Copper Ridge, LLC ES-8113 October 6, 2021 Page 2 Earth Solutions NW, LLC At the time this report was prepared, specific building load values were not available; however, we anticipate the proposed residential structures will consist of relatively lightly loaded wood framing supported on conventional foundations. Based on our experience with similar developments, we estimate wall loads on the order of 1 to 2 kips per linear foot and slab-on-grade loading of 150 pounds per square foot (psf). The feasibility of infiltrating runoff into native soils is being investigated as part of the project plans. If the above design assumptions are incorrect or change, ESNW should be contacted to review the recommendations in this report. ESNW should review the final design to verify the geotechnical recommendations provided in this report have been incorporated into the plans. SITE CONDITIONS Surface The subject site is located east of Crystal Springs Street Northwest in Yelm, Washington, as illustrated on the Vicinity Map (Plate 1). The site consists of a single tax parcel (Thurston County Parcel Number 22719210403) currently developed with a single-family residence, barn, detached garage, and associated improvements. The majority of the subject site is lightly to moderately vegetated with tall grass, and sparse trees and general landscaping around existing buildings. Topography is relatively level, with less than about five feet of total elevation change across the site. Subsurface A representative of ESNW observed, logged, and sampled six test pits, excavated at accessible locations within the proposed development area, on August 31, 2021, using a trackhoe and operator provided by the client. The approximate locations of the test pits are depicted on Plate 2 (Test Pit Location Plan). Please refer to the test pit logs provided in Appendix A for a more detailed description of subsurface conditions. Representative soil samples collected at the test pit locations were analyzed in general accordance with Unified Soil Classification System (USCS) and United States Department of Agriculture (USDA) methods and procedures. Topsoil and Fill Topsoil was observed extending to depths of approximately 6 to 12 inches below existing grades. The topsoil thickness is variable and vegetation roots often extend below the topsoil zone into the underlying weathered native soil. The topsoil was characterized by dark brown color and fine organic material. Topsoil is not suitable for use as structural fill nor should it be mixed with material to be used as structural fill. Topsoil or otherwise unsuitable material can be used in landscape areas if desired. Fill was not encountered within the test pits; however, fill is likely present near the existing structures to some degree. If fill is encountered during construction, ESNW should be consulted to verify the suitability for support of the proposed structures and/or reuse as structural fill. Copper Ridge, LLC ES-8113 October 6, 2021 Page 3 Earth Solutions NW, LLC Native Soil Underlying the topsoil, native soils consisted primarily of medium dense to dense poorly and well- graded gravel with variable sand (USCS: GP and GW respectively). The native soils were generally encountered in a damp to moist condition and extended to the maximum exploration depth of 13 feet below ground surface (bgs). We encountered scattered large cobbles and small boulders at the test pit locations. Geologic Setting The referenced geologic map resource identifies recessional outwash, specifically Vashon drift gravel (Qdvg), across the site and surrounding areas. The referenced WSS resource identifies Spanaway gravelly sandy loam (Map Unit Symbols: 110 and 111) across the site and surrounding areas. Spanaway gravelly loam was formed in outwash plains. Based on our field observations, native soils on site are generally consistent with the geologic setting outlined in this section. Groundwater Groundwater was not encountered, at the time of our exploration (August 31, 2021). Groundwater seepage rates and elevations fluctuate depending on many factors, including precipitation duration and intensity, the time of year, and soil conditions. In general, groundwater flow rates are higher during the wetter, winter, spring, and early summer months. Geologically Hazardous Areas As part of this report, the subject property was evaluated for the presence of geologically hazardous areas in general accordance with the applicable Yelm municipal code. Based on our investigation, the site does not lie within or is immediately adjacent to geologically hazardous areas. DISCUSSION AND RECOMMENDATIONS General In our opinion, the proposed residential structures can be supported on conventional spread and continuous foundations bearing on undisturbed competent native soil, recompacted native soil or new structural fill placed directly on competent