Loading...
Structural Calculations - Building CMc McClendon Engineering Inc TAHOMA TERRA BUILDING C STORAGE Yelm, Washington FINAL STRUCTURAL CALCULATIONS June 30, 2023 Prepared for: Keimig Associates 307 D Street SE Auburn, Washington 98002 �. Mee O� WA 43327 4 RFGIS7ER��fV �SI0NAL EAG �/x3 EXPIRES: Z f3 Prepared by: McClendon Engineering Inc 1412 West Idaho Street, Suite 240 Boise, ID 83702 Project No.: 1028.23 OE McClendon Engineering Inc TAHOMA TERRA BUILDING C STORAGE YELM WASHINGTON 1028.23 TABLE OF CONTENTS Page Number GENERAL: Tableof Contents........................................................................................................................ DesignLoads............................................................................................................................... 2 Materials and References ................. ........ ........................ 3 ............................................ ............... DeferredSubmittals..................................................................................................................... 3 SpecialInspection....................................................................................................................... 3 Project Description....................................................................... y GRAVITY DESIGN: RoofFraming.............................................................. 5 Roof Panel Purlins LintelDesign.............................................................. 1 WallDesign................................................................�� Foundation Design.......................................................... �R Wall Footings LATERAL DESIGN: LateralAnalysis ....... ..................................................... 2 - Wind Base Shear Seismic Base Shear Diaphragm/Chord Analysis ................................................... 3ll Shear Wall Design.......................................................... X -Braced Walls DE McClendon Engineering €nc GRAVITY DESIGN LOADS: Roof Dead Loads Roofing: - Decking: 2 psf Framing: 2 psf Insulation: 2 psf Ceiling: - M & E Collateral: 3 psf Miscellaneous: I psf E Roof DL: 10 usf Roof Live Loads Snow Load:_ 25 psf Roof LL: 20 psf Floor Dead Loads Flooring: SOG Framing: Insulation:_ Ceiling: M & E Collatei Miscellaneous: Z Floor DL: Floor Live Loads Occupancy/Use: Light Storage Floor LL: 125 psf Occupancy/Use: - Floor LL: - Wall Loads Interior Stud Wall DL: 7 psf Exterior Stud Wall DL: 7 psf CMU Wall DL: 55 psf LATERAL DESIGN LOADS: Wind Loads Seismic Loads Wind: 115 mph Site Class: D - Default Exposure: C Seismic Design Category: D MWFRS: Simple Risk Category: II Diaphragm Importance Factor: 1.0 LOAD COMBINATIONS: Design Method Strength Design: Basic Load Combinations ❑ Allowable Stress Design: Basic Load Combinations ❑ Alternative Basic Load Combinations X TAHOMA TERRA BUILDING C STORAGE YELM WASHINGTON 1028.23 R: 4 Q: 2 p: I SDs: 1.03 SDI: - MSFRS: X Braced CFS Walls Mc McClendon Engineering Inc MATERIALS: Steel Shapes Fy= 50 ksi Plates/Angles/Channel: Fy= 36 ksi Hollow Structural Shapes: Fy = 42 ksi Pipe: Fy = - Bolts: A325 Anchor Bolts: A307 REFERENCES: Soils Bearing Pressure = 1500 psf Source of Information: assumed Frost Depth = l8" DEFERRED SUBMITTALS. Steel: Steel member layout Joist/Joist Girders Layout ❑ Metal deck layout Wood: Engineered Truss Layout ❑ Cold Formed Steel: Steel member layout SPECIAL INSPECTIONS: Fabricators ❑ Steel Construction Concrete Construction ❑ Masonry- Level 1 ❑ Masonry- Level 2 Wood Construction ❑ Soils ❑ Deep Foundations ❑ Special Cases Seismic Resistance ❑ Other: ❑ Wood Sawn Lumber: - G1uLam: Eng. Product: - Li,aht Gauee Steel Fy: 55 ks Codes Used 2018 IBC TAHOMA TERRA BUILDING C STORAGE YELM WASHINGTON Concrete f,= 2500 psi fy = 60 ksi Masonry G— 1500 psi fy — 60 ksi Software Used USGS Enercalc Concrete: Mix Design No Reinforcement Layout CK Masonry: Mix Design Reinforcement Layout [ Other: ❑ 1028.23 DE McClendon Engineering Inc PROJECT DESCRIPTION: TAHOMA TERRA BUILDING C STORAGE YELM WASHINGTON 1028.23 The Structural scope of work for this project consists of: • The design of a single story light -gauge steel framed storage building. • The gravity system for the building consists of a light gauge steel framed roof supported by steel frames, light -gauge steel framed walls. • The lateral system for the building consists of a simple diaphragm, light framed shear walls reinforced with flat strap cross bracing. o The loads are transferred from the diaphragm to the framed shear walls, to the foundation. 4 Mc McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLANK { C C C C C C C C C c - C C- C - ca CC C C C �7 !7 C7 - - i 5 / v / v v , v f v / v // ♦ / v , v / IN / r / \ \ ..... . . . . . . . \ N J I J J 1 r I [A' J FH / \ I I �7 !7 C7 - - i 5 meNo: Page: McClendon scope: 5nzuo-'r � �-5tc-'#Q Date: Checked by: Engineering Inc item: By: V'L' irv-­-'( -1 3._. ... k .............. - ........ ....... t . .. . ..... LiV /1t � MCELROI� Medallion -Lok 'Ys METAL 134"� 1 _... ........... _..._ 16" COVERAGE . 1. Section properties are calculated In accordance with the 2004 ArSI North American Specification for the Design of Cold -Formed Steel Structural Members, 2. Va is khe allowable shear. 3. Pa A rhe allowable load for web crippling on end & interior supports. 4. Ix is for dettedon determination. 5. Se isfor bantling. 0. Ma is the afluwaVe bending moment. 7 All values are for one fact of panel W rith- Allowable Uniform Loads (PSF) Notes! 1. Allowable uniform loads are based upon equal span lengths. 