Loading...
Structural Calculations - Building DMc McClendon Engineering Inc I WE. MU '' • BUILDING D STORAGE Yelm, Washington FINAL STRUCTURAL CALCULATIONS June 30, 2023 Prepared for: Keimig Associates 307 D Street SE Auburn, Washington 98002 EXPIRES: Z3 Z3 Prepared by: McClendon Engineering Inc 1412 West Idaho Street, Suite 240 Boise, ID 83702 Project No.: 1028.23 Mcr McClendon Engineering Inc TABLE OF CONTENTS GENERAL: Table of Contents ................................ Design Loads ....................................... Materials and References .................... Deferred Submittals ............................. Special Inspection ............................... Project Description .............................. GRAVITY DESIGN: TAHOMA TERRA BUILDING D STORAGE YELM WASHINGTON 102$.23 Pa e-.-..--g-__Number ................................................................I.................. f Z ......................I............•............................................... 3 ................................................................................... 3 ............................................................................... 3 ............................................................ I ....................... L4 RoofFraming............................................................... Roof Panel Purlins LintelDesign.............................................................. ly WallDesign ......... ....................................................... Foundation Design........................................................... Wall Footings LATERAL DESIGN: Lateral Analysis............................................................ Z 7 Wind Base Shear Seismic Base Shear Diaphragm/Chord Analysis ................................................... Shear Wall Design.......................................................... Yo X -Braced Walls Mcg McClendon Engineering Inc GRAVITY DESIGN LOADS: Roof Dead Loads Roofing: - Decking: 2 psf Framing: 2 psf Insulation: 2 psf M & E Collateral: 3 psf Miscellaneous: 1 psf Z Roof DL: 10 psf Roof Live Loads Snow Load: 25 psf Roof LL: 20 psf Floor Dead Loads Flooring: SOG Decking: Framing: M&EI Miscelh E Floor Floor Live Loads Occupancy/Use: Light Storage Floor LL:125 psf Occupancy/Use: - Floor LL: - Wall Loads Interior Stud Wall DL: 7 psf Exterior Stud Wall DL: 7 psf CMU Wall DL: 55 psf Wind Loads Seismic Loads Wind: 115 mph Site Class: D - Default Exposure: CSeismic Design Category: D MWFRS: Simple Risk Category: II Diaphragm Importance Factor: 1.0 LOAD COMBINATIONS: Desien Method Strength Design: Basic Load Combinations ❑ Allowable Stress Design: Basic Load Combinations ❑ Alternative Basic Load Combinations TAHOMA TERRA BUILDING D STORAGE YELM WASHINGTON 1028.23 R: 4 0: 2 p: I Sns: 1.03 SDI: - MSFRS: X Braced CFS Walls Mc McClendon Engineering Inc MATERIALS: Steel Shapes Fy =-,50 ksi Plates/Angles/Channel: FY 36 ksi Hollow Structural Shapes: Fy =—A2 ksi Pipe: Fy = - Bolts: A325 Anchor Bolts: A307 REFERENCES: Soils Bearing Pressure = 1500 psf Source of Information: assumed Frost Depth — 18" DEFERRED SUBMITTALS: Steel: Steel member layout Joist/Joist Girders Layout ❑ Metal deck layout Wood: Engineered Truss Layout ❑ Cold Formed Steel: Steel member layout 2 SPECIAL INSPECTIONS: Fabricators ❑ Steel Construction Concrete Construction ❑ Masonry- Level 1 Masonry- Level 2 Wood Construction ❑ Soils ❑ Deep Foundations ❑ Special Cases 0 Seismic Resistance ❑ Other: ❑ Wood Sawn Lumber: - GluLam: - Eng. Product: - Light Gauge Steel Fy: 55 ksi Codes Used 2018 IBC TAHOMA TERRA BUILDING D STORAGE YELM WASHINGTON Concrete fr= 2500 psi fy = 60 ksi Masonry fm = 1500 psi fy = 60 ksi Software Used USGS Enercalc Concrete: Mix Design Reinforcement Layout Masonry Mix Design Reinforcement Layout Other: ❑ 1028.23 DMC McClendon Engineering Inc PROJECT DESCRIPTION: TAHOMA TERRA BUILDING D STORAGE YELM WASHINGTON 1028.23 The Structural scope of work for this project consists of: • The design of a single story light -gauge steel framed storage building. • The gravity system for the building consists of a light gauge steel framed roof supported by steel frames, light -gauge steel framed walls. • The lateral system for the building consists of a simple diaphragm, light framed shear walls reinforced with flat strap cross bracing. o The loads are transferred from the diaphragm to the framed shear walls, to the foundation. m)E McClendc Engineering I THIS PAGE INTENTIONA L+ t l u 1-1 LI t�jj 0 J a) z t a a c� z LL LL ON M � N V HIM 5 I NONNI1 sonNuoul 111M 11sonsowool mom immillsomm11 mm OR". 1, , E, L+ t l u 1-1 LI t�jj 0 J a) z t a a c� z LL LL ON M � N V HIM 5 Mc McClendon Engineering Inc Project,+ &H-oMA [ :212 No: 107-8. Z3 Page: Scope: 1:2c31(, -t.3 Date: Z Checked by: Item: By: S K"' kff.r McELRQ- Medallion -Lok 16 METAL f X3¢11 ' TOP IN COMPRESSION BOTTOM IN COMPRESSION GAUGE FY WEfGHTVa Pa_er+d Pain 11 Se Ma Ix Se Ma (KSI) (PSF) kiplft. Ibslft. lbsfft. (in.`Ift.) (in.31ft.} I kip-iri lft. (in'lft.) (in.31ft.) kip-in.lft. 24 50.0 1.30 0.7800 218.40 351.60 0.0860 0.0551 1.8800 0.0400 0.0479 1.2480 1. Section properties are calculated in accordance with the 2004 AISI North American Specificalion for the Design of Cold -Formed Steel Structural Members. 2. Va is the allowable shear. 2.50 3.00 3. Pa is the allowable load for web crippring on end & interior supports. 4.64 1 4.50 4. Ix is for defiecflon delermtnalion. 550 601) 5. Se is for bending. 700 75a 6. Ma is the aMvwab[e bending moment. 85C 7. All values are for one fool of panel widlh. 560 497 Allowable Uniform Loads (PSF) Noles- 1, Allowable uniform loads are based upon equal span lengths. 