native soil. Competent soils suitable for support of foundations are anticipated to be exposed at depths of about two to four feet below existing grades across the majority of the site. Slab-on-grade floors should be supported on competent native soil, re-compacted native soil, or new structural fill. Organic material exposed at subgrade elevations must be removed below design elevation and grades restored with structural fill. Where loose, organic or other unsuitable materials are encountered at or below the footing subgrade elevation, the material should be removed and replaced with structural fill, as necessary. Copper Ridge, LLC ES-8113 October 6, 2021 Page 4 Earth Solutions NW, LLC This study has been prepared for the exclusive use of Copper Ridge, LLC and their representatives. No warranty, expressed or implied, is made. This study has been prepared in a manner consistent with the level of care and skill ordinarily exercised by other members of the profession currently practicing under similar conditions in this area. Site Preparation and Earthwork Site preparation activities will consist of installing temporary erosion control measures and performing clearing and site stripping. Grading activities will likely consist of cuts and fills on the order five feet with the deeper cuts associated with stormwater facilities and utility excavations. Temporary Erosion Control Temporary construction entrances and drive lanes, consisting of at least six inches of quarry spalls, should be considered in order to minimize off-site soil tracking and to provide a temporary road surface. Temporary slopes and stockpiles should be covered when not in use. Silt fencing should be installed along the margins of the property. Temporary infiltration swales and galleries can be considered for control of stormwater. Erosion control measures should conform to the applicable Washington State Department of Ecology and City of Yelm/Thurston County standards. In-Situ Soils The majority of the soils encountered during our subsurface exploration have a low to moderate sensitivity to moisture and were generally in a damp to moist condition at the time of the exploration on August 2021. Soils encountered during site excavations that are excessively over the optimum moisture content will require aeration or treatment prior to placement and compaction. Conversely, soils that are substantially below the optimum moisture content will require moisture conditioning through the addition of water prior to use as structural fill. An ESNW representative should determine the suitability of in-situ soils for use as structural fill at the time of construction. Wet Season Grading If grading takes place during the wet season surface water could collect and degrade site soils if not property controlled. The contractor should establish temporary drainage control measures, such as swales and ponds, prior to extended wet weather. ESNW should be consulted during construction to provide temporary drainage control recommendations. Structural Fill Structural fill is defined as compacted soil placed in foundation, slab-on-grade, and roadway areas. Fills placed to construct permanent slopes and throughout retaining wall and utility trench backfill areas are considered structural fill as well. Soils placed in structural areas should be placed in loose lifts of 12 inches or less and compacted to a relative compaction of 95 percent, based on the laboratory maximum dry density as determined by the Modified Proctor Method (ASTM D1557). More stringent compaction specifications may be required for utility trench backfill zones depending on the responsible utility district or jurisdiction. Copper Ridge, LLC ES-8113 October 6, 2021 Page 5 Earth Solutions NW, LLC Excavations and Slopes The Federal Occupation Safety and Health Administration (OSHA) and the Washington Industrial Safety and Health Act (WISHA) provide soil classification in terms of temporary slope inclinations. Soils that exhibit a high compressive strength are allowed steeper temporary slope inclinations than are soils that exhibit lower strength characteristics. Based on the soil conditions encountered at the test pit locations, site soils are classified as Type C by OSHA. New fill should also be considered Type C soil. Temporary slopes over four feet in height in Type C soils must be sloped no steeper than (1.5H:1V). Steeper temporary slopes may be feasible and should be evaluated by ESNW during construction. Where encountered, the presence of groundwater seepage may cause caving of temporary slopes. ESNW should observe site excavations to confirm soil types and allowable slope inclinations. If the recommended temporary slope inclinations cannot be achieved, temporary shoring may be necessary to support excavations, particularly utility trench excavations. Permanent slopes should be planted with