2, Positive Wind is wind pressure and is14OT increased by 33 1/3 °/ - 3- Live is the allowable live or snow load - 4. Deflection (U180} is the allowable load that limits no panel's defleebun to U180 wh,le under p"tivn or live load. 5. Deflection (#1240) is the allowable load Thal limits the panel's defleclJon to L1240 Mile under positive or We load, G. The weight of the panei hasNOT been deducted from the allowable leads. 7. Positive wind and Live load values are limited to combined shear & bending using Eq. C3-3.1-1 of the AiSI Specification, 8, Values ofASTM E1592 Wind UPItFi Testing include a factor of safety of 1.67. Shaded areas are outside oftest range. Contact Mr -troy Metal for more information. 9- Positive Wind and Live Load values are limited by web crippling using a hearing length of 2". 10. Web crippling values are determined using a ratio of the uniform loadactualiy supported by the tap flanges of the section, 11. Load Tables are trued to a maximum allowable load a(509 psi. Span in. Feet Span Type 'Load Type Positive Wind 1.00 500 1,50 497 2,00 280 250 179 3.00 124 3.50 91 4.00 70 4.50 55 44 ; s7 37 &: 31 %s', 26 7^C 22 fir, 19 1 400 17 P i5 Single Live 500497 280 179 124 91 70 55 44 37 31 26 22 19 17 15 Deflection(Ul80) 500 500 500 461 278 175 117 82 60 45 34 27 21 17 14 12 Deiiection (1/240) 500 500 500 360 208 131 86 61 45 33 26 20 16 13 11 9 Positive Wincl 500 1 337 197 126 90 66 51 40 32 27 22 19 16 14 12 11 2 Span live 500 337 1 197 128 90 66 51 40 32 27 22 19 16 14 12 11 Deflection (L1180) 500 500 500 500 491 309 1 207 145 106 79 61 48 38 31 25 21 Deflec&on{La,t% 500 500 500 500 368 232 1 155 109 79 1 59 1 46 36 29 23 f9 16 Poslbve4Ynd 500 407 241 158 ill 82 63 50 41 1 34 28 24 21 18 1F 14 35pem u JV _.- "+, _L 24t 5Cr 158 St0 ill 384 &". 242 63 54^ 41 ? 34 S2 ?- 24 37 21 30 13 24 16 2G 1.1 3 Deflection(U240) 500 500 500 49B 288 191 121 85 52 46 36 28 22 18 15 12 Positive Wind 500 385 227 148 104 77 59 47 38 31 26 22 19 17 15 T3 4 Span Live 500 385 227 148 104 77 59 47 2B 31 26 22 19 17 15 13 Deflection(1J1B0) 50Q 500 500 500 408 257 172 121 BB 66 51 40 32 25 21 17 DeflecEnn(U240) Lou 500 500 500 346 192 129 90 65 49 38 30 24 19 16 13 AST,UE1592Wind UpliftTosting 69.5 61.1 1 52.9 49.1 1 45,2 1 41.3 37.7 33.6 30.1 Nt)iE$TDATA AVA]EABLE Notes! 1. Allowable uniform loads are based upon equal span lengths. 2, Positive Wind is wind pressure and is14OT increased by 33 1/3 °/ - 3- Live is the allowable live or snow load - 4. Deflection (U180} is the allowable load that limits no panel's defleebun to U180 wh,le under p"tivn or live load. 5. Deflection (#1240) is the allowable load Thal limits the panel's defleclJon to L1240 Mile under positive or We load, G. The weight of the panei hasNOT been deducted from the allowable leads. 7. Positive wind and Live load values are limited to combined shear & bending using Eq. C3-3.1-1 of the AiSI Specification, 8, Values ofASTM E1592 Wind UPItFi Testing include a factor of safety of 1.67. Shaded areas are outside oftest range. Contact Mr -troy Metal for more information. 9- Positive Wind and Live Load values are limited by web crippling using a hearing length of 2". 10. Web crippling values are determined using a ratio of the uniform loadactualiy supported by the tap flanges of the section, 11. Load Tables are trued to a maximum allowable load a(509 psi. mcF Project: .. �J:� QYAA . ...... . No: Page:—% cClendon scope: 617�_Wr Date: Checked by: Engineering Inc Item: By: .5w FgAvi C-7 (2_Lj A F1 I /C>' LO it pit rz- PF �.'��'�..�r ��n�.��.�.,�:..w�.� w gym,.,_._.. 4 7 7,188 T-16 69 QN3C-7 F_70yZ_7 IA -r ST9-Af-qS Cffc_ci4 A)05 SEN Ll 0i. SSL ' WpL_ /0 TZ A h 11 O �i h us to m n m o o r{_ en 4 r r re } IALA 4 r M ifl M u7 W h N N (U 4 �➢ a �n !( a 1BG o 0 0 0 0 0 0 o r3 o c ci a o 0 0 � n -1 OI NO 0N un1 un1Wi Nn WoW r vi a� al a n m p �n m rn ry n p r �fl O M N �v' y � v m c- rn m r� M{ r r n O m P �➢ d u] 47 �n lil v� 4] P h M h ri of cri �+i ri ri ri vi ci vi ci ci of ti m m � U 1In } '� cl a 4n n n o d n P- m n N r N m o C M M �sl rn m N P �n ry Z 'i cV tV M x l i m �O O O Ip P N ['i m Q �['• n .� Q} m m • N (] r L7 r 1/l N r mh �(] W h N N N n 4 M KJ n n +- 'P O h � C �" N N t•i r N (V M r fV {V try ry N M O C a n Ci w m D N r h m M N a :II N O � 1 M h C] (] h M h Y m to Y P O M P O cl T O KJ Q U C � jQ u) to � � vi lD h O � W i� ai vi r• of N a c m E V U c a f- vi � n m ^� r a r p (fl 4 r O W p r o ft] p r o i� O UJ C VY ID L{ O QID N n d � M m ul m cY m al 1n ul m M Vi 6a �p Ii It m � : � 0 0 0 0 0 o c e d d a o o d x � k k c c Z to 3 vi A ry o tD If1 M m O m N 1p N M {} pp 9 t' V Q! n ID a n ID N n m fO 6l Q n Q O O O O b U) rn� W m 4 rn�� M rn r N n m t%Y m Q Q d o m o lr, vl m o vl � m o m N m a ul w C 4] n W O �SY A W O lil n W O LL] n m p a v O 0 0 0 0 p O 0 0 0 O o o [] 0 0 z � LL2 P S N c � n N vni, pl n yq rni �.j rnn pj m N w N m W rl N �n N N N rni Fj m �•i m Ni r�i, (+] — K X X X X X % % X X X K _ C u•� u1 vl Ln �t u] N �tl N h �/] ¢] to N m Z ID tD, ID rD r r X rj M x M CV N KC4 t N Q X X X K K X K X K X X X X X k O O R O O O O O p O O R p O O O m ¢] m m m W m w W m m W m QI T T E m P M N �2 P Z N N Yf N NW N N �I IL TJ N IImo�. N N 0 = O ei x cC n X% ci x x P cri x ri X P ci X G x X at ry X V'Y •+i x :R ]f LI YS ri at Y: +�' 4i5 n 1.'! r+ �. O O O R O R O O [] 4 p O d O �i MjProject:No: 0-7 R. VS Page: McClendon "'P':- :!�rmw&-r VL-7slc'tJ Date, Checked by: Engineering Inc Item: By: A i I m goo F P -S) ('puaLk?-' /of-oil 75D -W M 10 r -r, lip IWA q(O. 7 pr , IL OE MC Project: � 14 0 w A No:..-..). 