2. Pnsitive Wind is vend pressure and is NOT increased by 33 V3 %, 3- live is the ailwable five or srxx load. 4. Defection (0180) is the allowable load that limits the panel's deflection to U180 w71Re under positive or live load. 5. Deflection (0240) is the allowable load that limits the panel's deflection to 0240 while tinder positive or i£ve load, 6. The weight or the panel has NOT been deducted from the allowable loads. 7. Positive wind and Live load values are limited to combined shear & bending using Eq. C3.3.1-1 of the AiSI Specifrca4orl. B. Values cfASTM E1592 Wind Upflh Testing Include a factor of safety of 1.67. Shaded areas are outside of les: range. Contact Md5troy Metal for more inforrrafion. 9, Positive Wind and Live Load values are limited by web cappling using a bearing length of 2". 10- web crippling values are determined using a ratio of the uniform loadactually supported by The top Ranges of the section. 11. Load Tables are Shred to a maximum allowable load of 500 psf. Span- et Span Type Load Type 1.DD 1.50 2.00 2.50 3.00 3.50 4.64 1 4.50 506 550 601) n5d 700 75a 600 85C Positive Wrld 560 497 280 179 1 124 91 70 55 44 37 31 26 22 19 17 15 Single Live Soo 497 286 179 123 91 76 55 44 37 31 26 22 18 17 15 DeltecGan(1-1180) Soo 584 500 481 278 175 117 82 60 45 34 27 21 17 t4 12 Deflection (0240) 500 Wo 560 360 208 131 88 61 45 33 26 20 16 13 11 9 Posffive Wind 500 337 197 128 gD 66 51 40 32 1 27 22 19 f8 14 12 11 2 Span Live 500 337 1 197 128 90 66 51 40 32 27 22 19 16 14 12 11 Deflection (1.1180) 500 500 540 500 491 349 207 145 06 79 6f 48 38 31 25 21 OeflecSontU240) 500 560 500 1 504 1 368 232 155 169 79 59 46 36 29 23 £9 16 PaSITYe Wind 560 407 241 158 111 82 63 50 41 34 28 24 21 18 18 14 3 Span Li': Deflection fir'18b) 5'?0 5C0 a77 EGD 241 509 192 SCO } 11+ 334 8: 242 C3 762 3o 114 41 83 34 62 2F 48 24 37 21 30 18 24 16 20 14 15 Dellectioo (0246) 506 500 500 496 288 181 121 85 62 46 36 1 28 22 1B 15 12 Positive Wind 500 385 227 148 104 77 59 47 38 31 26 22 19 17 15 Q 4 Span Live 500 385 227 148 104 77 59 47#66 31 26 22 19 17 15 13 De11ec8on(Lf180) 500 506 500 500 408 25l 172 12f66 51 40 32 25 21 17 Oefleclion(U240) 500 500 500 500 306 192 129 9049 38 30 24 19 16 13 ASTM E1592 Lund Uplift Testing 1 69-5 1 61.1 1 52.4 49.1 45-2 1 41.3 1 37.7 33.8 30.1 NO TEST DATA AVAILA F. Noles- 1, Allowable uniform loads are based upon equal span lengths. 2. Pnsitive Wind is vend pressure and is NOT increased by 33 V3 %, 3- live is the ailwable five or srxx load. 4. Defection (0180) is the allowable load that limits the panel's deflection to U180 w71Re under positive or live load. 5. Deflection (0240) is the allowable load that limits the panel's deflection to 0240 while tinder positive or i£ve load, 6. The weight or the panel has NOT been deducted from the allowable loads. 7. Positive wind and Live load values are limited to combined shear & bending using Eq. C3.3.1-1 of the AiSI Specifrca4orl. B. Values cfASTM E1592 Wind Upflh Testing Include a factor of safety of 1.67. Shaded areas are outside of les: range. Contact Md5troy Metal for more inforrrafion. 9, Positive Wind and Live Load values are limited by web cappling using a bearing length of 2". 10- web crippling values are determined using a ratio of the uniform loadactually supported by The top Ranges of the section. 11. Load Tables are Shred to a maximum allowable load of 500 psf. DCM Project: 4140Y -VIA- r'12.YL►4 No: JDZR,A?3 Page: 0 McClendon Scope: S-r]ZuCT !,.. 'm'6`1 —Date: - Checked by: Engineering Inc Item: By: r?Oo F RlA:L�,i 10 Fr- tpeffl- x Z' Z x 16 E V C.Hc-CI4. Wa`AK A?05 SCN OC -1 FD32 FLA -r 5tMAf_S LID S P5 F FT i k j E O h !q r m N r m m r m m O Q O r r 10 N G m m m 0 0 � sem- Yff m O N C O Y O to m O Q ca n q! O O O O O Ct p p0 p E -E ti.. '� r ei ci ci vi e!i ri ri ri ri M ro M vi �i vi Ni � � u 0 r- m u! r N r N m C P m ri m T W N W r n W N h Q m m N Xco a7 m w N N M N N M N N M Y 7 a7 m 4 0 m P N m m� ll] r w m m m V c N av m c> o� Q] w w m !C) N m 1t n W n N N N n P m !o o I1 m ti- Q Q !rr Q N � W m W W m N m Q ar y) h m o! N N M r w w r N O� r w N Q w v N Q r (`1 Q ti !2 N v to N N C) IL N o c C; co Mca U') J 2a m rn "� v o n w umi m w 9 v !b !a rr p P !d r of 6 6 m F Q z J m m mar m ro o V m m r o LL eo !o r p i c6 r-: w v tdYL- a ui r of v oi a s u m z m — a M r Gi c NJr M Ln m o w p m o r n m o r p m p n m p Lu o¢ v m !n r _a J m m m N m m m m m m m m m m ram m m m m m m m ro m !n m m a! Z om'-' W ,f .. C G o o o o o C o 0 o o p o C 0 N W m m wa! O1 m!O m 4 CO ¢ o a w] a Ort d o "QQ h ���1lfyyy mr w m a m rn N m m fmY r m ro m r Q �y p ri r ai m v so !ri m N !n of P vi N ni a s t<i �v a tri CL 7 A a p !n u, m o o 4 m J Y C hD r O m D n �- N M1 m o t- W O h r m Q L Y O O O O C C O O C p O CS 0 0 0 0 ! l lu 0 m A (j !n r !n i- +7 !rj !n r m (ry vl A b N h r W N m r w CV n r W fY h r a7 4"1 sn +` m N m r m CV !n r m CV b irj n i j h i t m cl m j)! x X X X % x x X % X u] r r m r r ds m eN- m C7 N fN0 N fN0 N l0 N eN- N N N N ,.y pj t� O % x% x x x x x% X x x% x x x O O 4 O cd, O O O O p 4 O p n n O N CU m m m OC CU C1 GG W o� CD Qi at T m Q) E Z uNT H o 0 0 0 N ti uNi v3 ui v� !s3 y t0 fD fU 00 OD fU Q) CO 0 0 m m m ai Ce aj O DMc McClendon Engineering Inc Project: -T-ARovA4- �r�t2.(1.