vegetation to enhance stability and to minimize erosion and should maintain a gradient of 2H:1V or flatter. An ESNW representative should observe temporary and permanent slopes to confirm the slope inclinations are suitable for the exposed soil conditions. Supplementary recommendations with respect to excavations and slopes may be provided as conditions warrant. Foundations The proposed residential structures can be supported on conventional spread and continuous footings bearing on undisturbed competent native soil, recompacted native soil, or new structural fill placed directly on competent native soil. Based on the soil conditions encountered at the test sites, competent soils suitable for support of foundations are anticipated to be exposed at depths of about two to four feet below existing grades across the majority of the site. Where loose or unsuitable soil conditions are observed at foundation subgrade elevations, compaction of the soils to the specifications of structural fill, or overexcavation and replacement with granular structural fill will be necessary. Organic material exposed at foundation subgrade elevations must be removed and grades restored with structural fill. Provided the structures will be supported as described above, the following parameters can be used for design of the new foundations:  Allowable soil bearing capacity 2,500 psf  Passive earth pressure 300 pcf (equivalent fluid)  Coefficient of friction 0.40 A one-third increase in the allowable soil bearing capacity can be assumed for short-term wind and seismic loading conditions. Copper Ridge, LLC ES-8113 October 6, 2021 Page 6 Earth Solutions NW, LLC With structural loading as expected, total settlement in the range of 1.0 inch is anticipated, with differential settlement of about 0.5 inch. The majority of the settlements should occur during construction, as dead loads are applied. Seismic Design Considerations The 2018 International Building Code (2018 IBC) recognizes the most recent edition of the Minimum Design Loads for Buildings and Other Structures manual (ASCE 7-16) for seismic design, specifically with respect to earthquake loads. Based on the soil conditions encountered at the test pit locations, the parameters and values provided below are recommended for seismic design per the 2018 IBC. Parameter Value Site Class D* Mapped short period spectral response acceleration, S S (g) 1.291 Mapped 1-second period spectral response acceleration, S 1 (g) 0.466 Short period site coefficient, Fa 1 Long period site coefficient, Fv 1.88† Adjusted short period spectral response acceleration, S MS (g) 1.291 Adjusted 1-second period spectral response acceleration, S M1 (g) 0.876† Design short period spectral response acceleration, S DS (g) 0.861 Design 1-second period spectral response acceleration, S D1 (g) 0.584† * Assumes medium dense native soil conditions, encountered to a maximum depth of 13 feet bgs during the August 2021 field exploration, remain medium dense or better to at least 100 feet bgs. † Values assume Fv may be determined using linear interpolation per Table 11.4-2 in ASCE 7-16. As indicated in the table footnote, several of the seismic design values provided above are dependent on the assumption that site-specific ground motion analysis (per Section 11.4.8 of ASCE 7-16) will not be required for the subject project. ESNW recommends the validity of this assumption be confirmed at the earliest available opportunity during the planning and early design stages of the project. Further discussion between the project structural engineer, the project owner, and ESNW may be prudent to determine the possible impacts to the structural design due to increased earthquake load requirements under the 2018 IBC. ESNW can provide additional consulting services to aid with design efforts, including supplementary geotechnical and geophysical investigation, upon request. Copper Ridge, LLC ES-8113 October 6, 2021 Page 7 Earth Solutions NW, LLC Liquefaction is a phenomenon where saturated or loose soil suddenly loses internal strength and behaves as a fluid. This behavior is in response to increased pore water pressures resulting from an earthquake or another intense ground shaking. In our opinion, site susceptibility to liquefaction may be considered low. The depth of the local groundwater table and the gradation and relatively dense characteristics of the native soil were the primary bases for this opinion. Slab-on-Grade Floors Slab-on-grade floors for the proposed residential structures should be supported on a firm and unyielding subgrade. Unstable or yielding areas of the subgrade should be recompacted, or overexcavated and replaced with suitable structural fill, prior to construction of the slab. A capillary break consisting of a minimum of four inches of free-draining crushed rock or gravel should be placed below the slab. The