2-3 Page: M Date: Checked by,. cClendon Scope: Engineering Inc Item: By: .. . ....... F'FOAM CP f spm` -O(J PT-L- 175D YKID ---------- (6 2 V) ?TL-y3 # C -hr,-D = PT lrvl .55fL (4, �7�, Sc I& PC Project: Page: Date- Checked by: McClendon "PI: D-a4fgt'l Engineering Inc Item: By: rqL F -7� P -r,-5 240 1.1 rA Iwo) 7SZ 6) 9P.0 vt. D C G 0 LOt7 v v Ln ,n LO m w L!7 � o o 0 r C A a o a (D o LD cD a n n o m rn LV r w Y q R: tl' 7 O1 O 01 O A Ci Qi Q O© r O O }' r. (� C h co co m N f< (mD A n co O r W i` N C A M LD M L9 D7 o N Lt7 W. O LCA [D W M M its LT 0 L9 et Ln m }� Q A O 4 A O C7 0 0 0 0 0 0 ~ <. O Oaf tt �� rn T h O� C(pp m M 01 N C q Po 11 W WS LO m O O N (!] d7 V O co m LD V O A m N L a a N N +"` K In co N Cp W tf- ~ h m i` t` O toV vD 7 M N m aO m m a C7 O O r r w r X mO m 1r Ln [D r N Y Cn 00 t N CO 0 N 0C7 O LCI m (D W m N O (D O r r f, r 7 N n m .- m A La (D (� N m r N M r N N M N CI M LO LO N M M r O Oa a r o n m N N (n r W m N r c O C7 (n V m N l'o ZZ,r fQ r 07 h T m h M m G N M V} O i+ m a to n h M LL7 W OLLA O 4'! m O A Q m rn r m r -jj j rn CO v o 07 r Q o N 7 n rt N� N U C T- � r- p Q O L4 W LTi m ll'] O co co 7 co (DLI] Lo 0 NI O C m Q O O M M w M h a b y [] N O Lt's G m a 0 d v 0 = v 0 0 ai v LO r 01 V' 0 l; � c � Lr) �m LO v h a� Lf7 M Q M O M M O cu] a 0 (� _ d r- ti m m m h m� m w Q0 I.-ti W n m m L~ m coCoq v c v U p O 1 co U E C.O (G N N (O r• Li] m M W O V (D Lo Ll'f cn N LO LCS lh w CD C m py w U C m 0 r O r n N n W m m Q n m Q. C Q 4 A r O r c o G r A m o c to a (n LU v m 17 N Q L ~ tT n N h m M O Os !71 N y D m O 01 r T� m m h M n th W Lf7 M M 0 c[ 'G � .'�.., w� O. N t+T v R M o7 v L6 N M v v N M v 0 N � d zN a f� C f/s '{L Y O N N T O LM Ln 0 O to Lo 0 p ifs 47 0 O Lo 0 W O 'O LL7 Ln t• J C Lis h m 0 LD P -W a Ln fh m 0 Lt7 ti m Q Q C Q v Z Y 0 0 0 0 0 0 r 0 0 0 0 0 O o r O a G O o O 0 r 0 O o 0 O 0 o Y 0 z rn X cn LL u., 0 U) Z m 7r M N {D 7 C7 N (A Y M N (D Tt M N r r Y r r l 0 0 0 o a a a o Ln a7 9 Ln o o a a m m M m d V V "t N N N N M m m m X X X X X x x X X X x X x X X X x ❑- o o a c CL a g A o o a o c a q a TL� r; ti a~ r� rr r: CO m 00 W M M ao M N (6 Q 4bY Z U U U U U U _M U U U '^ U U U U U U C 9 0 M x 0 M x 0 mm x 0 x o V? x L� x o er x o �L' x sal (V x Ln CV Ln [V x Ln [V x o ['� x 0 m x o M x a m x ,U D a o I R A O O O O O O Q p O A r n n t~ h Ln m m b] a7 W m iN G 0 Project; �- �+oyvA& No: 10 Z K ?-3 Page: 14 McClendonScope: 5 YZutaT- r bate: Checked by: Engineering Inc Item: By w. (Not+ — �, a 5Pv�A l I X11 H� 1. a�+1 -ky-s, V-7A-,1P,4-/--(�6 . ..... I !a TJX : C Z x 1 !o i I r F 9 �rr�T�� C�kTC► 6epi E E I r E Tb i qy& ! • 1� PIE. r �' f_ ___ -._....._ ....m.� Vivaf, 6A J r IS N O M co QD m c u> N q en ". o0 cc +r in d V N Y M Q CQ cn to N m m rn m m m m m rn m m d O O q q O 6 O P O d O O O O 0 f. } A N cola P7 F1 m m M It N - m b ti M N� o m I[7 v 4-1 c� Q :a e 0 N 7 `x 4 O O O 6 0 0 0 o Q 4 O O o O 7 m O e l d) M m m co d m q co Cf d m G_ ll] mm m M W N N N OD m 7 S7 CS 7 fD n m 4> SO co O w O i- n Q O r 'v wCD N 7 co CD ,L,' _ Ox V co M M L h sq 11 111 Lq2c M M O O 0 0 to 0 Q O m[q m m M f9 m f0 c� d Tv +. r N N .- N N N N +,� � % o � C CD co h M m M '- 0 f0 M a0 O `. -t C-) X Q O 6 .- 6 0 w G r N LO L1> 't [o ao G lL) Q K m M h m m x M m 0 U, h l� N fD u> c] O oo cvtO n 4 m m o m O O n rn m co V O oe N �- N N N M m V M d uj 6 1 1 l: t15 O. 7 M 47 m �' C) u1 N m v Cb p f; , ti wm� � v cv o o Cl) m o IR Vo Iq 1, ac ur Ci .t M D cri u> cp to h ai r� In ►� r Q L) T O O r d nm N N O O d LO O W D O Q -i J m W r tf> r v 4J n 01 1p N h [p VO Ili c0 rt O m h r o0 m d C4 N M C � o O Q Y N N M r N N cel N M M 7 C] c'i to to b N u> n M O 0 m[h to Oco 1A M O O LO e7 0 tf] ILi Q C. { rJ _ R r W W w F� C) DD w c rr, m o0 CO CN 1 'v P O 0 O O O O 6 O 4 O O r,- G COQ O GMO p a�0 0 0 C 3 CD D I m C L r v'D rri o M' C in cq h m LO CO O Cs to n m h c0 O N 3 D4 0 o n 0 n 0 6 o 0 o e o 0 C, is b o � f } W a 2 5 m pf a Q C v F- t m C7 m n N m a] m d m m N CO n aQ t{ ra O Iq m b M _ O N E d7 y A n r lCi r C? M r m m c` S d KY U3 0 N N Q b o S N N c> r N N m N N m m N IV C1 d 4 � o cri c —' cn '0 0 a a m 0 Ln m m Q cn v m0 ID Vr m n V*) LO LL D Q U ra C 4i h „J c Y .� v 1a O h O co O 0 r us O n en 0 0 a zh r� 4 m c o r u> Q h g Co q n r OY o II II z L [} c7 0 0 0 0 0 0 0 6 0 0 00 0 n Z ul �$ x !n LL LL Q q7 Q d M N iD 7 M N [D cY M N f0 d 1 4 J11 N SZ L Q XTIO o o P Lq In Lq u? u> UL IQ Iq 1L7 Li Uh U7 CO N N CY N N N N N N N N N. N N. X G X X K X X x x X X X x x X X X X n `� O o O o 0 4 0 C7 O O O p O O O n f v la cel N {p d z 0 J U C] O r 0 V Iq _N V 0 _O 0 0 0 Q 0� _M _N U W� K7 Iq u7 e[7 ILS a (O[ X ryO X x X {Ki X X �Wf ]�C ]S 1NC (�j X X X x x a 0 0 0 c7 O o o p P O D O O ri eQ CD 6A J r IS E I MC Project. ,4 j-1 C?; kN � �' � Na: Z � Paget � b Scope: McClendon ��� Date.: 7 Checked by: Engineering Inc item:- W F`�(U3c c,,?. / jr-/i.�� ick i 1 i ' c � � . G, 3a E I - �� - ►� Osc /od _. L-3,qc.c, f�JT-,�.- iscp t Zq) $._0�S 5� G,3caL{.r E1� s �i�• Z` ASF � 1.2 y� n ��`d �s� r Z5O S- C. kl�Spt G'T-kc`tia Z3 Page- --U--McClendon scope: Jam! �� __�L�IG�1� _ Date:-$— Checked by: Engineering Inc Item:_- 5`ns �'-o m Project: ,A liOM011- � 4 Page. -.,-......Y_ . �Gle�dtati Scope:, in. fi - wv,,1 date: Checked by, En i r) e e T'll hg inc item: By: f� �T q?Lt lb,r ; t U In Frcl AS i !1A,,),,0 V7 KLt 71 6k� Z— ©, .57�r e a 0 tz I O 8 8 0 e4 19 Project fLaom A- 42-k No: Page: McClendon IcOPe:-e Date. Checked by: Engineering Inc Ifem-- B y: SF t - t -3 TZ OF TTIC W-4 L Project: ftmh-2-2- , !9 _JQZR.7-S Page, McClendon scope:' 671s� Checked by: Engineering Inc Item: '�`��,I .ate �--s t c,,,a � ..'... ....._ __,........ CHO eV 74io Z 23 McClendon Engineering, Inc. 1412 W. Idaho Street, Suite 240 Boise, Idaho 83702 DJM 2 (208) 342-2919 McClendon Engineering Inc Beam on Elastic Foundation DESCRIPTION: Grade Beam CODE REFERENCES Calculations per ACI 318-14, IBC 2012, Load Combinations Used: ASCE 7-% Material Properties Project Title: 'T- l,omA- 'r�4 Engineer: Project 1D: IpZB Z Project Descr: File = MMMCE fc V22.50 ksi Phi Values Flexure: 0.90 h = Pc ` 7.50 = 375.0 psi Shear: 0.750 Y Density = 145.0 pcf P1 = 0.850 X Lt Wt Factor = 1.0 Elastic Modulus - 3,122.0 ksi Soil Subgrade Modulus = 250.0 psi I (inch deflection) Load Combination ASCE 7-10 fy - Main Rebar = 60.0 ksi Fy - Stirrups = 40.0 ksi E - Main Rebar = 29,040.0 ksi E - Stirrups = 29,000.0 ksi Stirrup Bar Size # _ # 3 Number of Resisting Legs Per Stirrup 1.0 Beam is surogmd 2n an n 016PryleOW074-f8BuckleySlay, sBulldir�,'CalcsSipptinQec6. SaW".mptrV9 EN@rk C,1Nr-1A3.2G:3. But :t0.t9.t 36 . E}(7.8E)S v.2d4) D(3.367S.D.56Tj i9.3615(0.56T) D(3.361(0.567) 1](7.88)(0.28-0) Cross Section & Reinforcing Details Rectangular Section, Width =12.0 in, Height = 24.0 in Span #1 Reinforcing.... 245 at 3.0 in from Bottom, from 0,0 to 48.0 ft in this span Analied Loads Service loads entered. Load Factors will be applied for calculations. Load for Span Number 1 Uniform Load : D =1.680, S = 0.2840 klft, Extent = 0.0 -> 0.6670 ft, Tributary Width =1.0 ft Uniform Load ; D = 3.361, S = 0.5670 klft, Extent = 11.333 ->> 12.667 k Tributary Width =1.0 ft Uniform Load: D = 3.361, S = 0.5670 klft, Extent = 23.333 -» 24,667 ft, Tributary Width =1.0 ft Uniform Load : D = 3.361, S = 0.5670 klft, Extent = 35.333 --» 36.667 ft, Tributary Width -1.0 ft Uniform Load : D =1.680, 5 = 0.28401A Extent = 47.333 -->> 48.0 0, Tributary Width =1.0 ft DESIGN SUMMARY , • s daximum Bending Stress Ratio = OX32: 1 Maximum Deflection Section used for this span Typical Section Max Downward L+Lr+S Deflection 0.040 in Mu: Applied -3.369 k -ft Max Upward L+Lr+S Defection 0.000 in Mn' Phi: Allowable 6.335 k -ft Max Downward Total Deflection 0.013 in Load Combinalion +1.20M* 50L+1.605+1.601-1 Max Upward Total Deflection 0.000 in Location of maximum on span 4.518 ft Span # where maximum occurs Span # 1 Maximum Soil Pressure = 0.468 ksf at 24.00 ft LdComb: +D+S+H --�� Al)awable Soif Pressure = -- 9.50 ksf Olt Shear Stirrup Requirements €afire Beam Span Length :Vu < %Vcf2, Req'd Vs = Nat Regd, use stirrups spaced at 0.0001n tWimum Forctm A Sirs3ses for Lead Combir.-frons Load Combination Location (0) Bending Stress Results (k -ft) Segment Length Span # in Span Ma : Max Phi-Mnx Stress Ratio MAXmum Beccring Envelope Span 9 1 1 47.435 -0.34 613 0.05 2q McClendon Engineering, Inc. Project Title: 'T ccHt}yvtk '" " ,-(e 0, A 1412 W. Idaho Street, Suite 240 Engineer: Boise, Idaho 83702 Project It?: j 6f, 5, !,J E J [208342-2938 Project Descr. Pendofi Engtneerfrrg Inc Bt? r fle=MA11McSftlecW2s01c8r,Pr�rojaocs11074.10BEurtcay�cS,torgeBuiUingvJaJCV kngQC'�l S#IG =oundatii a:ec6 INC, -7019.s;amlm.. DESCRIPTION: Grade Beam Load Combination Location (R) Bending Stress Results (kik) Segment Length Span 4 in Span Ma: Max PhiWnx Stress Ratio # 1 1 47,435 -0.32 6.33 0.05 8,50Lr+1.60L+i.64ti 41 1 47.435 -0.28 6.33 0.04 1.60L+0.50S+1.6011 # 1 1 47.435 -0.30 6.33 0.05 Span # 1 f 47.435 -0.28 6.33 0.04 +1.20D+f.6CLf40.50W+1.60H U000 0.000 Span# 1 1 47.435 428 6,33 0,04 +1.20D+0.501.+IMS+1.60H 24.600 Span # 1 1 47.435 -0.34 6.33 0.05 +1,200+1.60S+0, 50W+1,60H 0.01.30 24.000 span # 1 1 47.435 •0.34 6.33 0.05 +1.20D+0.50Lr+0.50L+W+1.6QH +D{0.750U+0.750L+H 1 0.0111 Span#1 1 47.435 -0.28 6.33 0.04 +1200+0.50L+0,50S4+1.60H +D+0.750L+0.750S+H 1 Span i1 1 47,435 •0.30 6.33 0.05 +f200+ AL+0,20S+E+1.60H 0.0000 0.000 Span.# 1 1 47.435 -0.28 6.33 0,04 +0.9004+0.90H 0.0000 0.000 Span # 1 1 47,435 -0.21 6.33 0.03 +0.90�+E+0.90H 24.000 Span .`1 1 47.435 -0.21 6.33 0.03 Overall. Maximum pelest ons • Unfacfored Leads 0.0111 Load Combination Span Max.'-" De0 Location in Span Load Combina5on Max. '+' Def! Location in Span +D+L+H i O.Qf11 24.000 U000 0.000 +D+ir+H 1 O.Of ti 24.600 0.0000 0.000 +D+S+H 1 0.01.30 24.000 0.0000 0.000 +D{0.750U+0.750L+H 1 0.0111 24.000 0.0000 0.000 +D+0.750L+0.750S+H 1 0.0125 24.000 0.0000 0.000 +60W+H €7+0. 1 0.0111 24.000 0.0000 0.000 +D+0.70E+H 1 0.0111 24.000 0.0000 0.000 +D+4.750Lr+0.750L+0.450W+H 1 0.0111 24.000 0.0000 0.000 +D+0.750L+0,750S+0,450W+H 1 0.0125 24,000 0.0000 0.000 +D+0,750L+0.750S40,5250E+H 1 0.0125 24.000 0,0004 0,000 +0.60D+0.60W+0.60H , 1 0.0067 24.000 0.0000 0.000 40.606+0,70E+0.66H 1 0.0067 24.000 0.0000 0,000 D Only 1 0.0111 24.000 0.0000 0,000 LrOnly 1 0.6000 0.000 0.0000 0.000 L only 1 0.0004 0.000 0.0000 0.000 S Onty 1 0.0019 24.000 0.0000 0.000 Wort4 1 0,0000 0.000 0.0000 0.000 E Only 1 0.0000 0.000 0.0000 0.000 HOniy 1 0.0000 0.000 HOW 0.000 Detailed Shoat Information Span Distance V Vu (c) Mu d`VuJMu Phi"Vc Comment Phu'Vs Sparing (n) Load Combination Number (€t) (in) Actual Design (k•ft) (k) (k) Reld Suggest +1.20D+1.60S+O.SOW+1.6611 1 O.00 21.00 0.10 0.10 0.00 1.00 19.12 Vu <PhiVcJ2 Not Regd Me 0.00 +1,200+1,60S450W+1,60H 1 0.56 21.00 -1.10 1.10 0.34 1.00 19.12 Vu<Ph0Id2 NotRegd 0.00 0.00 +1.20D+i.60S+0.50W+1.60H 1 1,13 21,00 -1.16 1.16 1.09 1,00 19.12 Vu 4Phlvd2 NotRegd 0.00 0.00 +1.2QD+1.6OS+0.50W+1,eQH 1 1.69 21.00 -0.97 0.97 1.75 1,00 19.12 Vu <Phlvci2 NotRegd 0.00 0.00 +1.20D+1.60S+0.5oW+1.60H 1 2.25 21.00 477 0.77 2,30 1,00 1912 Vu<PhJVd2 NotRegd 0.00 0.00 +1.20D+i.60S+0.50W+1.60H 1 2.82 21.00 -0.58 0.58 2.73 1.00 19.12 Vu <PNW2 Not Reqd 0.00 0.00 +1,20D+1.60S+0.50W+1.60H 1 3.39 21.00 -0.38 0.38 3.06 1.00 1912 Vu <Phi lcQ NotRegd 0.00 0,00 +1,40D+1.60S+0.50W+1.60H 1 3.95 21.00 -0.17 0:17 3.27 1.00 19.12 Vu <PhiVcJ2 NotRegd 0.00 0.00 +1.20D+i.64S+0.50W+1.60H 1 