� Scope: !!5rm C - 1Da zs1C-, 1 Date: By: Page: Checked by: S 1 'puau SK'PPb QT [moo F 1� L --,,Nm PSL � 175 M10 SPAti. W. c, 17 O' x 12)Sf(qs)(Z#OOo Qoo) I NA pr-, IL I Mc Project: No:10-28,2--S Page: It McClendon $cope: ST�L"`r na7nC`i> Date: S Checked by: Engineering Inc Item: By: Sn� i -O { SpPtrj- S � I ZI 88 t6 ISC Psi ZS F 2. s') TS w. 0. wRu. rz F j�PLr- W,5 (s/Z) _ 3 PI -F S C M C rA o ( 2 Project: --I No: �M��: McClendon $cope: ST?2u�T �ci�r.1 Date: S Z3 Checked by; Engineering Inc Item: By: 5pft�•1 _ �2 -p ►.75Z� '?"T- I.Ptb7 v 75 �(3.5') Z �, Z40n it- si'� I L, 3 �ZF)t — 3,5`�g lac2o) xIT - p YK 7, 7- 16 O 13 V1 1!] V O O O O a O O O C (il (D co0 O O O O 0 rn 0 0 A- q O 0 O O d O o 0 {. } n c'] n Oi _ u7 n Oi CEJ m N O W V C M I'� O V n r- N f7 0 47 M m x 47 � Ii i [A � In cD q x 0 0 0 0 0 0 O O 0 0 0 0 0 0 � Q O Oi V q n a, O D1 to r,- o O Q cn O (D W 4 } C_ O V h O l7 C' (17 (D GS m O N q U = +. o cc 0 a m 0 0 c6 N z,. cD C N N C Os q g ar n n m �- rn m In V V M �x n n r. n q q cc co 0 0 o p r _N N N N N N N N N [7 M C1 M M M x r d co O 0 n In tD _ V' r In N ti' (D Cp In _ "t N g N 113 Q 47 M T (A V q N a0 10 O r h r V N n W V'1 In N co N C7 N N l`7 N N M LO Lo L N07 W (N n co a 0 0 M1 Lo (] x PC - l� r co N 0 ti- N l r- M1N M Lo V CO N �4 ra n a3 C7 q 4 N Li ...E (n uj O n- o O n- M u7 m (p N Q 0 0 n 0 0 n 0 M n M cel n c7 Y m r rn q n m m v o m C? m Nr n N r Cl tl' r� r N V M1 N N V 1` N r U T C C Q 72 p �- Q (4 cc W 7 Ol I O 0 co n I!'i O O c0 (D �D CD [� V D LD ID s L7 (D N M O O V 6 d O U ^� Y O m f7 M � Ch n n V (`'7 n O LL7 (p 0 O� Q "-' V v (P of v 4') C') Gs cn n V t0 t-- d C In 0 y (L) 10 (c I17 M O (D ICi M O (b 47 M 0 (D (D b ti W m m ti q m co n E N V J 'C " 0 0 o c n o q 0 W 0 M 0 0 0 0 0 n 0 D.7 0 q 0 4q 0 O (0 C D O O O v co Rf C LO co N ID Ifl (+] 4 (D Lr7 [") N Q In n r 0 O d7 9 Ql C m 0 m W (�7 (nD ani W V llO O N LlU 3° Q o 0 0 0 0 0 a a a m C: (nui C U ¢ Co n co (D n 1D ti m � a rn� ci ,- N M1 ci m o c7 rn r N n rn lD � M w E a 9 m a m o a r n cD om n i 0 rn w Lq r7 q y Q a N m C' V 0i m V (i7 N M v N (n V 1(7 i r o. p O Z y n 0 CO In O O LD 0j d o LLJQ Q1 1[7 n Y 407 0❑ n W O C7 I0[) O p q O 4LO O W 1x07 q O U cc t� tT i� Z= .� d o 0 �- 0 0 0 C, 0 .-- c O a o O 0 r 0 0 0 O 0 0 r 0 0 x cn x ui LL LL p t— zO b' [ri N W V M N !D V' (2 N q V M N Q t >t 0 0 0 0 0 ❑ O 4 In to In 47 O O O P m m co CO M a V V a N N N N m co :i M X C X X X X X X X X X X X X X X X X {} 0 0 0 0 Ci 0 0 0 0 0 0 0 6 C) 0 0 rr n rn n n n M1 n m q m ai W W c0 W Qi (a v r2 N f6 z U UU U C,7 U U U U U U U U U U U C � o x C X o M a M o C7 n o o❑ V rn 7 N u7 N (D N ; 0 0 0 0 U O X O X d X d x X O k O X o X X 0 0 x X 0 X 0 X X 0 X X 0 X 0 x X 0 x 67 n M1 n f+ M1 n n n q q no a7 cc W co O 13 DE MC project: 7FA 1+omh X212 No: IQ Zr,?_3_ Page. McClendon $Cope'— -- Rate: Checked by: Engineering Inc Item: By: tA) /of-if: 3 M lZ1 Fr �b I I 14 6 A- I Ve it p L Z57 P Fr: Lb -o- 844 vA /(4# (0) (6�-14)owo) Zkoi vi'`3fr 4C X Z •.► - -�-...�--__._...-_._..__ _---- ^ it Ff i i W, U) P n] N L V r h h O h CIDV) h m t m h m V M V M v m O M m c? m r] rn In CI O O Ci Ci G O 0 0 U 6 o Ci O O Ci o u r � .�. M 4 m as to � EV Cl) f4 ? f8 Co N ti 2 N O N O in 0 0 CY 0 M 0 0 � 4 C`t 4 'Q 0 Y1 O Q� O O o a p � Q �y .. > PC V Crl M Cl) O i'') HCl O tD C'1 11 m m 00 h V' W �D m N W O N O O 0 O1 N h V m W W m 4 O o p O O O O C O O o O O O r 4 v WCD `ti aoQ ib 4 m; r O FO .� in vs ui v} cp tO O o m m m N m Cl? 'M r N N N N N N X Lt � nC mN m M N n O O1 rl- W V r �n N h m M vy CD h m � !O D3 O [� m r 96 V o] m (� �( Ci o0 o o +-� o r M to d v to W o n cD a m r, m h M m (} x c ro C� a UJ n m rI- Cl! io U] CRN l0 o [0 m O m (D 0r= m m W c0 a tD a m U) ni r r C4 N N m m v m v 16 r6 cn to lu N h O N m a rn rn u7 � oVo 4 O Cm7 QD O OM m ap 4W'1 S`7 O v cn u7 co h r� Ln w r� r7 zn i. ai m ori h i U r ro 0 CD W h G 00 O o Q Itl O G h N iY ti m h m t0 V h m V N a J m r n a� N fn ca a o m m r W o c p Q ''- N N M r N N t`7 N C] En V Ci iCi lD L!') T7 y Lr) M Q 117 Lo [`] O W N M 4 W C7 O m vi p CL o �} Q C h ti O W M W w m I- F� O ao Cl W Go DD n h O m !•] op W W !� O C'] 90 N `. a O C] O O O o 0 0 0 0 0 f+ ¢ 00 p 00 0 W 0 U G O Q ID ° m Lo m 67 N Iq N W t0 h (`7 m a0 b) fD V m V O 7 iq =17 il C7 O V G h c7 0q O Ln N Q- D o 3 w r a U z7 j ar s o c r itl b C U N aa) C N ¢ -C [» Co L7 h m O5 V �f1 N W ni .- u7 0o O N co G7 A r d7 h { a0 m Ea h V O w O m (� V LD V c0 N C> Q ,� - N N OF O L � O Q N r] r N N M N N M M N N c7 V CL o Z v� .— to c I4 ) y N y m o n n m o m m o in u� w o 'o 'o LU a s v kc) n Y o 0 0 - o 0 o r a o m o o n o <- co 0 y = o If !i L V o 0 0 0 0 0 0 0 0 0 0 r 0 0 0 o 0 CT - Q U7 � ti U. � Z Cn m V M N r CD V M N fD G [+7 N SD V C7 N d O O CJ 6 UL V1 4(7 IQ w') to cn q 47 U! W? Vt G:! N N N N N N N N N N N N N N N N X C X X X X X X X X X X X X X X X X o a o 0 0 0 o a o 0 o a d V V V v. V G cn 'o i+7 DC7 fD 1L} tD t6 61 i I EM 'U C1 PI N tD V M N m Q P N iD y Ci N Z U U U U U Cj U U i.] U U CJ U C5 U U O O (� X O x O X O n to X Lo X 47 X Mf llq (y W7 47 X W7 x 14 X O O O O o 0 X O X C) C7 o O O x O o , G v V V V 4 Q u7 Lolun) to O co W, Pro°ecf:i 1 L�,Y' -No: Page,A_ Scope:��_�°�- -G�'Z� McClendon Date: Checked b v: Engineering Inc Item: exfl�ps,v? Lr �5sr, r G z0' 's 1.6 C. Iwo, - Za.2foci= 5•o pip - ) t eAjj�, Zd•Zp�F 1•2gS `� � Zs,o psi ��•�� __ =_- ls,�. !'SF --(r�s�� . __ .... .. 7 e y G rs sruos Z a" a.c, r'DG K Zt%Z x fLa tirvt3.S ��rf_1'f C3=t.✓# i`Y Project ril6±fPMP-- 11;�-- . No:_ / Fnge:__I GC��EEIC�4T1 Scope: �T j2�,tC�__�L'�IC�lJ _ bate:.- 3 Checked by: Engineering Inc item: 0 ` -rL Cosa # LaY,44 CC►wr, #Z ( Jjo,�-Qe� we+ -� IPT7 t.JLa,,�p L o � ' Cis . > �I (+�- �, Dc: F �. � �.a = Z- yo Ww�a 7Spc.rw o•�rz, = 3(.s (at-F32C,) +� Q pfoject;u 14 iid1�1�P$ �- I1I0:_. LZ V page:. -- cClendQi1, scope:, c ite: 23 Checked by: _..__. Enginee'i ig inc item: 75P( -F .CIO �! o Pn Frzol AIC -1 ti 1\ �A ins - .\ .0 19 I � , I , I � � 1 1 I I 1 I ' I I I I 3 1 , , , , I I I I I I � I ; , , ; , , , , k I I I I I ; , , , I I I I I f I I I I I � � � , � , , , 3 , � I I I � r k I r I ss 3 f I I I 1 !� i I I I I I I I � � 1 � � I � r t f , r r r r k r r r r � � � r I , , , , , r r , 1 r r r I \ y 1 , � I I � 1 I I 1 I 1 f � 1 1 � � .\ .0 19 DMC Project., Rom page: McClendon 11oP-:M. Date'. 23 Checked by: Engineering Inc ItemL-- 7, P 7t:��(D cl;= TTI� Z10 oj Z, WA L L 6AA F 63Wit_7p S d Pz --- -------- -- 7W,)/�LAfl S114? PL-F Al --44 41 I-J, P: TH Pr?