free-draining material should have a fines content of 5 percent or less (percent passing the Number 200 sieve, based on the minus three-quarter-inch fraction). In areas where slab moisture is undesirable, installation of a vapor barrier below the slab should be considered. If a vapor barrier is to be utilized, it should be a material specifically designed for use as a vapor barrier and should be installed in accordance with the specifications of the manufacturer. Retaining Walls Retaining walls must be designed to resist earth pressures and applicable surcharge loads. The following parameters can be used for retaining wall design:  Active earth pressure (unrestrained condition) 35 pcf  At-rest earth pressure (restrained condition) 55 pcf  Traffic surcharge (passenger vehicles) 70 psf (rectangular distribution)  Passive earth pressure 300 pcf  Coefficient of friction 0.40  Seismic surcharge 8H* * Where H equals the retained height. Additional surcharge loading from adjacent foundations, sloped backfill, retaining walls, or other loads should be included in the retaining wall design. Drainage should be provided behind retaining walls such that hydrostatic pressures do not develop. If drainage is not provided, hydrostatic pressures should be included in the wall design. Copper Ridge, LLC ES-8113 October 6, 2021 Page 8 Earth Solutions NW, LLC Retaining walls should be backfilled with at least 18 inches of free-draining material or suitable sheet drainage that extends along the height of the wall. The upper one foot of the wall backfill can consist of a less permeable soil, if desired. A perforated drain pipe should be placed along the base of the wall and connected to an approved discharge location. A typical retaining wall drainage detail is provided on Plate 3. Drainage Based on our field observations, the native soils generally consisted of well-drained, poorly to well-graded gravels with slightly variable sand contents. Because of the generally well-drained nature of the native gravels, significant groundwater is not anticipated to be encountered within shallow site excavations. ESNW should be consulted during preliminary grading to identify areas of seepage (if present) and provide recommendations to reduce the potential for instability related to seepage effects. Finish grades must be designed to direct surface drain water away from structures and slopes. The grade adjacent to buildings should be sloped away from the buildings at a gradient of at least 2 percent for a horizontal distance of at least 10 feet or more as setbacks allow. Water must not be allowed to pond adjacent to structures or slopes. Based on our field observations, it may be feasible to eliminate foundation drains, provided clean, well-drained deposits are exposed at footing subgrade elevation. However, confirmation should be provided by ESNW at the time of construction. A typical foundation drain detail is provided on Plate 4. Infiltration Evaluation We conducted in-situ pilot infiltration tests (PITs) at the two areas proposed for infiltration within the overall development. The PITs were completed at test pit locations TP-1 and TP-4 within native soils about 8 to 10 feet below existing grades. As indicated in the Subsurface section of this report, native soils encountered during our fieldwork were characterized primarily as Spanaway gravels with variable sand content. Based upon the results of USDA textural analyses performed on representative soil samples, native soils may also be classified chiefly as extremely gravelly coarse sand. Irrespective of gravel content, fines contents within the native gravels were generally less than one percent. Test Method The bottom of each PIT area was set at the approximate design facility bottom as recommended in the Method 1 Field Test Methods section of Appendix III-A. Water was metered into each PIT area using a pump fed hose to develop a constant head of about one foot. The hydraulic head was maintained until the water truck was emptied (3,800-gallon capacity), and measurements of flow for each test area was monitored by our field staff. Upon completion of the constant head soaking period, the water source was removed and each test area was allowed to drain. Upon drained conditions, the test pits were advanced to the limits of the excavator to determine soil stratigraphy and check for groundwater. Copper Ridge, LLC ES-8113 October 6, 2021 Page 9 Earth Solutions NW, LLC Test Results Our testing yielded measured (unfactored) infiltration rates of between 90 and 180 inches per hour (iph). The correction factors below were applied to the measured rates. Correction Factor Value Test Method 0.5 Geometry 0.9* Plugging 0.9 * This value is estimated based on typical pond geometry and uses information collected during the testing. The total correction factor applied to the measured infiltration rates was 0.4. The