4.52 21,00 0.03 0.03 3.37 0.22 18.21 Vu<PhiV62 NotRegd 0.00 0.00 +1.20113+1.605+0.50W+1.60H 1 5.08 21.00 0.24 0.24 3.35 1.00 19.12 Vu <Phi*J2 Not Regd 0.00 0.00 5 McClendon Engineering, Inc, �E 1412 W, Idaho Street, Suite 240 Boise, Idaho 83702 (208)342-2919 WCWndon Engineerfng Inc DESCRIPTION: Grade Beam Detailed Shear lnformtaf on Project, Title: -rA µurn 0, T& -;A Englneer: Project ID: ]bZ8. i' 3 Project Descr, File= M.AWE Projec% 019 Proper si1074.18 i3L&gy5tor25f sobwe Span Distance V Vu (k) Mu d'VUINIu PhiNc Comment. Phi"Vs Spacing (in) Load Combiaa0on Number (#i) (in) Actual Design (k -ft) (k) N Req'd Suggest +1.2CD+4.60S+0.50W+1.60H 1 5,65 21.00 0.46 0.46 3.21 1.00 19.12 Vu c PhVd2 Not Reqd 0.00 0,00 +1.20D+1.60S+0.50W+1.60H 1 6.21 21.00 0.68 0.68 2.96 1.00 1912 Vu <PhIVd2 Not Reqd 0.00 0.00 +1.20D+1.60S-450W+t,60H 1 8.18 21.00 0.91 0.91 2.57 1.00 19.12 Vu <PhVc12 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 7.34 21.00 1.15 1,15 2.06 1.00 19.12 Vu<PhVc12 Not Reqd O.CO 0.90 +i,20D+1.60S+0.50W+1.60H 1 7.91 21.00 1.39 1.39 1.41 1.00 19.12 Vu<PhiVd2 NotRegd 0.00 0.00 +1,200+1.60S+0.50W+1.60H 1 8,47 21,00 1.65 1.65 0.63 1.00 19.12 Vu<PhiVc1a NotRegd 0.00 0.00 +1.200+1.605+0.50W+1.60H 1 9.04 21.00 1.91 1.91 0.30 1100 19.12 Vu<PhPVd2 Not Reqd 4.00 0.00 +1.200+1.60S+0.50W+1,60H 1 9.60 21.00 2.18 2.18 1.38 1.00 19.12 Vu <PhW2 NotRegd 0.00 0,00 +1.20D+1.60S+0.50W+1.50H 1 10,16 21.00 2.46 2.46 2.61 1.00 19.12 Vu <PhiVd2 NotRegd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 10.73 21.00 2.75 2.75 4.00 1.00 19.12 Vu e PhiVd2 Not Reqd 0.00 0.09 +1,20D+1,60S+0,50W+1.60H 1 11.29 21.00 3,04 3.04 .5.55 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 420DAUS+0.50VIA.601-1 1 11.86 21.00 0.74 0.74 6.59 1.00 19.12 Vu , PhiVd2 Not Reqd 0.00 0.c0 +1.20Q+1.60S+0.50W+1.60H 1 12.42 21,00 -1.74 1.74 6.22 1.00 19.12 Vu <PhVr12 Not Reqd 0.00 0.00 +1.2oD+5.60S+0.50W+1,60IH 1 12.99 21.00 -2.64 2.64 4.70 1,00 19.12 W <FhVrl2 Not Reqd 0.00 0.00 *1.207+1-60S-€0.50W+1.60H 1 13,55 21.00 •2.33 2.33 3.21 1.00 19.12 Vu<PhVe/2 Not Reqd 0.00 Ho +1.200+1.60S+0.50W+1.60H 1 14,12 211,00 -2.03 2.03 1.89 1,00 19.12 Vu <PhWc12 Not Reqd 0.00 0,00 +1.200+1.6OS+0.50W+1.60H 1 14.88 21.00 -1.72 1.72 0.75 11,00 19.12 Vu 4 PhiVd2 Not Reqd 0.010 0,00 +1.20Q+1AS+0.50W+1,60H 1 15.25 21.00 4.42 1.42 0.23 1.00 19,12 Vu <Ph!Vcl2 Nat Reqd 0.00 0.00 +1.20D+1MS+0.50W+1.60H 1 15,81 21,00 1.12 1.12 1.03 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.50S+0.50'K+1.60H 1 16.38 21.00 -0.81 0.81 1,66 1,00 19,12 Vu <Ph1Vd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0:50W+1.60H 1 16.94 21.00 -0.51 0.51 2.12 1,00 19,12 Vu <PhVd2 Not Reqd 0.00 0.00 +1.290+1,60S+0.50W+1.60H 1 17.51 21.00 -0-21 0.21 2,41 1,00 19.12 Vu <PhVd2 Nat Reqd 0.00 0,00 +1.200+1.60S+0.50W+1.60H 1 18.07 2100 0.10 0.10 2.53 0.91 19.01 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 18.64 21.00 0.40 0,40 2.47 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1,605+0.50W+1,601-1 1 19.20 21.00 0.71 0.71 2.24 1.00 19.12 Vu<PhVd2 Not Reqd 0.04 000 +1.200+1.605-450W+1.60H 1 19.76 21.00 1.02 102 1.84 1.00 19.12 Vu <FhVd2 No[Reqd 0.00 0.00 +1,20D+1,60S+0,50W+1.60H 1 20.33 21.00 1.34 1.34 1.27 1.00 19.12 Vu <PhVrJ2 Not Reqd 0.00 0.00 +1.20D+1.605+0.50W+1.60H 1 20.89 21.00 1.65 1.65 0.51 1.00 19.12 Vu <PNW2 Not Reqd 0.00 QA0 +1.20D+1.60S40.50W+1.60H 1 21.45 21.00 1.98 1.98 0,42 100 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 *1.200+1,60S+045OW+1.60H 1 22.02 21.00 2.30 2.30 1.54 1.00 19.12 Vu < PNW2 Not Reqd 0.00 0.00 +1.200+1.608+0.50W+1.60H 1 22.59 21.00 2.63 2.63 2.84 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 000 +1.20D+1.60S+0.50W+1.60H 1 23,15 21,00 196 2.96 4.32 1,00 19.12 Vu <PNWW2 Not Reqd 0.00 0.00 +1.2aD+1,60S+0.50W+1,60H 1 23:72 21.00 1.39 1.39 5.63 1.00 1912 Vu <PhVc12 Not Reqd 0.00 0.00 +1.20D+1.60S40.50W+1,60H 1 24.28 21.0D •1.06 1.06 5.63 1.00 59.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.200+1.60S+0.50W+1.60H 1 24.85 21.00 -2,63 2.63 4.32 1.00 t9A2 Vu <PhVcf2 Not Reqd 000 0.00 +1.200460S+0.50W+1.60H 1 25,41 21.00 -2.30 2.30 2.84 1.00 19.12 Vu <PhVd2 Not Reqd 000 0.00 +f.20D+1,50S+0,50W+1,60H 1 25.96 21-00 -1.98 1.98 1.54 100 19.12 Vu <Pi1Vd2 Not Reqd 0.00 0.00 +1.200+1.6oM.50W+1,60H 1 26.54 21.00 -1.65 1.65 0,42 1.00 19,12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.200+1.60545OW+1.60H 1 27,11 21.00 -1.34 1.34 0.51 100 19.12 W <PhiVd2 Not Reqd 0.00 0.00 +1.200+1,60S+0,50W+1.60H 1 27.67 21.00 -1.02 U2 1.27 LOD 19.12 Vu <PhiVd2 Not Reqd 0,00 0.00 +1.20D+1,60S+0.50W+1.60H 1 2824 21.00 -0.71 0.71 1,84 1,00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60$+0.50W+1.60H 1 28.80 21.00 -0.40 0.40 2.24 1,00 19.12 Vu<PhiVd2 Not Reqd 0,00 0.00 +1,20D+1.e0S+0.50W+1.60H 1 29,36 21.00 -0.10 0.10 2.47 0.93 19,04 Vu <PhiVrJ2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 29.93 21.00 0.21 0.21 2.53 1.00 19.12 Vu <PhNd2 Not Reqd 100 0.00 +1.20460S+0.50W+1.601-1 1 30.49 21,00 0,51 0.51 2.41 1.00 19.12 Vu<PhiVc12 Not Reqd 0.00 0.00 +1,20D+1,60S+0.50W+1.60H 1 3106 21.00 .0.81 0.81 2.12 1.00 19.12 Vu <PhiVcJ2 Nal Reqd 0.00 0.00 +1.207+1.60S+0,50W+1.60H 1 31.62 21.00 1.12 1.12 1.66 1,00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.200+i.605+0.50W+1,60H 1 32.19 21,041 1.42 1.42 1.03 1.00 19.12 Vu < PhiVd2 Nat Reqd 0.00 000 +1100+1.60S+0.50W+1.60H 1 32.75 21.00 1.72 1.72 0.23 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 DAG +1.20D+1,60S+0.50W+I.60H 1 33.32 21.00 2.03 2.03 0.75 1.00 19.12 Vu<PhiVd2 Not Reqd 0.00 MCI +1.20D+1.60S+0.50W+i.60H 1 33.88 21.00 2.33 2,33 1.89 1.00 19.12 Vu<PhiVc12 Not Reqd O,eo 0.00 +1.20D+1.60S+0.50W+1.60H 1 34.45 21.00 2.64 2,64 3.21 1.00 19.12 Vu < PNVQ2 Not Reqd 0.00 0.00 +1.200+1.60S+0.50W+1.60H 1 35.01 21.00 2.95 2.95 4,70 1,00 39.12 Vu<PH W2 Not Reqd 0.00 DAO +1.200+1.60S+0.50W+1-60H 1 35.58 21,00 2.05 2.05 6.22 1.00 19.12 Vu <PhiYd2 Not Reqd D.00 0.00 -21C McClendon Engineering, Inc. Project Title: E 1412 W. Idaho Street, Suite 240 Engineer: 8aise, Idaho 83702 Project ID: Ips. 23 (208) 342-2919 Project Dew. McClendon Erigineenng trir~ Bq�om on E�fai�tfG f'otin[ftion File= R McEProjecls12018PrpjecW074.18BuddeyStgrageBdJd1ngs1Qa1csVeorrg.ec8, Suh�aecdptri�tdlctVERCRIC.IUC:t9832019 i3�d:tfil9.t?