&-D E MC Project:, _T�Aftmpr 1O;w_W-R-P1 NO: 102R473— Page: Z McClendon scope;. Date:-- Checked by: Engineering Inc item: By:__ !L2 C'MO A"I/F-1 uam, FTS volosr- (S'A� + IL-4 "Soo 6 3 T IPTL _TZ 1-7 TL rL'F 44" oi/ COT A 23 McClendon Engineering, Inc. A1►IrE) 1412 W. Idaho Street, Suite 240 I11►1 Uoise, Idaho 83702 McCtendan (208) 342-2919 Engineering Inc Beam on Elastic Foundation Beam C00a M-FEREMCF$ Project Title: 7' 4 atom or - Engineer; Project ID: ID7.V' t-!5 Project Descr: Calculations per ACI 318-1r1; IBC 201% Load Combinations Used: ASCE 7-1(, Material properties 0.000 in rc V22.50 ksi Phi Va€ues Flexure: 0.00 k= Pc ' 7.50 - 375.0 psi Shear: 0.750 V Density - 145.0 pcf R t 0.850 X Lt Wt Factor = 1.0 Elastic Modulus = 3,122Aksi Sal Subgrade Modulus - 250.0 psi 1(inch deflection) Load Combination ASCE 7-10 fy -Main Rebar = 60.0 ksi Fy - Stirrups = 40.0 ksi E - Main Rebar = 29,000.0 ksi E - Stirrups = 29,000.0 ksi Stirrup Bar Size # _ # 3 Number of Resisting Legs Per Stirrup 1.0 Begm lZ suppQrted 2n an elaqfic fipundetion, prolectstl SIA-mP- A- 0(3.36x1 5G0.5S7) d(3.36i 5(D.58Y} D(3.361S(0-567) D0.66)S(0.284) _Cross Section & Reinforcing t7 W13 Rectangular Section, Width =12.0 in, Hefght = 24.0 in Span 41 Reinforcing.... 245 at 3.0 in from Bottom, from 0.0 to 48.0 fl in this span Applied Loads Service loads entered. Load Factors will be applied for calculations. Load for Span Number 1 �- Uniform Load: D = 1.680, S = 0.2840 klft, Extent = 0.0 -->> 0.6870 ft, Tributary Width =1.0 ft Uniform Load : D = 3.361, S = 0.5670 klft, Extent =11.333 ->> 12.667 ft, Tributary Width = i3O ft Uniform Load : D = 3.361, S = 0.5670 kA Extent = 23,333 » 24.667 ft, Tributary Width =1.0 ft Uniform Load: D = 3.361, S = 0.5670 klft, Extent = 35.333 » 36.667 ft, Tributary Width =1.0 ft Uniform Load, D =1.680, S = 0.2840 ktft, Extent = 47.333 ->> 48.0 ft, Tributary Width =1.0 ft DESIGN 80MMARY ro Section used for this span Typio3l Section Max Downward L+Lr+S Deflection 0.000 in Mu : Applied -3.369 k -ft Max Upward L+Lr+S Deflection O.Ow in Mn " Phi: Allowable 6.335 k -ft Max Downward Total Deflection 0.013 in Load Combination +1.20W-50L+1.60S-t-1.80H Max Upward Total Deflection 0.000 in Location of maximum on span 4.518 it Span # where maximum occurs Span # 1 W&M Soif Pressure = 0.466 ksf at 24.00 ft LdComb: +D+S+H Allowable Soil Pressure - 1.50 ksf OK 9T of Stirrup R quirera imis Entire Beam Span Length: Vu < PhNci2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Mulmum Forces & 81tesses lest load C ir*t Y18 Load Combination Location f R1 Bending Stress Results (k -ft) Segmerrl Length Span # in Span Mu: Max Phi Mnx Stress Ratio Mmum Bending Envelope Span 9 1 1 47.435 -0.34 5.33 0.05 7N +1.40D+1.60H McClendon Engineering, Inc. Project Title: 'T��h'C> A �E M� 1412 W. Idaho Street, Suite 240 Engineer: 1Y� Boise, Idaho 83702 Project ED: f C)t.g, T'+S 0.05 (208)342-2919 Project Dem. McClendon 1 Hilt Engineering Inc 47.435 -0.28 Beim C♦C1 Elastic Foundation Rte=KVIWEPfojeds12018 Piojecis41074.1$BuddeyStorage 8uildings'calesvool[nq.ec5. KW -06007747 - WWar%WW9NENERCALC,INC.19612019 Ndd10.39,1.30. DESCRIPTION, Grade Beam Span # 1 1 Load Combination Location (ft) Bending SUess Results (k -ft) Segment Length Span # in Span NIU: Max Phi'Mnx Stress Ratio +1.40D+1.60H Span Max. Downward Defl Location in Span Max. Upward Defl Span # 1 1 47.435 -0.32 6.33 0.05 +1.200+0.5OLr+1.60L+1.60H 0.900 +D+L+H 1 Hilt Span # 1 1 47.435 -0.28 6.33 0.04 +1.20D+1.6CL+0.50S+1.6OH 24.000 0.0000 0,000 +O+S+H Span # 1 1 47435 -0.30 6.33 0.05 +1.20D+1.60Lr+O.5OL+1.6OH 1 0.0111 24.000 6.0600 Span # 1 1 47.435 -0.28 6.33 004 +1.200+-L6OLr+O.5C W+1.6OH 0.000 +D+0.60W,Hi 1 0.0111 Span # i 1 47.435 -0,28 6.33 0.04 +1.24D+O.50L+1,605+1.6CH 24,000 0.0000 0.000 +D+0.75OLr+0.75OL+0.45OW+H Span # 1 1 47.435 -0.34 6.33 0.05 +1.20 D+1.60S+O. 5O W+1.60H 1 0,0125 24,000 0.0000 Span # 1 1 47.435 -0.34 6.33 0.05 +1.20D+O.50Lr+(L 50 L+W,1.60H 0,000 +0.600+O.60W+0,6CH 1 0.0067 Span # 1 1 47.435 -0,28 6.33 0.04 +1.20D+0 5OL+O.5OS+VV+1,60H 24.000 0.0000 0000 D Only Span # 1 1 47.435 -0.34 6.33 005 +1.20D+0.5OL+0.2OS+E+1.6OH 1 0.0000 0.000 0.0000 Span # 1 1 47.435 -0.28 6.33 0,04 +0,90D+W+0.90H 0.000 S Only 1 0.0019 Span # 1 1 47.435 -0.21 6.33 0.03 +-0.90D+£+0.90H 0.000 6.0000 0.000 2Only Span#1 1 47,435 -0,21 6.33 0.03 Overall Maximum Deflgcftns • Unfactored Loads 1 0.0000 Load Combination Span Max. '-'0e& Location in Span Load Combination Max. '+' Defl Location in Span Span 1 1 0.0130 24.000 0.0000 0.000 Maximum Deflections for Load Combinations • Unfactored Leads 0.03 Load Comb�nahon Span Max. Downward Defl Location in Span Max. Upward Defl Localion in Span +D+H 1 00111 24.000 0.0000 0.900 +D+L+H 1 Hilt 24.000 0.0000 0.000 +D+Lr+1­1 1 0.0111 24.000 0.0000 0,000 +O+S+H 1 0.0130 24.000 0.0000 0.000 +0+0,7501-r+0-750L+H 1 0.0111 24.000 6.0600 0.000 +D+0.750L+O.750S+H 1 0.0125 24,000 6.0000 0.000 +D+0.60W,Hi 1 0.0111 24.000 0.0000 0.000 +D+0.70E+H 1 0.0111 24,000 0.0000 0.000 +D+0.75OLr+0.75OL+0.45OW+H 1 0.0111 24.000 0.0000 0.000 +D+O.75OL+O.75CS+O.45OW+H 1 0,0125 24,000 0.0000 0.000 +D+0.I50L+0.750S+0.5250E+H 1 0,0125 24.000 0.0000 0,000 +0.600+O.60W+0,6CH 1 0.0067 24.000 0.0000 0.000 +0.6CO-470E+0.601-1 t 0.0067 24.000 0.0000 0000 D Only 1 0.0111 24.000 0.0000 0.000 Lr Only 1 0.0000 0.000 0.0000 0.000 L Only 1 0.0000 0.000 OA000 0.000 S Only 1 0.0019 24.000 0.0000 0.000 W Only 1 0.0000 0.000 6.0000 0.000 2Only 1 0,0000 0.000 6.0000 0.000 H Only 1 0.0000 0.000 6.0000 0.060 Detailed Shear Information 0.00 000 +1.20D+1.6OS+fl.5OW+1.6OH 1 4.52 Span Oistance `d' Vu (k) Mu d VulMu Phi Vc Comment Phi'Vs Spacing (in) Load Combrna5on Number (ft) (in) Actual Design (k -R) (k) (k) Req'd Suggest +1.20D+1.6CS+C.50W+1.60H 1 0.00 