resulting long- term (design) infiltration rate is 36 iph. These rates were calculated using the lowest measured infiltration rate. Soil Types and Site Variability We conducted USDA textural analyses of representative soil samples collected at the PIT areas. On this basis, the majority of the native soil within the proposed areas consist of extremely gravelly coarse sand. The samples collected at the tested locations indicated consistent soil types across the site, with low variability. Restrictive Layer On this site, the restrictive layer is groundwater, as the alluvial sand and gravel persisted to the maximum exploration depth at each location. The groundwater was not identified on this site at the test pit locations during our fieldwork. Summary and Recommendations From a geotechnical standpoint, it is our opinion that the native gravels are suitable for infiltration. The low soil variability consisting of a consistent thick layer of sand and gravel and low fines contents within the gravels are the basis of this conclusion. Based on the results of our PIT program, a long-term infiltration rate of 36 iph may be used for the current infiltration trench design that will expose coarse gravel soils. Successful performance of the infiltration systems requires that the base of the facility (receptor soils) exposed sandy soils similar to those encountered at the test depth. The minimum vertical separation and corresponding trench base elevations detailed in the referenced groundwater summary should be incorporated into facility designs. ESNW should review final designs to confirm the recommendations provided in this letter report are incorporated. ESNW should be retained to observe construction of the infiltration facility areas during grading to confirm conditions are as anticipated. This site is identified as a highly susceptible critical aquifer recharge area per YMC section 18.21.070 and will require performance standards within this section to be met as part of the project design. Copper Ridge, LLC ES-8113 October 6, 2021 Page 10 Earth Solutions NW, LLC Utility Support and Trench Backfill In our opinion, the soils observed at the test pit locations are generally suitable for support of utilities. The native soils observed at the test pit locations are likely suitable for use as structural backfill in the utility trench excavations. Utility trench backfill should be placed and compacted to the specifications of structural fill provided in this report, or to the applicable requirements of presiding jurisdiction. Native sands and gravels used as backfill should be appropriately moisture conditioned through the addition of water to mitigate the settlement potential. Native soils proposed for use as utility trench backfill should contain aggregate of six inches in diameter or less. Caving of the trench sidewalls should be expected and will require temporary shoring to ensure safety is maintained during utility installation. Pavement Sections The performance of site pavements is largely related to the condition of the underlying subgrade. To ensure adequate pavement performance, the subgrade should be in a firm and unyielding condition when subjected to proofrolling with a loaded dump truck. Structural fill in pavement areas should be compacted to the specifications detailed in the Site Preparation and Earthwork section of this report. It is possible that soft, wet, or otherwise unsuitable subgrade areas may still exist after base grading activities. Areas of unsuitable or yielding subgrade conditions may require remedial measures such as overexcavation and replacement with structural fill or thicker crushed rock sections prior to pavement. For relatively lightly loaded pavements subjected to automobiles and occasional truck traffic, the following sections can be considered for preliminary design:  Two inches of hot mix asphalt (HMA) placed over four inches of CRB, or;  Two inches of HMA placed over three inches of asphalt treated base (ATB). Heavier traffic areas generally require thicker pavement sections depending on site usage, pavement life expectancy, and site traffic. For preliminary design purposes, the following pavement sections for occasional truck traffic areas can be considered:  Three inches of HMA placed over six inches of crushed rock base (CRB), or;  Three inches of HMA placed over four-and-one-half inches of ATB. The HMA, CRB and ATB materials should conform to WSDOT specifications. Thurston County/City of Yelm minimum pavement requirements may supersede our recommendations and may require thicker pavement sections. Copper Ridge, LLC ES-8113 October 6, 2021 Page 11 Earth Solutions NW, LLC LIMITATIONS The recommendations and conclusions provided in this geotechnical engineering study are professional opinions consistent with the level of care and skill that is typical of other members in the profession currently practicing under similar conditions in this area. A warranty is not expressed or implied. Variations in the soil and groundwater conditions observed at the test pit locations may exist and may not become evident until construction. ESNW should reevaluate the conclusions in this geotechnical engineering study if variations are encountered. Additional Services ESNW should have an opportunity to review the final design with respect to the geotechnical recommendations provided in this report. ESNW should also be retained to provide testing and consultation services during construction. Drwn.MRS Checked SKH Date Sept.2021 Date 09/20/2021 Proj.No.8113 Plate 1 Earth Solutions NWLLC Geotechnical Engineering,Construction EarthSolutionsNWLLC EarthSolutions NW LLC Observation/Testing and Environmental Services Vicinity Map Crystal Springs Yelm,Washington Reference: Thurston County,Washington OpenStreetMap.org NORTH NOTE:This plate may contain areas of color.ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black &white reproductions of this plate. Yelm SITE Plate Proj.No. Date Checked By Drwn.ByEarthSolutionsNWLLCGeotechnicalEngineering,ConstructionObservation/TestingandEnvironmentalServicesEarthSolutionsNWLLCEarthSolutionsNWLLCMRS SKH 09/20/2021 8113 2TestPitLocationPlan CrystalSpringsYelm,WashingtonLEGEND Approximate Location of ESNW Test Pit,Proj.No. ES-8113,Aug.2021 Subject Site Existing Building NORTH 0 75 150 Sc ale in Feet1"=150' NOTE:This plate may contain areas of color.ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black &white reproductions of this plate. NOTE:The graphics shown on this plate are not intended for design purposes or precise scale measurements,but only to illustrate the approximate test locations relative to the approximate locations of existing and /or proposed site features.The information illustrated is largely based on data provided by the client at the time of our study.ESNW cannot be responsible for subsequent design changes or interpretation of the data by others. TP-1 95TH C OURT S.E.W OODLANDCOURT S.E.TP-1 TP-2 TP-3 TP-4 TP-5 TP-6 330 334 330 334 N.W.RHOTONROADN.W.CRYSTALSPRINGSSTREET Geotechnical Engineering,Construction Observation/Testing and Environmental Services Drwn.CAM Checked SSR Date Oct.2021 Date 10/06/2021 Proj.No.8113 Plate 3 Earth Solutions NWLLCEarthSolutionsNWLLC EarthSolutions NW LLC NOTES: Free-draining Backfill should consist of soil having less than 5 percent fines. Percent passing No.4 sieve should be 25 to 75 percent. Sheet Drain may be feasible in lieu of Free-draining Backfill,per ESNW recommendations. Drain Pipe should consist of perforated, rigid PVC Pipe surrounded with 1-inch Drain Rock. LEGEND: Free-draining Structural Backfill 1-inch Drain Rock 18"Min. Structural Fill Perforated Rigid Drain Pipe (Surround in Drain Rock) SCHEMATIC ONLY -NOT TO SCALE NOT A CONSTRUCTION DRAW ING Retaining Wall Drainage Detail Crystal Springs Yelm,Washington Geotechnical Engineering,Construction Observation/Testing and Environmental Services Drwn.CAM Checked SSR Date Oct.2021 Date 10/06/2021 Proj.No.8113 Plate 4 Earth Solutions NWLLCEarthSolutionsNWLLC EarthSolutions NW LLC Slope Perforated Rigid Drain Pipe (Surround in Drain Rock) 18"Min. NOTES: Do NOT tie roof downspouts to Footing Drain. Surface Seal to consist of 12"of less permeable,suitable soil.Slope away from building. LEGEND: Surface Seal:native soil or other low-permeability material. 1-inch Drain Rock SCHEMATIC ONLY -NOT TO SCALE NOT A CONSTRUCTION DRAW ING Footing Drain Detail Crystal Springs Yelm,Washington Earth Solutions NW, LLC Appendix A Subsurface Exploration Test Pit Logs ES-8113 The subsurface conditions at the site were explored by excavating six test pits at the approximate locations illustrated on Plate 2 of this report. The test pit logs are provided in this Appendix. The subsurface exploration was completed on August 31, 2021 to a maximum depth of 13 feet below existing grades. Logs of the explorations observed by ESNW are presented in Appendix A. The final logs represent the interpretations of the field logs and the results of laboratory analyses. The stratification lines on the logs represent the approximate boundaries between soil types. In actuality, the transitions may be more gradual. GRAVEL AND GRAVELLY SOILS CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES SILTY SANDS, SAND - SILT MIXTURES CLAYEY SANDS, SAND - CLAY MIXTURES INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS INORGANIC CLAYS OF HIGH PLASTICITY SILTS AND CLAYS MORE THAN 50% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE MORE THAN 50% OF COARSE FRACTION PASSING ON NO. 4 SIEVE MORE THAN 50% OF COARSE FRACTION RETAINED ON NO. 4 SIEVE SOIL CLASSIFICATION CHART (APPRECIABLE AMOUNT OF FINES) (APPRECIABLE AMOUNT OF FINES) (LITTLE OR NO FINES) FINE GRAINED SOILS SAND AND SANDY SOILS SILTS AND CLAYS ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS LETTERGRAPH SYMBOLSMAJOR DIVISIONS COARSE GRAINED SOILS TYPICAL DESCRIPTIONS WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES CLEAN GRAVELS GRAVELS WITH FINES CLEAN SANDS (LITTLE OR NO FINES) SANDS WITH FINES LIQUID LIMIT LESS THAN 50 LIQUID LIMIT GREATER THAN 50 HIGHLY ORGANIC SOILS DUAL SYMBOLS are used to indicate borderline soil classifications. The discussion in the text of this report is necessary for a proper understanding of the nature of the material presented in the attached logs. GW GP GM GC SW SP SM SC ML CL OL MH CH OH PT Earth Solutions NW LLC GB MC = 2.5% MC = 2.3% Fines = 1.2% MC = 3.8% Fines = 0.3% TPSL GP GP Dark brown TOPSOIL, abundant roots Brown poorly graded GRAVEL with sand, medium dense, damp -abundant cobbles and small boulders present throughout -minor caving to BOH [USDA Classification: extremely gravelly coarse SAND] -infiltration test Brown poorly graded GRAVEL, dense, damp [USDA Classification: extremely gravelly coarse SAND] Test pit terminated at 13.0 feet below existing grade. No groundwater encountered during excavation. Caving observed from 5.0 to 13.0 feet. 1.0 11.5 13.0 NOTES Depth of Topsoil & Sod 12": field grass LOGGED BY SKH EXCAVATION METHOD EXCAVATION CONTRACTOR Client Provided CHECKED BY SSR DATE STARTED 8/31/21 COMPLETED 8/31/21 GROUND WATER LEVEL: GROUND ELEVATION +-334 LONGITUDE -122.60337 LATITUDE 46.95015 AT TIME OF EXCAVATION SAMPLE TYPENUMBERDEPTH(ft)0 5 10 PAGE 1 OF 1 TEST PIT NUMBER TP-1 PROJECT NUMBER ES-8113 PROJECT NAME Crystal Springs GENERAL BH / TP / WELL - 8113.GPJ - GRAPHICS TEMPLATE.GDT - 10/6/21Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711 TESTS U.S.C.S.MATERIAL DESCRIPTION GRAPHICLOG MC = 3.6% MC = 9.3% Fines = 0.9% MC = 3.0% Fines = 0.4% TPSL GP Dark brown TOPSOIL, abundant roots Brown poorly graded GRAVEL with sand, medium dense, damp -abundant cobbles and small boulders present throughout -minor caving from 3.5' to BOH -becomes moist [USDA Classification: extremely gravelly coarse SAND] -becomes damp [USDA Classification: extremely gravelly coarse SAND] Test pit terminated at 11.5 feet below existing grade. No groundwater encountered during excavation. Caving observed from 3.5 feet to BOH. 1.0 11.5 NOTES Depth of Topsoil & Sod 12": field grass LOGGED BY SKH EXCAVATION METHOD EXCAVATION CONTRACTOR Client Provided CHECKED BY SSR DATE STARTED 8/31/21 COMPLETED 8/31/21 GROUND WATER LEVEL: GROUND ELEVATION +-334 LONGITUDE -122.60344 LATITUDE 46.95049 AT TIME OF EXCAVATION SAMPLE TYPENUMBERDEPTH(ft)0 5 10 PAGE 1 OF 1 TEST PIT NUMBER TP-2 PROJECT NUMBER ES-8113 PROJECT NAME Crystal Springs GENERAL BH / TP / WELL - 8113.GPJ - GRAPHICS TEMPLATE.GDT - 10/6/21Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711 TESTS U.S.C.S.MATERIAL DESCRIPTION GRAPHICLOG MC = 1.4% Fines = 0.4% MC = 1.8% Fines = 0.4% TPSL GW GW Dark brown TOPSOIL, abundant roots Brown well-graded GRAVEL with sand, medium dense, damp [USDA Classification: extremely gravelly coarse SAND] -abundant cobbles and small boulders present throughout -becomes very dense -minor caving from 8' to BOH Brown well-graded GRAVEL, dense, damp [USDA Classification: extremely gravelly coarse SAND] Test pit terminated at 11.0 feet below existing grade. No groundwater encountered during excavation. Caving observed from 8.0 feet to BOH. 1.0 9.0 11.0 NOTES Depth of Topsoil & Sod 12": field grass LOGGED BY SKH EXCAVATION METHOD EXCAVATION CONTRACTOR Client Provided CHECKED BY SSR DATE STARTED 8/31/21 COMPLETED 8/31/21 GROUND WATER LEVEL: GROUND ELEVATION +-333 LONGITUDE -122.60414 LATITUDE 46.95036 AT TIME OF EXCAVATION SAMPLE TYPENUMBERDEPTH(ft)0 5 10 PAGE 1 OF 1 TEST PIT NUMBER TP-3 PROJECT NUMBER ES-8113 PROJECT NAME Crystal Springs GENERAL BH / TP / WELL - 8113.GPJ - GRAPHICS TEMPLATE.GDT - 10/6/21Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711 TESTS U.S.C.S.MATERIAL DESCRIPTION GRAPHICLOG MC = 1.8% MC = 2.1% Fines = 0.7% MC = 3.5% Fines = 0.4% TPSL GW GP Dark brown TOPSOIL, abundant roots Brown well-graded GRAVEL with sand, medium dense, damp -abundant cobbles and small boulders present throughout -minor caving from 4' to BOH -infiltration test [USDA Classification: extremely gravelly coarse SAND] Brown poorly graded GRAVEL with sand, medium dense, damp [USDA Classification: extremely gravelly coarse SAND] Test pit terminated at 11.0 feet below existing grade. No groundwater encountered during excavation. Caving observed from 4.0 feet to BOH. 1.0 9.5 11.0 NOTES Depth of Topsoil & Sod 12": field grass LOGGED BY SKH EXCAVATION METHOD EXCAVATION CONTRACTOR Client Provided CHECKED BY SSR DATE STARTED 8/31/21 COMPLETED 8/31/21 GROUND WATER LEVEL: GROUND ELEVATION +-331 LONGITUDE -122.60413 LATITUDE 46.95006 AT TIME OF EXCAVATION SAMPLE TYPENUMBERDEPTH(ft)0 5 10 PAGE 1 OF 1 TEST PIT NUMBER TP-4 PROJECT NUMBER ES-8113 PROJECT NAME Crystal Springs GENERAL BH / TP / WELL - 8113.GPJ - GRAPHICS TEMPLATE.GDT - 10/6/21Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711 TESTS U.S.C.S.MATERIAL DESCRIPTION GRAPHICLOG MC = 2.4% MC = 1.7% Fines = 0.1% MC = 2.8% TPSL GP Dark brown TOPSOIL, abundant fine roots Brown poorly graded GRAVEL with sand, dense, damp -abundant cobbles and small boulders present throughout -minor caving from 4' to 6' -minor mottling -major caving from 6' to BOH [USDA Classification: extremely gravelly coarse SAND] Test pit terminated at 10.5 feet below existing grade. No groundwater encountered during excavation. Caving observed from 4.0 feet to BOH. 0.5 10.5 NOTES Depth of Topsoil & Sod 6": field grass LOGGED BY SKH EXCAVATION METHOD EXCAVATION CONTRACTOR Client Provided CHECKED BY SSR DATE STARTED 8/31/21 COMPLETED 8/31/21 GROUND WATER LEVEL: GROUND ELEVATION +-332 LONGITUDE -122.60331 LATITUDE 46.9495 AT TIME OF EXCAVATION SAMPLE TYPENUMBERDEPTH(ft)0 5 10 PAGE 1 OF 1 TEST PIT NUMBER TP-5 PROJECT NUMBER ES-8113 PROJECT NAME Crystal Springs GENERAL BH / TP / WELL - 8113.GPJ - GRAPHICS TEMPLATE.GDT - 10/6/21Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711 TESTS U.S.C.S.MATERIAL DESCRIPTION GRAPHICLOG GB MC = 2.1% MC = 2.9% Fines = 0.7% MC = 3.8% TPSL GP Dark brown TOPSOIL, abundant fine roots Brown poorly graded GRAVEL with sand, medium dense, damp -abundant cobbles and small boulders present throughout -minor caving from 4.5' to BOH [USDA Classification: extremely gravelly coarse SAND] -becomes moist Test pit terminated at 12.5 feet below existing grade. No groundwater encountered during excavation. Caving observed from 4.5 feet to BOH. 1.0 12.5 NOTES Depth of Topsoil & Sod 12": field grass LOGGED BY SKH EXCAVATION METHOD EXCAVATION CONTRACTOR Client Provided CHECKED BY SSR DATE STARTED 8/31/21 COMPLETED 8/31/21 GROUND WATER LEVEL: GROUND ELEVATION +-331 LONGITUDE -122.60438 LATITUDE 46.94935 AT TIME OF EXCAVATION SAMPLE TYPENUMBERDEPTH(ft)0 5 10 PAGE 1 OF 1 TEST PIT NUMBER TP-6 PROJECT NUMBER ES-8113 PROJECT NAME Crystal Springs GENERAL BH / TP / WELL - 8113.GPJ - GRAPHICS TEMPLATE.GDT - 10/6/21Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711 TESTS U.S.C.S.MATERIAL DESCRIPTION GRAPHICLOG Earth Solutions NW, LLC Appendix B Laboratory Test Results ES-8113 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 0.0010.010.1110100 3 D100 140 Specimen Identification 1 fine 6 HYDROMETER 304 1.2 0.3 0.9 0.4 0.4 101/2 COBBLES Specimen Identification 4 coarse 20 401.5 8 14 USDA: Brown Extremely Gravelly Coarse Sand. USCS: GP with Sand. USDA: Brown Extremely Gravelly Coarse Sand. USCS: GP. USDA: Brown Extremely Gravelly Coarse Sand. USCS: GP with Sand. USDA: Brown Extremely Gravelly Coarse Sand. USCS: GP with Sand. USDA: Brown Extremely Gravelly Coarse Sand. USCS: GW with Sand. 6 60 PERCENT FINER BY WEIGHTD10 6.934 12.226 10.116 11.877 7.12 14.952 25.97 27.313 26.824 18.742 GRAIN SIZE DISTRIBUTION 100 18.27 15.34 33.69 22.41 15.61 LL TP-01 TP-01 TP-02 TP-02 TP-03 0.818 1.693 0.811 1.197 1.2 3/4 U.S. SIEVE OPENING IN INCHES U.S. SIEVE NUMBERS GRAVEL SAND 37.5 75 75 75 37.5 %Silt 3.93 3.40 4.62 4.39 2.25 TP-01 TP-01 TP-02 TP-02 TP-03 2 2003 Cc CuClassification %Clay 16 PID60 D30 coarse SILT OR CLAYfinemedium GRAIN SIZE IN MILLIMETERS 3/8 50 7.0ft. 13.0ft. 8.0ft. 11.5ft. 2.0ft. 7.00ft. 13.00ft. 8.00ft. 11.50ft. 2.00ft. PL PROJECT NUMBER ES-8113 PROJECT NAME Crystal Springs GRAIN SIZE USDA ES-8113 CRYSTAL SPRINGS.GPJ GINT US LAB.GDT 9/9/21Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 0.0010.010.1110100 3 D100 140 Specimen Identification 1 fine 6 HYDROMETER 304 0.4 0.7 0.4 0.1 0.7 101/2 COBBLES Specimen Identification 4 coarse 20 401.5 8 14 USDA: Brown Extremely Gravelly Coarse Sand. USCS: GW. USDA: Brown Extremely Gravelly Coarse Sand. USCS: GW with Sand. USDA: Brown Extremely Gravelly Coarse Sand. USCS: GP with Sand. USDA: Brown Extremely Gravelly Coarse Sand. USCS: GP. USDA: Brown Extremely Gravelly Coarse Sand. USCS: GP. 6 60 PERCENT FINER BY WEIGHTD10 16.792 7.591 9.26 10.206 15.784 24.998 18.42 21.805 22.982 28.324 GRAIN SIZE DISTRIBUTION 100 5.16 16.56 24.81 4.27 10.23 LL TP-03 TP-04 TP-04 TP-05 TP-06 4.849 1.112 0.879 5.383 2.768 3/4 U.S. SIEVE OPENING IN INCHES U.S. SIEVE NUMBERS GRAVEL SAND 37.5 37.5 37.5 75 75 %Silt 2.33 2.81 4.47 0.84 3.18 TP-03 TP-04 TP-04 TP-05 TP-06 2 2003 Cc CuClassification %Clay 16 PID60 D30 coarse SILT OR CLAYfinemedium GRAIN SIZE IN MILLIMETERS 3/8 50 11.0ft. 8.0ft. 11.0ft. 7.0ft. 7.0ft. 11.00ft. 8.00ft. 11.00ft. 7.00ft. 7.00ft. PL PROJECT NUMBER ES-8113 PROJECT NAME Crystal Springs GRAIN SIZE USDA ES-8113 CRYSTAL SPRINGS.GPJ GINT US LAB.GDT 9/9/21Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711 Earth Solutions NW, LLC Report Distribution ES-8113 EMAIL ONLY Copper Ridge, LLC P.O. Box 73790 Puyallup, Washington 98373 Attention: Mr. Evan Mann