�3. DESCRIPTION: Grade Beare Detaifed Shear Information Span Distance 'd' Vu (k) mu d`Vu1Mu PWVc Comment PhiVs Spa6ng (in) Load Ccm61nat1Gn Number (ft) (in) Actual Design (k -ft) (k) (k) Reqd Suggest +120D+1.6Q840.50W+1.60H 1 36.14 21.00 -0.44 0.44 6.59 1.00 19.12 Vu<PhiVc12 NotRegd 0.00 0.00 +1.20D+1.605+0.50W+1.60H 1 36.71 21.00 -2.75 2.75 5.55 1.00 19.12 Vu < PhiVG2 NotRegd 0.00 0.00 +1.20D+1.6OS+0.50W+1,60H 1 37-27 21.00 -2.46 2AB 4.00 1.00 19.12 Vu<PhiVc12 NotRegd 0.00 0.00 +1.2917+1.685 ,50W+1.60H 1 37.84 21.00 -2.58 2.18 2.61 1.00 19.12 Vu < PhiVG2 Not Reqd 0.00 0.00 +120D-0,60S+0.50V1+1.60H 1 38.40 21.00 -1,91 1.91 1.38 1,00 19.12 Vu<Phlvd2 NotRegd 0.00 0.00 +1.20D+1.60S+O.50W+1.60H 1 38.96 21.00 -1.65 1,65 0.30 1.00 19.12 Vu e PhiVr12 that Reqd 0.00 0-00 +1.200+1.60S40.50W+1.60H 1 39,53 21,00 -1,39 1.39 0.63 1.00 19,12 Vu<Ph'sVcl2 Nat Reqd 0.00 0.00 +1,2OD+t.60S+0.50W+1.60H 1 40.09 21,00 -1.15 1.15 1.41 1.00 19.12 Vo<PWC12 Not Reqd 0.00 0,00 +1.20D+1.60S460W+1.60H 1 40,66 21.00 -0.91 0.91 2.08 1.90 19.12 Vu < PhiVc12 Not Reqd 0.00 0,00 +120D+U0S+0.50W+1.60H 1 41.22 21,00 •0.68 0.68 2.57 1,00 19.12 Vu<Phi*12 Not Reqd 0-00 0.00 +1.290+1.60S+0.5QW+1.5OH 1 41.79 21.00 -0.46 0.46 2.96 1.00 19.12 Vu <PhVW2 Not Reqd 0.00 0.00 +1.2013+1.50S+0.50W+1.60H 1 42.35 21.00 -0.24 0.24 3.21 1,00 19,12 Vu<PhiWJ2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.56W+1.60H 1 42.92 21.00 -0.03 0.03 3.35 0.22 18.21 Vu < PhiVc12 Not Reqd 0.00 0.00 +120+1.60S+O.5QW+1.60H 1 43,48 21.00 0.17 0.17 3.37 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0,00 +1.20D+1.60S40:50W+1.60H 1 44.05 21.00 0.38 0.3a 127 1.00 19.12 Vu<PhJvd2 Not Reqd 0.00 0.00 +120D+1.6OS+O.50W+1.6QH 1 44.61 21.00 0,58 0.58 3-06 1.00 19.12 Vu e PhJ W2 Nat Reqd 0.00 0.00 +1.2013+1.60S+0.50W+1.60H 1 45.18 21.00 0.77 0.77 2.73 1.00 19,12 Vu<PhiVe12 Not Reqd 0.00 0100 +1.20{3+1.605450W+1,60H 1 45.74 21.09 0.97 0.97 2.30 1.00 19.12 Vu < PhVG2 Not Reqd 0.00 0.00 +1.200+1.6QS+0.5OVW.6OH 1 46.31 2100 1.16 1.16 1.75 1.00 19.12 Vu <PhiVW Nat Reqd 0,00 0.00 +1.200+1.503-456W+1.601-1 1 46.87 21.90 1.36 1.36 1.09 1.00 19.12 Vu < PhiVW2 Not Reqd 0.00 0.00 +1.200+t.60S+0.6GW+1.60H 1 47,44 ROO UO 1.30 0.34 1.90 19.12 Vu <PhiVc12 Not Reqd HO HO Mc McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLANK McClendon Engineering Inc Project:_JA1+bMk?- I nggE4 No:- -QZB. ?=$. Page: Z7 Scope: .4A94cr't►*a Date: 43 Checked by: Item: By: 1�-•i�-�'�- �rSt�-zysr - .�tn.aa' UJ,r�� � �QU� = �1SrxPrfi }fir = !;!' C Ait,� &Qrx, (3r r )OTe M'LP'TLV i l ..7['" j i 1 r � 3 { - i i _ F;i7) { rr 6/22123, 3:46 AM U.S. Seismic Design Maps dMFE s J Tahoma Terra Yelm, WA, USA Latitude, Longitude: 46.9420431, -122.6059582 1 st Street Nail Bar Ma and Pa's Family Diner , Yelm-Tenino Trail 510 Tahoma Valle Golf Course Go gle l Date Design Code Reference Document Risk Category Site Class *Zb OSHPD YThe Shlplap Shop sol & Coffee House Q •. South Puget Sound Habitat for... ti 6122/2023, 3:47:15 AM ASCE7-16 H D - Default (See Section 11.4.3) Type Value Description Ss 1.288 MCER ground motion. (for 0.2 second period) St 0.465 MCER ground motion. (for 1.0s period) SMS 1.545 Site -modified spectral acceleration value s,i null -See Section 11.4.8 Site -modified spectral acceleration value SDS 1.03 Numeric seismic design value at 0.2 second SA Sol null -See Section 11.4.8 Numeric seismic design value at 1.0 second SA Type Value Description SDC null -See Section 11.4.8 Seismic design category Fa 1.2 Site amplification factor at 0.2 second F„ null -See Section 11.4.8 Site amplification factor at 1.0 second PGA 0.509 MCE(3 peak ground acceleration FPGA 1.2 Site amplification factor at PGA PGA, 0.611 Site modified peak ground acceleration TL 16 Lang -period transition period in seconds SsRT 1.288 Probabilistic risk -targeted ground motion. (0.2 second) SsUH 1.418 Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration SSD 1.5 Factored deterministic acceleration value. (0.2 second) S1RT 0,465 Probabilistic risk -targeted ground motion. (1.0 second) S1 UH 0.522 Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration. S1 D 0.625 Factored deterministic acceleration value. (1.0 second) PGAd 0.509 Factored deterministic acceleration value, (Peak Ground Acceleration) PGAUH 0.552 Uniform -hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration Map data 02023 https://www.seismicmaps.org 113 6/22/23, 3:46 AM Type Value CRS 0.908 CRI 0.891 CV 1.358 https://www.seismicmaps.org U.S. Seismic Design Maps Description Mapped value of the risk coefficient at short periods Mapped value of the risk coefficient at a period of 1 s Vertical coefficient 213 Mj Aj Project:-�71inM8, No: )(9Z- Page: McClendon Scope: ..-..-5Maa--'r Date: 5—/2,3. Checked icy: Engineering Inc Item: By:— 15r� ... . ....... - 51 1D 0 ry tAJ PM -Fo-rftL- w 17 7� p� V:-- 104e 1776ptf-) V- 547 31 2 0 2Q i / \ 1 \ \ l 77, \ T N \ NL / \\ - l \ 7177A \ \ TF I \ f77' \ — I 31 2 0 2Q EA NN U 0 O J m Z Q z LL n LL � LL OW 06 N I I I I n I I I 3z m!