21.00 0.10 0-10 0.00 1.00 19.12 Vu<PhI'W2 Not Reqd 0.00 0.00 +1.26D+1.6OS+O.5OWA 60H 1 0.56 21.00 -1.10 1.10 0.34 1.00 19.12 Vu <Philld2 NotRegd 0.00 0.00 +1.20[)+1.60S+0.5OW+1.6OH 1 1.13 21.00 -1.16 1.16 1.09 1.00 19.12 Vu <Phi'1c12 Not Reqd 0.00 0.00 +1.2OD+1.6OS+O.5OW+1.6OH 1 1,69 21.00 0.97 0.97 1,75 1.00 19.12 Vu<PNVd2 NotRegd 0.00 0.00 +1.2OD+1.6OS+0.50W+1.6OH 1 2.26 21.00 -0.77 0-77 2.30 1.00 1912 Vu<PhiVcl2 Not Reqd 0.00 0.00 A20D+1.6OS+O,5OW+1.60H 1 2.82 21,00 -0.58 0-58 2.73 1.00 19.12 Vu <PhUd2 Not Reqd 0.00 0.00 +1.200+1.60S+0.50W+1.60H 1 3.39 21.00 -0.38 0.38 3.06 1.00 19.12 Vu<PhiVc12 Not Reqd 0.00 0.00 +120D+1.60S+6.56W+1.6OH 1 3-95 21,00 -0.17 017 3.27 1.00 19.12 Vu<PhiVc/2 NctRegd 0.00 000 +1.20D+1.6OS+fl.5OW+1.6OH 1 4.52 21.00 003 0.03 3.37 0.22 18.21 Vu<PhNul? Not Reqd 0.00 0.00 +1,200+1.60S+0.50W+1-60H 1 5.08 21.00 0.24 0.24 3,35 1-00 19.12 Vu<Phtvct2 Not Reqd 0.00 0.00 ZS McClendon Engineering, Inc. ME 1412 W. Idaho Street, Suite 240 Boise, Idaho 83702 (208)342-2919 E gsC[endon ngineeifng Inc seam on Wast c Foundation DESCRIPTION: Grade Beast Detailed Shear Information Project Title: "�A1 µ6w14, -f'�)4tA Engineer: Project ID: j0Z$,25 Project Descr '018 Prolectsl1074.18 Budley Stomp BuiGrmgslCatesVc Salt m oapWripht EMRWD, WC.19a2019, 6uid:1 Span Distance 'd' Vu (k) mm d'VUfk1v Phi'Vc Comment Phi'Vs Spacing (in} toad Combination Number (ft) (in) Actual Design (k -ft) (k) (k) Req'd Suggest +1.200+1.605+0.50W+1.60H f 5.65 21.00 0.46 0.46 3.21 1.00 19.12 Vu<PhVd2 Not Reqd 0.00 0,00 +1.200+i.60S+0.50W+1-60H 1 6.21 21.00 0.68 0.68 2.96 1.00 19.12 Vu <PhiVc/2 NotRegd 0.00 0,00 +f.20D+1.60S+0.50W+1.60H 1 6.78 21.00 0.91 0.91 2.57 1.00 19.12 Vu<Phlld2 Not Reqd 0.00 0.00 +f.20D+1.605+0.50W+1.60H 1 7.34 21.00 1.15 1,15 2.06 1.00 19.12 Vu<PhVd2 Not Reqd 0.00 0.00 +1.20D+1.605+0.50W+f.60H 1 7.91 21.00 1.39 1.39 1.41 1.00 19.12 Vu <PhVcl2 Not Reqd 0.00 0.00 +1.20D+1.60SA,50W+1.60H 1 8.47 21.00 1.65 1.65 0.63 1.00 19.12 Vu <PhiVd2 NotRegd 0.00 0.00 +1.200+1.605+0,50W+1.60H 1 9.04 21A0 1.91 1.91 0.30 1.00 19.12 Vu <PhiVc12 Not Reqd 0.00 0.00 +1.20D+1.805+0.50W+1.60H 1 9.60 21.00 2.18 2.18 1.38 1.00 19.12 Vu < PNW2 NotRegd 0.00 0.00 +1.240+1.60S+0.50W+1.60H 1 10.16 21.00 2.46 2.46 2.61 1.00 19.12 Vu<PhjVd2 NotRegd 0.00 0.00 +1.209+1.605+0.50W+1.60H 1 10.73 21.00 2.75 2.75 4.00 1.0D 19.12 Vu <PhiVd2 NotRegd 0.00 0.00 +1.200+1.60540.50W+4.601-1 1 11.29 21.00 3.04 3.04 5.55 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0-00 +1200+1.605+0.50W+1.60H 1 11.66 21,00 0.74 0.74 6.59 1.00 19.12 Vu<PhiVc/2 NotRegd 0.00 0,00 +1.20D+1.605+0.50W+1.60H 1 12.42 21.00 -1.74 1.74 6.22 1.00 19.12 Vu < PhVr12 Nat Reqd 0.00 0.00 +1.200+f.80S+0.50W+1.60H 1 12.99 21.00 -2.64 2.64 4.70 1.00 19.12 Vu<RHO Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 13.55 21,00 -2.33 2.33 3.21 1.00 19-12 Vu < PHW2 Not Reqd 0.00 0.00 +1.20D+1-605+0.50W+1.60H 1 14,12 21.00 -2.03 2.03 1.89 1.00 19.12 Vu<PhiVc12 Not Reqd 0.00 0.00 +1.20D+1.60S+0.56W+1.60H 1 14.68 21.00 -1.72 1.72 0.75 4.00 f9.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1,20D+1.605+0.50W+1.60H 1 15.25 21.00 -1.42 1.42 0.23 1.00 19.12 Vu <PhjVd2 Nat Reqd 0.00 0.00 +1.200+1.60540,501N+1.60H 1 15.81 21.00 -1.12 1.12 1.03 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.200+1.605+0.50W+1.60H 1 16.38 21.00 -0.81 0.81 1.66 1.00 19.12 Vu<PhVr12 Not Reqd 0.00 0,00 +1.20D+1.605450W+1.60H 1 16.94 21.00 -0.51 0.51 2.12 1.00 19.12 Vu<PhVd2 Not Reqd 0.00 0.00 +1.20D+1.64540.50W+1.60H 1 17.51 21.00 -0.21 0.21 2.41 1.00 1912 Vu<PhVcl2 Nat Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 18.07 21.00 010 0-10 2.53 0.91 19.01 Vu <PhUr/2 Not Reqd 0.00 0.00 +1.200+1-605+0.50W+1.60H 1 18.64 21.00 0.40 D.40 2.47 1.00 19.12 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60840.5DW+1.60H 1 19.20 21.00 0.71 0.71 2.24 1.00 19.12 Vu <PhiVd2 NatRegd 0.00 0.00 +1.200+1.60S+0.50W+1.60H 1 19.76 21.00 1,02 1.02 1.84 1.00 19.12 Vu<PhVr12 NofRegd 0.00 0.00 +1.20D+1.605+0.50W+1.60H 1 20.33 21.00 1.34 1.34 1,27 1.00 1912 Vu <PhUcl2 Not Reqd 0.00 0.00 +1.200+i.60S+0.50W+1.60H 1 20.89 21.00 1.65 1.65 0.51 1.00 1912 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.200+1.605+0.50W+1.60H 1 21.46 21.00 1,98 1.98 0.42 1.00 19.12 Vu <17NW2 Not Reqd 0.00 0.00 +1.20D+1,60S40.50W+1.60H 1 2202 21,00 2.30 2.30 1.54 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.200+1.605+0.50W+1.60H 1 22,59 21.00 2.63 2.63 2.84 1.00 19.12 Vu <PhiVd2 Not Reqd 0,00 0.00 +1.20D+1.50S+0,50W+1.60H 1 23.15 21.00 2.96 2.96 4.32 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.200+1.605+0.50W+1.60H 1 23.72 21.00 f.39 1.39 5.63 1.00 19.12 Vu<PhVd2 Not Reqd 0.00 0.00 +1.20D+1.605+0.50W+1.60H 1 24.28 21.00 -1.06 1.06 5.63 1.00 19.12 Vu <PhiVr12 Not Reqd 0.00 0.00 +1.20D+1.605+0.50W+1.60H 1 24.85 21.00 -2.63 2.63 4.32 1.00 19.12 Vu <PhiVc(2 Nat Reqd 0.00 0.00 +120D+4.60540.50W+1.601-1 1 25.41 21,00 -2.30 2.30 2.84 1.00 19.12 Vu <PhiVd2 Nat Reqd 0.00 0.00 +1.24D+f.60S40,50W+1.60H 1 25.98 21.00 -1.98 1.98 1.54 1.00 19.12 Vu <Phka Not Reqd 000 0.00 +1.200+i.60S+0.50W+1.60H 1 26,54 21.00 -1.65 1.65 0.42 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.201)+1.805+0.50W+1.60H 1 27.11 21.00 -1.34 1.34 0.51 1.00 19.12 Vu < PhjVd2 Not Reqd 0.00 0.00 +1.20D+1.60S-450W+1.60H 1 27.67 21.00 4.02 1.02 1.27 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.200+1.60S+0.50W+1.60H 1 28.24 21.00 -0.71 0.71 1.84 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1,20D+1.60540.50W+1.60H 1 28.80 21.00 -0.40 0.40 2.24 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1-200+1.60S450W+4.60H 1 29.36 21.00 -0.10 0.10 2.47 0.93 19.04 Vu<PhiVd2 Not Reqd 0.00 0.00 +1,20D+1.60540.50W+1.60H 1 29.93 21,00 0.21 0.21 2.53 1.00 19.12 Vu <RiVr12 Not Reqd 0-00 0.00 +1.20D+1.605+0.50W+1.60H 1 30.49 21.00 0.51 0.51 2.41 f.