-33 .,.LQ3 Project: i } I- _ � No:Zr Page; _ McClendon scOpe:' 'JDate: � � _ checked by: Engineering Inc item:_ _ _ _ By. 1�4t�2�42 � �.5 t ��,,� � -° •b � ra prs z.n ��r✓1 3Vp� Koo r-�t,.} f na0 I- PC-? 73 tr- 113 PL SL-Av.A PA, -L c 'Projec Scope:McCiendon Date:/, Checked by; Engineering Inc Item: —_—.— Y:-- T1s;pi c n,t t car C� } Z7ec r Z7 y�sr �rvt�x, t)rJ,PGF �7Sr Z•Cr, Par TfLrar W E nr H PYA Cir4> 71/ sK = zrg7r�s l slC ,r(Vbf # (Z. S Ct2 L �xQ Project -4 _ No: -/-O.: Z3 Page:. 3 lV1cClend©Iri 5cope:UL���i1� L7aie:_/__Checked by: Engineering In By_�_� PC -F 16 F'T- /� Y k +n E E l 75p4- F .._... Vis:.. 10 �r o 1-7SO t(3- FT' x Z, me Z'e = o. Zlt q , ;, 3 I �j Ac -n o?J Com 7 (� (DE?SI�Ce� 7 TRK" F,20,A r Cr -S, 'b'-i&fermi ,f,7,x 2Z2x r(OCin, 0�. jc Project: -i" 21 ....t 1=��4 _ No:_ Pager McClendon Scope. � � �� Date. � Checked by: Engineering Inc Item;._BY, _ �3YLrkLc:-Sc G,�` Yp1 e rx,n,� [ sr I I r E 0S (arto+cG s k Typ- yJ = !0" 0, (0- 70 k s t ��' D, aCf �J, S �iu 1Z SCt[:wSt.[�S g(-f01S700C-cT- c1y= �3 Z 1 �2 S Ccs s 7 Cry c e 5 CMO; OK 6�r i;Vs{rr Fe o 0,41 L Z. 30.5 PSF Z.0 p Cmv r.�raULp,L�2 Zl,tvstr Projec'r , 2� No, Page — McClendon scape:�Tl2r[,C�. _.iC7� gate: 5,/z� Checked by: Engineering Inc item: ChA J 1- x �z x l i t S7-7-0 T- w/� ChA J 1- SE:C.T4 O n.> �1 Z rte, { SE:C.T4 O n.> �1 Z rte, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �o AW �- ¢; om z� 54 o� I I h f I I I I I I I I I I I I I I I I I I 7 I I 1 I I I I I I I I I I I I I I 1 I I I I I I I I I I I I I I I I f I I I I I• I I I I I I I 0 0 0 0 0 0 0 0 0 �o AW �- ¢; om z� 54 o� Project- 7AF1OAA4 rMU2�n- No:... IOTM<, ?-S Pager M Date: Checked by: cClendon scope:` r Engineering Inc Item: By: 4 � R [ { i 3 ki 00 1(0 6A 5TP—A�p RIC- ZZ !,Type- 1 4 14 ss wl -.7-.. -„ ,. _. , Cold-FormedConnectors for S/HDU Holdowns The S/HIDU series of holdowns combines performance with ease of installation. The pre -deflected geometry virtually eliminates material stretch, resulting in low deflection under lead, installation using self -drilling screws into the studs reduces installation time and ° saves labor cost. ° S/i Material: 118 mil (10 ga.)° US Patents pilot holes far 5,979.130 5,979,130 and Finish: Galvanized (G90) menulacturin9 6,112,495 purposes ° Installation: (fastener H not required) ° c • Use all specified fasteners; see General Notes ° • Use standard #114 self -drilling screws to fasten to studs ° • Anchor bolt washer Is not required • See SB, SSTB and PAB anchor bolts on pp. 163-164 for cast -in-place anchorage options • See SE i XP° and AT XPe adhesive products at lie strangtie.com for anchor bolt retrofit options Codes: See p. 11 for Code Reference Key Chart lila' h�zF - - - I --Fasteners Stud Member R Anchor Bolt Stud Thickness' (in.) I Diameter' Fasteners' mil (ga.) 0189 15,485 0,250 2-33(2-20) 77A� /0r'1 (6) #14 2-43(2-18) -54 -16 ASD (Ib.) Tension Deflection at Load ASD Load° 0.115 0-093 Steel fixture 4,470 0,063 - 2 -33(2 -?Q 4,895 0.125 i 2-43 (2-18) 6,125 0.119 S/HDU6 1036 4a (12) #14 2-54(2-16) 6,125 ().108_ _ Steel fixture 5,995 0.060_ 2-33(2-20) 6,965 0.103 S/HDU9 127/6 7/a (18) #14 9,255 0.125 2-54(2-16) 9,99_0 - 0.106 Steel fixture 12,715 0.125 2-33(2-20 6,965 0.103 7A (27) #14 2-4312-18) _ 9,595 S/HDU11 }6�& -- 2-54(2-16) - 9,675 7A 2-43 (2-18)" 11,100 _ with heavy (27) #14 2_-54 2( 16},:• 12,175 hex nut _ Steel fixture' 12,945 _W - These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong Tie for details. 1. The designer shall specify the foundation anchor material type, embedment and configuration. Some of the tabulated holdown tension loads exceed the tension strength of typical ASTM A36 or A307 anchor bolts. 2. Stud design by specifier. Tabulated loads are based on a minimum stud thickness for fastener connection. Holdown o 3.'/e" self -drilling screws may be substituted far bearing #14 self -tapping screws, plate 4. A heavy hex nut for the anchor bolt is required to achieve the table loads for S/ll i . 5. Deflection at ASD or LRFQ includes fastener slip, holdown deformation and anchor rad elongation for 18' max holdowns installed up to 4" above top of concrete. Holdowns may be installed raised, up to 18" above top of concrete, with no load reduction provided that additional elongation of the anchor rod is accounted for, 6. The Nominal Tension Load is based on the tested average ultimate (peak) load and is provided for design in accordance with section C5 of AISI S213 that requires a holdown to have a nominai strength to resist the lesser of the amplified seismic load or the maximum force the system can deliver. 7. See Fastening Systems catalog (C -F-2019) on strongtie.com for more information on Simpson Strong -Tie fasteners. 0.125 0.125 0.111 Shearwall chord studs Holdown Rod Typical S/HDU Installation 11,125 0189 15,485 0,250 Nominal Code Tension Deflectian at Tension Load Ret Load LRFD Load 5 ° (lb.) 19,445 _ 20,680 - -.- 3,705 0.149 5,685 6,105_ 0.190 9,365 6,345 0.156 9,730 - 7,165 1 12,120 - 8,495 0.250 10,470 9,690 0.250 15,460 11,125 0189 15,485 0,250 0:225 _15,960 _20,510 11,125 0.177 0.189 15,330 0.162 `15,460 0.158 _ 17,500 0.250 19,445 _ 20,680 - -.- _ _0.243 - 0_163 5°slope max. /12L� t; Coupler l } Tap of Bottom -. i • concrete V Holdown Raised Off GFS Bottom Track 165 ---_IIBC, 810 FL, LA -31,45Z.___ 13,165 23,515 23,710 24,955 29,825 31,715 _ Typical S/HDU Floor -to -Floor Installation t?