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.605+0.50W+1.60H 1 31.06 21.00 0.81 0.81 2.12 1.00 19.12 Vu <Phivo Not Reqd 0.00 0.00 +1.200+1.60S+0.50W+1.60H 1 31.62 21.00 1-12 1.12 1.66 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60540.50W+1.50H 1 32.19 21.00 f-42 11.42 1.03 1.00 19.12 Vu < PhUd2 Not Reqd 0.00 0.00 +1.20D+160S+0.50W+1.80H 1 32.75 21.00 1.72 1.72 0.23 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50WAWH 1 33.32 21.00 2.03 2.03 0.15 1.00 19.12 Vu < PhiVd2 Nat Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 33.88 21.00 2.33 2.33 1.89 1.00 19.12 Vu < PhiVd2 Not Reqd 0,00 000 +120D+1.605+0.50W+1.60H 1 34.45 21.00 2.64 2.64 3.21 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0,00 +1.20D+4-60S+0.50W+1.60H 1 35.01 21.00 2.95 2.95 4.70 100 19.12 Vu <PNW2 Not Reqd 0.00 0.00 +1.20D+1.605+0.50W+1,60H 1 35.58 21.00 2.05 2.05 6.22 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 -6 McClendon Engineering, Inc. MG 1412 W. Idaho Street, Suite 246 Boise, Idaho 83702 (206) 342-2919 MCUendon Engineering Inc Beam on Elastic Foundation Grade Beam Detailed Shear Into"ation Project Title: lA HCyH4 �4-_-MJM Engineer: Project ID: JdZ�. 23 Project Descr, 1902013. BWAM9130 Span Distance V Vu (is) Mu d'Vu1Mu Phi Vc Comment Phi% Spacing (in) Lead Combination Number (ft) (in) Actual Design (0) (k) (k) Reqd Suggest +1.200+1.G0S- 0M0W+1.60H 1 36.14 21,00 -0.44 0.44 6.59 1.00 19.12 Vu < PhiVd2 NotReqd 0.00 0.00 +1,200+1.60S+0.50W+1.60H 1 36.71 21.00 -2.75 2.75 5.55 1.00 19.12 Vu < PhiVd2 NotReqd a.a6 0.00 +120D+1.60S+0,5OW+1.60H 1 37.27 21.00 -2.46 2-46 4.00 1.00 f9.12 Vu<PW62 NotRegd 0-00 0.00 +1200+1.60S-450W+1.60H 1 37.84 21.00 -2.18 2.18 2.61 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +120D+1.6GS4O.5GW+1AOH 1 38.40 21.00 -1-91 1,91 1.38 1.00 19.12 Vu<PhiVc/2 NotRegd 0.00 0.00 +1.20D+1.6OS+O.50W+1.69H 1 38.96 21.00 -1.65 1,65 0.30 1.00 19.12 Vu<PhUc/2 NotRegd 0.00 0.00 +1.20D+1.HS+O.5OW+1.60H 1 39.53 21.00 -1.39 1.39 0,63 1.00 19.12 Vu < PhiVc12 Not Reqd 0.00 0.00 +1.200+1.60S+0.50W+1.60H 1 40.09 21.00 -1.15 1.15 141 1.00 19.12 Vu < PhiVd2 Not Reqd 090 0.00 +1.20D+1.60S+0.50W+1.66H 1 40.66 21.00 -0.91 0.91 2.06 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +120D+1.6OS+0.50W+1.SON 1 41.22 21.00 -0.69 0.68 2.57 1,00 19.12 Vu <PhiW2 Not Reqd 0.00 0.00 +1,200+1.60S+0.50W+1.60H 1 41.79 21.00 -0.46 0.46 2.96 1.00 19.12 Vu < PhiVc12 Not Reqd 0.00 0.00 +1200+1.60S+0.5CW+1,60H 1 42.35 21M -024 0.24 3.21 1.00 19.12 Vu<PhiVc12 NotRe4d 0.00 000 +120D+1.60S+0.50W+1.60H 1 42.92 21.00 -0.03 0.03 3.35 0.22 18.21 Vu < PhiVd2 Nat Reqd 0.00 0.00 +1.20D+1.6OS+O.5OW+1.6OH 1 43.48 21.110 0.17 0.17 3.37 1.00 19.12 Vu < PhiVcl2 Not Reqd 0.00 0.00 +1.20D+1.6OS+O.5OW+1.6OH 1 44.05 21.00 0.38 0.38 3.27 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 44.61 21,00 0.58 0.58 3.06 1.00 19.12 Vu PhiVd2 Not Reqd 0.00 0.00 +1.20D+1,6QS+0.50W+1,S0H 1 45.18 21.00 0.77 0.77 2.73 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.200+1-60S-0.50W+1.60H 1 45.74 21.00 0.97 0.97 2-30 1-00 19-12 Vu <PhUJ2 Not Reqd 0.00 0.00 +1,200+1.6OS+O,5OV/+f.6OH 1 46.31 21,00 1.16 1.16 1.75 1.00 19.12 Vu<Ph1Vd2 Nal Reqd 0.00 0.00 +1,20D+1.6GS+O.5GV1+1.6OH 1 46.87 21.00 1,36 1.36 1-09 1.00 19.12 VU<PhsVJ2 Nal Reqd 0.00 0.00 +1,20D+1.6OS+0,5OW+1.6OH 1 47.44 21.00 1,30 1.30 0.34 1.00 19.12 Vu<PhiVcl2 Not Reqd 0.00 0.00 IVIG McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLANK DMc Project: X1 IftMA- I A No: i12�.2_ page: g McClendon sc°pe: Date: Z3 Checked by: Engineering Inc Item: By: LA - 10 � I.T.0. 00Z Sip Ka 914 Kok W. _`1 Me I rilt 1Z i ' Ir(11' Z = Jw ro, PIS (11' z pi. 1 6122123, 3:46 AM U.S. Seismic Design Maps _Z 1Z CUR9RwA Tahoma Terra Yelm, WA, USA Latitude, Longitude: 46.9420431, -122.6059582 I st Street Nail Bar,9� Ma and Pa's Family Diner QTahoma Valle Golf Course Go gle OSH PD sr 2, Yelm-Tenino Trail 510 Date Design Code Reference Document Risk Category Site Class InThe Shiplap Shop 507 & Coffee House . South Puget Sound Habitat for... ti y 6/2212023, 3:47:15 AM ASCE7-16 ti D - Default (See Section 11.4.3) Type Value Description SS 1.288 MCER ground motion. (for 0.2 second period) SI 0.465 MCER ground motion. (for 1.Os period) SMS 1.545 Site -modified spectral acceleration value SMI null -See Section 11.4.8 Site -modified spectral acceleration value SDS 1.03 Numeric seismic design value at 0.2 second SA SDI null -See Section 11.4.8 Numeric seismic design value at 1.0 second SA Type Value Description SDC null -See Section 11.4.8 Seismic design category Fa 1.2 Site amplification factor at 0.2 second Fv null -See Section 11.4.8 Site amplification factor at 1.0 second PGA 0.509 MCEG peak ground acceleration FPGA 1.2 Site amplification factor at PGA PGAM 0.611 Site modified peak ground acceleration TL 16 Long -period transition period sn seconds SsRT 1.288 Probabilistic risk -targeted ground motion. (0.2 second) SsUH 1.418 Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration SsD 1.5 Factored deterministic acceleration value. (0.2 second) S1 RT 0.465 Probabilistic risk -targeted ground motion. (1.0 second) S1 UH 0.522 Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration. S1D 0.625 Factored deterministic acceleration value. (1.0 second) PGAd 0.509 Factored deterministic acceleration value. (Peak Ground Acceleration) PGAUH 0.552 Uniform -hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration Map data 002023 https://www.seismicmaps.org 113 6122123, 3:46 AM Type Value CRS 0.908 CR1 0.891 CV 1.358 U.S. Seismic Design Maps Description Mapped value of the risk coefficient at short periods Mapped value of the risk coefficient at a period of 1 s Vertical coefficient L1 https://www,seismicmaps.org 213 Mc D Project:- -T-644LA, _. No: iC)Z5 rage. 3o McClendon Scope: 5MIAQ-T- V9514N Date: checked by: Engineering Inc item: By: Tar -TV i 7,7s .F 7' (.1,1 i- . 7 7(97 1-F 171 (OPLP) = Z, 6-M 71 1/ ®, X8 4 IF ! { i f 4 y V a •• HIISDN -i ] j2 P Project-.'-- Na: LL�b 1 Page:.__..,Z� McClendonScope:r � _ �L [C-�r� , Date: _ � Checked by: Engineering Inc t�,2� c��►-� 3L7L06-7 qTm 37c! ,cam= zs = S2) Kara r Gtisc.rs. = �C ProjecU_�1� �lr L 4i2-4 No: /�.� �a Page:_�_.� McClendon Scope:, bate: �/ ��_ Checked by: Engineering Inc Item: By: UIJ Lord -- Z�r7 j✓sr �nnr;x' Era �rrp►-sr�r�yuz Lc3��. ?2S c��. (� t: U;,j.IzoL&L LOA 7 Ov-1 C7. � .(pqf, par Ttzt 6, W b - 'PUlt �ti �! � p+AC.I rti► '-0 0. C, Tye, 4" a e, ` MAA . 570.# loc-16 �2c be 4M. sCoe(�:�s. L- Wiz. C�r,� O..G, �ll� 0�4E Project:... L'TZtZ Na L? Page:s .�i� �. ._ McClendon Scope:.- Date: __�Checked by: Engineering Inc Item: gy•_6, _ - - F>L IS -0 IL. Fr- / + ; l7SpG � c,A. Se % f tJTt-'4 A6-rr a,,% 3 OWL - -- - --- --_ 4- C�� 8 Z. t S7.5 Cr A?,r 11 •- 3 L wu C E N.; Page: MttJ Date Checked by-. lc'P'--' Engineering Inc Item. By. - i—.— -W r -M, le- V?- vz, �A Y rx J rr-f RL�a Ll (AAI rJ C Project. YY1 v No:- ��� Page. 3 i�Clend0�1 Scope:_ �__�� .CICI� pafe`. _�� Checked by: Engineering Inc Ite.m:—_ – __-_--- By -e m---� -sCG r y 1f 4A r tJ S -v rs,� Z9?. fiv'e F S °° 7Z8 pc.F T/C, �a. lz Scs2 ��x zao -.. S70 � pow, -' (E ( ) its Re 4O�J k 7cp C &tz -st -I.IR OK gy . IDE MC Project. No-/Oze, Page., McClendon $c'P"-:, Date:!/Z 337 Checked by. Engineering Inc item: By 71 Pap r-Kqe,A,C cc 0 T= CMV oq sb, FP L2 SO. 5 7, 1 OWA-K CM0 C y Projecl No:, _1OZ,8, Z3 Page: 3q McClendon Scope' ��C� }���� -- -- pate: ��� Checked by: Engineering Inc Item: B _ F ' -pt-E tua C3n.; . f ` Zd I : 397 # !D `^p'' p. C, Tz _ 397 C�AJ W ALC. 1F14 - rvrC��t�J Tye. 5th r - rvrC��t�J Tye. 5th =wIll qo DE M Project:mA ;� No: IIZ55, 23 Page: ul McClendon Scope: Date: t Checked by: Engineering Inc Item: By:_ r ax TP13 �o' 2) 2 Z o q q 1/ � �J �J� 3� RC Tprr�) 11X5 -- ----- ��� rrpe 2 V -S 14 { I Pic { i MJ��..,, Project: 1-�0MA No:-16Z�•23- Page: McClendon Scope: 6TP-L&CT Date: Checked by: Engineering Inc [tem: By: ---- --- X b�� I, lily S'�15 � Z7pLFl I 12 o'f 1s� i V 547pp F (;W i fo3 I • Lfl �o� � _ f E Nom- —�� ►� k , I ml �� Project: __ No- Page: McClendon Scope:_ KtX- � _JG, *A Date: Z Checked by: Engineering Inc Item: By: X �rpro at) =67 I. C D � � maces S��► �c.� 3C�` � � zI I I i i -Zo+ 9 �L d� 1 1.4 �2 `) t 7p 0 1 = Pyr s i OE MC Project: -71'A ftm& rzAm McClendon SCope: :ST&M-T M16tJ Engineering Inc Item: Date: By: Page: 4H Checked by: Connecters for Gofd-Farmed Stee! Consfructrnn $IMPSQN i 45 SIHDU HoldownsstiO3=I'lE The S/HDU series of holdowns combines performance with ease of Installation. The pre -deflected geometry virtually eliminates material stretch, resulting in low deflection under load. Installation using self -drilling screws into the studs reduces installation time and saves labor cost. Material: 118 mil (10 ga.) Finish: Galvanized (G90) Installation: • Use all specified fasteners: see General Notes • Use standard #14 self -drilling screws to fasten to studs • Anchor bolt washer is not required • See SB, SSTB and PAB anchor malts on pp. 163-164 for cast -in-place anchorage options • Sea SFT-XPe and AT XP* adhesive products at strongtie.com for anchor bolt retrofit options Codes. See p. 11 for Code Reference Key Chart a 7 z/-�1 Pilot holes for manutacluring Purposes (fastener net required) S/HDU US Patents 5,979,130 and 6,112,495 Typical S/HDU Installation Madel H (in.) Fsateners - - Stud Member Thickness' mil (ga.) - Tension Load ASD (lb.) Deflection at ASD Load' LRFD ph.) - Tension Deflectlogat Load LRFD Loads - Nominal Tension Load ' (lb,) Code Ret Andwr Bolt lllameter, (In.) Stud Fasteners' S/HOU4 7'/e (3s ) (6) #14 2-33(2-20) 2,320 0.093 3,705 0.149 5,685 2-43 2 18 3-85 0.115 61105 0.190 9,365 3 0.093 6,345 0.156 9,730 Steel fixture 4,470 0.063 7,155 0•.103 12,120 f S/HOU6 10% - 'h (12) #14 2-33 (2-20 4,895 0,125 8,495 0,250 10,470 2-43 (2-18) -_ 6125 0.119 9,690 0.250 15,460 2-54 (2--16) 6,125 0108 9,785 0.234 15,005 Steel fixture 5,995 0.060 _ 9,580 0,136 14,695. 51NDU9 12r/s '/a (18}#14 2-33(2-20) 6,965 0.103 11,125 0.189 13,165 FL, LA 2`43 2-18) 9,255 0.125 21,810 u 2-54(2-15) 9,990 0.106 24,480 FO�225 a20,510 Steel fixture 12,715 0.125 31,455 rA (27) #14 2-33(2-20) 6,965 0.103 13,165 2-4312-18) 9,595 0.096 23,515 .2-54 (2-16) 9,675 0.110 15,460 0.158 _ 23,710 S/HDU11 16% 7/8 with heavy hex not (27)#14 2--43(2-16" 11,100 0.125 17,500 0.250 24,955 2-'i4 2-16}• 12,175 0.125 19,445 0.243 29,825 Steel fixture' 12,945 0.111 20,680 0.163 31,715 - These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong -Tie for details. 1. The designer shall specify the foundation anchor material type, embedment and configuration. Some of Shearwall the tabulated holdown tensicn loads exceed the tension chord studs strength of typical ASTM A36 or A307 anchor bolts. 2. Stud design by specifier, tabulated loads are based on a minimum stud thickness for fastener connection. Hoitlowr $ 3. VV self -drilling screws may be substituted for bearing Holdown #14 self -tapping screws. plate 4. A heavy hex nut for the anchor bolt is required to achieve the tabfe loads for S/HDU11. —Rod 5 Deflection at ASD or (_RFD includes fastener slip, hotdown deformation and anchor rod elongation for 18' max. ho#downs installed up to 4' above top of concrete. 5' slope max. �12L) Holdowns may be installed raised, up to 18' above 1 top of concrete, with no load reduction provided that Coupler additional elongation of the anchor rod is accounted for. y 6. The Nominal Tension Load is based on the tested Top of Bottom average ultimate (peak) load and Is provided for concrete --� r 1.5' max. track design in accordance with section C5 of AISI S213 a that requires a holdown to have a nominal strength •••��� to resist the lesser of the amplified seismic load or the maximum force the system can deliver. 7. See Fastening Systems catalog (C -F-2019) on Holdown Raised Off strongtie.cnm for more information on CFS Bottom Track Simpson Strong -fie fasteners. Typical S/HDU Floor -to -Floor ' Installation Cornute s member (bdmig Pills dapp 1 is Mc 1 280 Connectors for Cold-F"armed Steet Construction SlMPSON Coiled Strapsft071-SIB CMSTC provides countersunk fastener slots that provide a lower screw head profile. CS, CMST and CMSTC are continuous utility straps which can be cut to length on the job site. packaged in lightweight cartons (about 40 Ib.), Finish: Galvanized. Some products available in ZMAX" coating; see Corrosion fnformation, pp, 18-21. Installation: • Use a4 specified fasteners; see General Notes. • Refer to the applicable code for minimum edge and end distances. • The table shows the maximum alowable loads and the screws required to obtain them. See footnote #1. Fewer screws may be used; reduce the allowable load by the code lateral Toad for each fastener subtracted from each end. Codes: See p. 11 for Code Reference Key Chart F, 0 -- — �� �S YBUJA _ r �ii'tY• Connector of Thickness mil (ger.) Width (in.) r zH.•..{ A;lowable Tension Load (lb,) CS16 Hole Pattern (alt other CS straps similar) 33 mil (20 ga.) oarx uwoe r 1K' CMSTI 4 Hole Pattern (CMST12 similar) -- CJ15iCr8 u mur,E � ��• r c a Cfv1STC16 Hole Pattern Gauge stamped on part for easy identii5cadon. Fasteners to be symmetrically placed End 1en9S1' Cul screws"' required in clear span End Provide minimum 3x screw lapgd' diameter end distance per code for CS and CMST Equatnumberof / specified screws in each end Typical CS Installation as a Floor -to -Floor Tie ANN. No. Total Length Connector of Thickness mil (ger.) Width (in.) Fasteners' (Total) A;lowable Tension Load (lb,) Cod. Code Ref. 33 mil (20 ga.) 43 mil (18 ga.) 54 mil (16 ga.) 33 mil (20 ga.) 43 ttdf (Ill ga.) 54 pill (t6 ga.) CMST121 40'-3" 97112) 3 (104) #10 (70) 910 (40) #10 9,080 CMST1 fit' -6" 68 (14) 3 (72)1€10 {50) #10 (2%410 CMSTC 6 CS14 54' 54 (16) 3 (54)110 (361+110 (30) #10 SE— 100' 68 (14) 1 !4 (28) #10 ji> 1f10 {12}110 2.305 CS16 1501 54 (16) 1 /4 {18) #10 (12) #10 {8} #10 1,550 1P1, L2, FL CS18S 100' 43 (18) t'A (14)410 (10) ol0 (6) #10 1,235 CS fa 200' 1'14 (14)#10 (10)#10 (6)#10 1.235 CS20 250' 33 (20) 1 A (12) #10 (8) #10 (6) #10 945 CS22 300' 27 (22) 1'h 1 (10) #10 (6) #10 (ti) #t0 775 i These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong -Tie for details. 1. Use half of the fasteners in each member being connected to achieve the listed loads. 2. For CMST straps: End Length poches} ='h total fasteners x'h' + 1' when all holes filled. Double length if only round holes filed. 3. For CMSTCI 6 straps: End Length (nchesl = 1h total fasteners x + 1 ` when all holes filled. Double length if only round holes filled. 4. For CS straps: End Length (inches) _ % total fasteners + 1'. 5. Total Cut Length = End Length + Clear Span + End Lang€h. No. of Screws Used 6. Calculate the connector varue for a reduced number of screws as follows: Allowable Load = x Table Load 24 Screws (Used} No. of Screws in Table Example: CMSTCI6 on 54 mil with 24 screws: 30 Screws (table) x 4,600 Ib. = 3.660 Ib. 7. Loads are based on lesser of steel strap capacity and A1Sf S 100 fastener calculation. B. See pp. 138 through 171 for more information on Simpson Strong -Tie fasteners, q7 C- ® Project. btu � � No: JDA i L3 Page:. 4 �I McClendon scope;_ �r=�fCr�1 Date: Scope; Checked by: Engineering Inc item- By:— 'Dos y:__ C'7 t �` G� (' lO D 7W. svkr = f Its K �•,-ua 16 = 1.47 i t .. � . i f . �� tit:=. ►: _ Q O N a M CN (li �C C N O ,,(D^ vl c 0 T) 47 IN f1 C N N N N 7 a P n a N 0) N QJ N aJ C7+ LO O Cl) N Cf) 1� Q N W CCJ F «J m O R M Cp CD r N O M 0 O 7 _ ED NQ CCA fl m O Cn W C5 a7 M Q :n CO X O C5 0 o Cj 4 Q 0 0 O O Ci O a 1 O Q Fy. M{D CTW r� M M o cou�nn W c) IN N N N M O O O 4 (Q OO O] C7 Q C'7 CD O 0 0 Q d 0 tD Co Cn P [� o N r 0 N N N N N N N N N N N N N Q O P co N (D 00 C N P 7 'rM N V Cn U] W CD 0 N N t SD V N V) (D �' R N m 4n Q LYS P CA M1 u'i C[) R CO I i'U OI fA 11') R fT N n 01 msn n m f� ICJ O J ov a rn ti�CD F- r > 7 N Q .� Cl LO n M SCJ h C7 l[ j n C4 P n z � MMCrJ CInp [CDb W IrJ CD M W Cro rNlD OUro J! roY=' Oa N AM [ C rn C Q M Lo n m It 0 MQRV hvch� o 0 c _ LO n LO n0 M C) w u7 Cl) C] CD Il) M O 1p [n M O (D CC) r C� Q C 1` 0 C9Cq n O M n n O M W h O M W h W co m h m m 00 R W [p W n P] W tb N C to O O O O O O O G 0 O Q O Q Q Q Q V C O O o I m C M W O W N w W M w o m- m a W CO y a to 0 0 0 N n m co ao P h ca co o In c R of M W rn v, co a N Cj n rn o rr 3 Q o 0 0 0 0 0 0 o � � m m o c V) w 9 U y Q L r L II) 61 Qi C7 Co i+ co w h U*)n M to m T CP OY m U7 R O co F- 9) n N O !, m ICJ co O) M1 M uJ E tj) Q aJN p Lu_ ,.�,Cu w 9 V N m Co CD 't N C] m Q o) P T N Cl� M't M M to CA N t7 M f1 co LD -T O O � O CL Q N ? Z y a y QJ O Cli o O Lo Lo O) O . In O) O Ili Zn .;.� O J C Lf1 n n7 0 n W d V) h W o to R tl> Q w o a -a h x ._ `� o o a r o c o .- d d n r o 0 0 F V L @ t6 11 II Z L 0 Q p p p 0 0 0 0 0 0 0 0 0 d d V) x Uj L� Ll- Q ~ Z C n (D P 0-) N CD V co N cA Q M N O V [*) N 0 O O O O LQ ICJ VC to C] b p Q Un Lq I? U? m M M r -i M m M m M -'r "i v P N N N N x C_ x x x x x x x x x x x x x x x x 0 0 0 0 0 0 0 0 0 0 C7 O g q O O Cp CD CO CD W Co CD C9 CO W O tO R r -- CD L-0 Q M N ca Ll U U U U U U U U U U U U U U U c o m 0 c) 0 co o c) In co , n r LO c In CX,,F a x o Px o x a x` u) x r uJ x x x x x 0 x G x 0 x g x 0 0 0 0 oq O O d x Q) tD Cp CO CD CO [D [D tD C9 Co to AD N h M1 N (f) Q O N a M CN (li �C C N O ,,(D^ vl c 0 T) 47 IN McE McClendc Engineering 11 THIS PAGE INTENTIONAL