� 7lSRr'" e �5 1 /01 per. r 7o' 280 Connectors for Cold -Formed Steel Construction • '! Straps CMSTC provides countersunk fastener slots that provide a lower screw head profile. CS, CMST and CMSTC are continuous utility straps which can be cut to length on the job site. Packaged in lightweight cartons (about 4O lb.). Finish: Galvanized. Some products available in ZMAX" coating; see Corrosion Information, pp. 18-21, Installation: • Use an specified fasteners; see General Notes. • Refer to the applicable code for minimum edge and end distances, • The table shows the maximum allowable loads and the screws required to obtain them. See footnote #1. Fewer screws may be used; reduce the allowable load by the code lateral load for each fastener subtracted from each end. CS16 Hole Pattem (all other CS straps similar) Codes: See p. 11 for Cade Reference Gauge stamped on part for Key Chart easy identification. 0 Fasteners symmetrically mx w� • 1� Width (in.) e t i- M 1- 1l: - required in CMST14 Hole Pattem clear span (CMST12 similar) 43 mi! 19 a 54 mil 16 a d -' V„ -OiSrL`1B +67AI:OE -�4 IS diameter end distance per (70) #10 Ido} #10 CMSTCI 6 Hole Pattern Codes: See p. 11 for Cade Reference Gauge stamped on part for Key Chart easy identification. 0 Fasteners symmetrically Abdel No. Total Length Connector Material Thickness mi! {ga.) Width (in.) Screws not Allowable Tension Load (lb.) required in AalfterfStudlJoWThickness clear span 33 mil (20 ga.) 43 mi! 19 a 54 mil 16 a d Provide minimum 3x screw lan�t11 diameter end distance per (70) #10 Ido} #10 code for CS and CMST CMST1 Equal num her of 3 1,72) 410 specified screws (28) a1O in each end Typical CS Installation as a Floor -to -Floor Tie Abdel No. Total Length Connector Material Thickness mi! {ga.) Width (in.) Fasteners' (Total) Allowable Tension Load (lb.) Code Ref' AalfterfStudlJoWThickness 33 mil (20 ga.) 43 mil (18 ga.) 54 mil 16 a 33 mil (20 ga.) 43 mi! 19 a 54 mil 16 a CMST121 40'-3" 97 (12) 3 (104) #10 (70) #10 Ido} #10 9,080 CMST1 52'--6' 68 (tot 3 1,72) 410 (50) #10 (28) a1O — 6165 CMST+ 54' 54 (16) 3 (54)#10 (36) k10 (30) #10 4,600 CS14 100' 68 (14) 1114 � (28) #10 ! 08j#10 ;12) #10 2.305 CS 16 150' S4 (16) 1 % fl a) #10 (12) #10 (8) #10 1,550 I131, t2, FL CSiaS 100' 43 (18) 11/. (14) #10 (10) #10 (6) #10 1,235 0518 200' 11/. (14) #10 (10) #10 (6) 810 1,235 C520 25 Or 33 (20) 1 K (12) #10 {a) #10 (6) 410 945 CS22 300 (10) #10 (6) #10 (6) #10 775 . These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong -Tie for details. 1. Use half of the fasteners in each member being connected to achieve the listed loads. 2. For CMST straps: End Length {inches) = 1h total fasteners x'A' + 1" when all holes fit€ed. Double length if only round holes filled. 3. For CMSTC16 straps: End Length (inches) = 1h total fasteners x Vi' + 1' when all holes filled. Double length if only round holes filled. 4. For CS straps: End Length {aches) ='i tots+ fasteners + 1'. 5. Total Cut Length = End Length } Clear Span + Find Length. No, of Screws Used 6. Calculate the connector value for a reduced nanhur of screws as follews: Allowable Load = x Table Load 24 Screws {Used) No. of Screws in Tkle Example: CM5TCi6 on 54 mil with 24 screws: x 4,600 Ib. = 3.680 Ib. 30 Screws (fable) 7. Loads are based on !esSer of steel strap capacity and AISI 5100 fastener calcufation. B. See pp. 138 through 171 for more information on Simpson Strong -Tis fasteners. �1 z z a 0 U w i= z 0 z n a N 0 N v a Project:�- bl�! .... 1'z�F No: J0481 Q Page: CCi)il0i� Scope:_ IL`CT �(yi��1� Date: Checked Checked by: Engineering inc Item: _ By:-- T-- 'OF y:-_OF G� (Q i L 57-ir c s U lO Ogyc- , �1,�• i C M ES FUGL if T � i i It+ i t s # i 7 s i , x i i E , 9 0 0 N N 2 N C? E N CL N 4i S9 C] c O Mn �7 41 m m N O O � ~.. r O O O G i 4] O m N (D r �r N m 0 'u'1 m O3 cn ItN cm4 SDD ( m m (O O (D W cp N O O m m m O V o ,C7 V (D �[ O O O OP O O r O O O O O m O O O N T O (n r (p M C N a1 V (D M V y _ rn (p cl to p> � (3) N n q tD A O r ti r o r r r N N [O O r o a) m It mo O O [D I ti x c N N r O cD cD �' o 0 0 Os m m N O +r V N V N v N v N v N v N v N v N (. N Un N •t N v N M1 N r N r N r N k x r m r V (p V m N CO CO O O n rh m O G_i c N V m V N ((7O ((7 (D N (O i(5 r N [O N i V eY h (D N ti (� N N N N N cV C V C] m O. 4� n LQ �fi N f0 f4 n Qi U) v (ri wn . ((i w N m ti r pi (ci co a O O O iu (y N > r» O v M1 rn N O v M1 rn N cri p v a> N " O w d r, ti m O d Y; ((i r� M 6 r c46 n N V N O C N b 0 T (6LOV t0 � (8 [O m r (O V IA O (D h O r O Li Q ...Z �„t m O c0 N A O V m (O O n r N O M1 N 0 O Y M v� N m v 0 I-- M y LO h M v (D ri c = Ln 9 y � N n M O (fl � m O (D In m O t0 0 m CS (D in E o (3 a= � M1 n O ca m ao m co r n o w m m (q w h r O ao m co m m f+ r` O co m as w oa N O G O C 4 4 0 0 0 O O O O O G O u a o N � m m 'E C�6 m m fD O O o co u; N tD (n m 0 to o m m W O aG �,.-,U.. U c M1 0 r m N co n O as r m C 04 V O n. N m 47 0 n O 0I O u] (i v o. o v c= o 0 CL o co '� M ' c 0 ¢ _w V h � 0 a1 al m m r m (D 7- (n r M (n OI O) Of (gyp Rl � y ar m u7 n m r (D 63 r M N A O� LL7 m W M1 m Ul Q 'a ,-_ .... CV O M h C'i V n N M O V CI v Wlx� N M M V M LO Iq CJ O M M1 M O v V N O fL 0 CL O DL Z of t6 } (!7 M (n U,5 0 0 0 0 LO 0 O to iU,� 0 O (n w GO to Yy O O a C O uhcoO IR IR n n co Or G c y 000 N L O O O O O O O O O O O O OD X I- 2 U) S U IL LL O Z CD fD V m N (D V C7 N (D V M N cp V C7 N UJ r r G 0 o 0 0 0 (n in (n (D o 0 o a u7 47 W� Ir! ' I fDm m m m m Cl) m m v V v V N N N N I X C X X X X K X X X X X X X X X K X O O o 0 0 P G 0 0 0 0 0 0 0 0 0 r (O (D (D (D f0 w (fl w (D o (D m M1 r M1 r N_ (D v N_ (D It CO N_ `c U U U U U U U U U U _m U U U U V U C O 0 M X 0 M X o M X c m X Ur m X (n m X vi 0m 1011 X Z K o V K o X a Y % o v K' N K (n N K (a (,i X (n N % Sy O O O O O O O o O O O O O Q O G7 (p (p to (D (D 0 0 0 C) (D (D .U' ti r ;ti M1 0 0 N N 2 N C? E N CL N 4i S9 C] c O Mn �7 41 Mc McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLANK