Structural Calculations - Building DMc
McClendon
Engineering Inc
I WE. MU '' •
BUILDING D STORAGE
Yelm, Washington
FINAL
STRUCTURAL CALCULATIONS
June 30, 2023
Prepared for:
Keimig Associates
307 D Street SE
Auburn, Washington 98002
EXPIRES: Z3 Z3
Prepared by:
McClendon Engineering Inc
1412 West Idaho Street, Suite 240
Boise, ID 83702
Project No.: 1028.23
Mcr
McClendon
Engineering Inc
TABLE OF CONTENTS
GENERAL:
Table of Contents ................................
Design Loads .......................................
Materials and References ....................
Deferred Submittals .............................
Special Inspection ...............................
Project Description ..............................
GRAVITY DESIGN:
TAHOMA TERRA
BUILDING D STORAGE
YELM WASHINGTON
102$.23
Pa e-.-..--g-__Number
................................................................I.................. f
Z
......................I............•............................................... 3
................................................................................... 3
............................................................................... 3
............................................................ I ....................... L4
RoofFraming...............................................................
Roof Panel
Purlins
LintelDesign.............................................................. ly
WallDesign ......... .......................................................
Foundation Design...........................................................
Wall Footings
LATERAL DESIGN:
Lateral Analysis............................................................ Z 7
Wind Base Shear
Seismic Base Shear
Diaphragm/Chord Analysis ...................................................
Shear Wall Design.......................................................... Yo
X -Braced Walls
Mcg
McClendon
Engineering Inc
GRAVITY DESIGN LOADS:
Roof Dead Loads
Roofing: -
Decking: 2 psf
Framing: 2 psf
Insulation: 2 psf
M & E Collateral: 3 psf
Miscellaneous: 1 psf
Z Roof DL: 10 psf
Roof Live Loads
Snow Load: 25 psf Roof LL: 20 psf
Floor Dead Loads
Flooring: SOG
Decking:
Framing:
M&EI
Miscelh
E Floor
Floor Live Loads
Occupancy/Use: Light Storage Floor LL:125 psf
Occupancy/Use: - Floor LL: -
Wall Loads
Interior Stud Wall DL: 7 psf
Exterior Stud Wall DL: 7 psf
CMU Wall DL: 55 psf
Wind Loads Seismic Loads
Wind: 115 mph Site Class: D - Default
Exposure: CSeismic Design Category: D
MWFRS: Simple Risk Category: II
Diaphragm Importance Factor: 1.0
LOAD COMBINATIONS:
Desien Method
Strength Design:
Basic Load Combinations ❑
Allowable Stress Design:
Basic Load Combinations ❑
Alternative Basic Load Combinations
TAHOMA TERRA
BUILDING D STORAGE
YELM WASHINGTON
1028.23
R: 4 0: 2 p: I
Sns: 1.03
SDI: -
MSFRS: X Braced
CFS Walls
Mc
McClendon
Engineering Inc
MATERIALS:
Steel
Shapes Fy =-,50 ksi
Plates/Angles/Channel: FY 36 ksi
Hollow Structural Shapes: Fy =—A2 ksi
Pipe: Fy = -
Bolts: A325
Anchor Bolts: A307
REFERENCES:
Soils
Bearing Pressure = 1500 psf
Source of Information: assumed
Frost Depth — 18"
DEFERRED SUBMITTALS:
Steel:
Steel member layout
Joist/Joist Girders Layout ❑
Metal deck layout
Wood:
Engineered Truss Layout ❑
Cold Formed Steel:
Steel member layout 2
SPECIAL INSPECTIONS:
Fabricators
❑
Steel Construction
Concrete Construction
❑
Masonry- Level 1
Masonry- Level 2
Wood Construction
❑
Soils
❑
Deep Foundations
❑
Special Cases
0
Seismic Resistance
❑
Other:
❑
Wood
Sawn Lumber: -
GluLam: -
Eng. Product: -
Light Gauge Steel
Fy: 55 ksi
Codes Used
2018 IBC
TAHOMA TERRA
BUILDING D STORAGE
YELM WASHINGTON
Concrete
fr= 2500 psi
fy = 60 ksi
Masonry
fm = 1500 psi
fy = 60 ksi
Software Used
USGS
Enercalc
Concrete:
Mix Design
Reinforcement Layout
Masonry
Mix Design
Reinforcement Layout
Other: ❑
1028.23
DMC
McClendon
Engineering Inc
PROJECT DESCRIPTION:
TAHOMA TERRA
BUILDING D STORAGE
YELM WASHINGTON
1028.23
The Structural scope of work for this project consists of:
• The design of a single story light -gauge steel framed storage building.
• The gravity system for the building consists of a light gauge steel framed roof supported
by steel frames, light -gauge steel framed walls.
• The lateral system for the building consists of a simple diaphragm, light framed shear
walls reinforced with flat strap cross bracing.
o The loads are transferred from the diaphragm to the framed shear walls, to the
foundation.
m)E
McClendc
Engineering I
THIS PAGE INTENTIONA
L+ t l u 1-1 LI
t�jj
0
J
a)
z
t a
a
c�
z
LL
LL
ON
M � N
V HIM
5
I
NONNI1
sonNuoul 111M
11sonsowool
mom
immillsomm11
mm
OR".
1,
, E,
L+ t l u 1-1 LI
t�jj
0
J
a)
z
t a
a
c�
z
LL
LL
ON
M � N
V HIM
5
Mc
McClendon
Engineering Inc
Project,+ &H-oMA [ :212 No: 107-8. Z3 Page:
Scope: 1:2c31(, -t.3 Date: Z Checked by:
Item: By: S
K"'
kff.r
McELRQ- Medallion -Lok 16
METAL
f
X3¢11
'
TOP IN COMPRESSION
BOTTOM IN COMPRESSION
GAUGE FY WEfGHTVa Pa_er+d Pain
11
Se
Ma
Ix Se
Ma
(KSI) (PSF) kiplft. Ibslft. lbsfft.
(in.`Ift.)
(in.31ft.}
I kip-iri lft.
(in'lft.) (in.31ft.)
kip-in.lft.
24 50.0 1.30 0.7800 218.40 351.60
0.0860
0.0551
1.8800
0.0400 0.0479
1.2480
1. Section properties are calculated in accordance with the 2004 AISI North American Specificalion for the Design of Cold -Formed Steel Structural Members.
2. Va is the allowable shear.
2.50
3.00
3. Pa is the allowable load for web crippring on end & interior supports.
4.64 1
4.50
4. Ix is for defiecflon delermtnalion.
550
601)
5. Se is for bending.
700
75a
6. Ma is the aMvwab[e bending moment.
85C
7. All values are for one fool of panel widlh.
560
497
Allowable Uniform Loads (PSF)
Noles-
1, Allowable uniform loads are based upon equal span lengths.
2. Pnsitive Wind is vend pressure and is NOT increased by 33 V3 %,
3- live is the ailwable five or srxx load.
4. Defection (0180) is the allowable load that limits the panel's deflection to U180 w71Re under positive or live load.
5. Deflection (0240) is the allowable load that limits the panel's deflection to 0240 while tinder positive or i£ve load,
6. The weight or the panel has NOT been deducted from the allowable loads.
7. Positive wind and Live load values are limited to combined shear & bending using Eq. C3.3.1-1 of the AiSI Specifrca4orl.
B. Values cfASTM E1592 Wind Upflh Testing Include a factor of safety of 1.67. Shaded areas are outside of les: range. Contact Md5troy Metal for more inforrrafion.
9, Positive Wind and Live Load values are limited by web cappling using a bearing length of 2".
10- web crippling values are determined using a ratio of the uniform loadactually supported by The top Ranges of the section.
11. Load Tables are Shred to a maximum allowable load of 500 psf.
Span-
et
Span Type
Load Type
1.DD
1.50
2.00
2.50
3.00
3.50
4.64 1
4.50
506
550
601)
n5d
700
75a
600
85C
Positive Wrld
560
497
280
179
1 124
91
70
55
44
37
31
26
22
19
17
15
Single
Live
Soo
497
286
179
123
91
76
55
44
37
31
26
22
18
17
15
DeltecGan(1-1180)
Soo
584
500
481
278
175
117
82
60
45
34
27
21
17
t4
12
Deflection (0240)
500
Wo
560
360
208
131
88
61
45
33
26
20
16
13
11
9
Posffive Wind
500
337
197
128
gD
66
51
40
32
1 27
22
19
f8
14
12
11
2 Span
Live
500
337
1 197
128
90
66
51
40
32
27
22
19
16
14
12
11
Deflection (1.1180)
500
500
540
500
491
349
207
145
06
79
6f
48
38
31
25
21
OeflecSontU240)
500
560
500
1 504
1 368
232
155
169
79
59
46
36
29
23
£9
16
PaSITYe Wind
560
407
241
158
111
82
63
50
41
34
28
24
21
18
18
14
3 Span
Li':
Deflection fir'18b)
5'?0
5C0
a77
EGD
241
509
192
SCO
} 11+
334
8:
242
C3
762
3o
114
41
83
34
62
2F
48
24
37
21
30
18
24
16
20
14
15
Dellectioo (0246)
506
500
500
496
288
181
121
85
62
46
36
1 28
22
1B
15
12
Positive Wind
500
385
227
148
104
77
59
47
38
31
26
22
19
17
15
Q
4 Span
Live
500
385
227
148
104
77
59
47#66
31
26
22
19
17
15
13
De11ec8on(Lf180)
500
506
500
500
408
25l
172
12f66
51
40
32
25
21
17
Oefleclion(U240)
500
500
500
500
306
192
129
9049
38
30
24
19
16
13
ASTM E1592 Lund Uplift Testing 1
69-5
1 61.1 1
52.4
49.1
45-2 1
41.3 1
37.7
33.8
30.1
NO TEST
DATA AVAILA F.
Noles-
1, Allowable uniform loads are based upon equal span lengths.
2. Pnsitive Wind is vend pressure and is NOT increased by 33 V3 %,
3- live is the ailwable five or srxx load.
4. Defection (0180) is the allowable load that limits the panel's deflection to U180 w71Re under positive or live load.
5. Deflection (0240) is the allowable load that limits the panel's deflection to 0240 while tinder positive or i£ve load,
6. The weight or the panel has NOT been deducted from the allowable loads.
7. Positive wind and Live load values are limited to combined shear & bending using Eq. C3.3.1-1 of the AiSI Specifrca4orl.
B. Values cfASTM E1592 Wind Upflh Testing Include a factor of safety of 1.67. Shaded areas are outside of les: range. Contact Md5troy Metal for more inforrrafion.
9, Positive Wind and Live Load values are limited by web cappling using a bearing length of 2".
10- web crippling values are determined using a ratio of the uniform loadactually supported by The top Ranges of the section.
11. Load Tables are Shred to a maximum allowable load of 500 psf.
DCM
Project: 4140Y -VIA- r'12.YL►4 No: JDZR,A?3 Page: 0
McClendon Scope: S-r]ZuCT !,.. 'm'6`1 —Date: - Checked by:
Engineering Inc Item: By:
r?Oo F RlA:L�,i
10
Fr-
tpeffl- x Z' Z x 16
E V
C.Hc-CI4. Wa`AK A?05 SCN OC -1 FD32 FLA -r 5tMAf_S
LID S
P5 F
FT
i
k
j
E
O
h
!q
r
m
N
r
m
m
r
m
m
O
Q
O
r
r
10
N
G
m
m
m
0
0
�
sem-
Yff
m
O
N
C
O
Y
O
to
m
O
Q
ca
n
q!
O
O
O
O
O
Ct
p
p0
p
E -E
ti..
'�
r
ei
ci
ci
vi
e!i
ri
ri
ri
ri
M
ro
M
vi
�i
vi
Ni
� �
u
0
r-
m
u!
r
N
r
N
m
C
P
m
ri
m
T
W
N
W
r
n
W
N
h
Q
m
m
N
Xco
a7
m
w
N
N
M
N
N
M
N
N
M
Y
7
a7
m
4
0
m
P
N
m
m�
ll]
r
w
m
m
m
V
c
N
av
m
c>
o�
Q]
w
w
m
!C)
N
m
1t
n
W
n
N
N
N
n
P
m
!o
o
I1
m
ti-
Q
Q
!rr
Q
N �
W
m
W
W
m
N
m
Q
ar
y)
h
m o!
N
N
M
r
w
w
r
N
O�
r
w
N
Q
w
v
N
Q
r
(`1
Q
ti
!2
N
v
to
N
N
C)
IL
N
o c
C; co
Mca
U')
J
2a
m
rn
"�
v
o
n
w
umi
m
w
9 v
!b
!a
rr
p
P
!d
r
of
6
6
m F
Q
z
J
m m
mar
m
ro
o V
m
m
r o
LL
eo
!o
r
p
i
c6
r-:
w
v
tdYL-
a
ui
r
of
v oi
a s u m
z m —
a M r
Gi c NJr M Ln m o
w
p
m
o
r
n
m
o
r
p
m
p
n
m
p
Lu o¢ v m !n r
_a
J
m
m
m
N
m
m
m
m
m
m
m
m
m
m
ram
m
m
m
m
m
m
m
ro
m
!n
m
m
a!
Z om'-' W ,f
..
C
G
o
o
o
o
o
C
o
0
o
o
p
o
C
0
N
W
m
m
wa!
O1
m!O
m
4
CO
¢
o
a
w]
a
Ort
d
o
"QQ
h
���1lfyyy
mr
w
m
a
m
rn
N
m
m
fmY
r
m
ro
m
r
Q
�y
p
ri
r
ai
m
v
so
!ri
m
N
!n
of
P
vi
N
ni
a
s
t<i
�v
a
tri
CL
7
A
a
p
!n
u,
m
o
o
4
m
J
Y C
hD
r
O
m
D
n
�-
N
M1
m
o
t-
W
O
h
r
m
Q
L Y
O
O
O
O
C
C
O
O
C
p
O
CS
0
0
0
0
!
l
lu
0
m
A
(j
!n
r
!n
i-
+7
!rj
!n
r
m
(ry
vl
A
b
N
h
r
W
N
m
r
w
CV
n
r
W
fY
h
r
a7
4"1
sn
+`
m
N
m
r
m
CV
!n
r
m
CV
b
irj
n
i j
h
i t
m
cl
m
j)!
x
X
X
X
%
x
x
X
%
X
u]
r
r
m
r
r
ds
m
eN-
m
C7
N
fN0
N
fN0
N
l0
N
eN-
N
N
N
N
,.y
pj
t�
O
%
x%
x
x
x
x
x%
X
x
x%
x
x
x
O
O
4
O
cd,
O
O
O
O
p
4
O
p
n
n
O
N
CU
m
m
m
OC
CU
C1
GG
W
o�
CD
Qi
at
T
m
Q)
E
Z
uNT
H
o
0
0
0
N
ti
uNi
v3
ui
v�
!s3
y
t0
fD
fU
00
OD
fU
Q)
CO
0
0
m
m
m
ai
Ce
aj
O
DMc
McClendon
Engineering Inc
Project: -T-ARovA4- �r�t2.(1.�
Scope: !!5rm C - 1Da zs1C-, 1
Date:
By:
Page:
Checked by:
S 1
'puau
SK'PPb QT
[moo F 1� L --,,Nm
PSL �
175
M10 SPAti.
W. c,
17
O' x 12)Sf(qs)(Z#OOo
Qoo)
I
NA
pr-, IL
I
Mc
Project: No:10-28,2--S Page: It
McClendon $cope: ST�L"`r na7nC`i> Date: S Checked by:
Engineering Inc Item: By: Sn�
i
-O {
SpPtrj- S � I
ZI 88 t6
ISC
Psi ZS F 2. s')
TS w. 0.
wRu. rz F
j�PLr-
W,5 (s/Z) _ 3 PI -F
S C
M C rA o ( 2
Project: --I No: �M��:
McClendon $cope: ST?2u�T �ci�r.1 Date: S Z3 Checked by;
Engineering Inc Item: By:
5pft�•1 _ �2 -p
►.75Z� '?"T- I.Ptb7
v 75 �(3.5') Z �, Z40n it- si'� I L, 3 �ZF)t — 3,5`�g lac2o)
xIT
- p
YK
7, 7- 16
O
13
V1
1!]
V
O
O
O
O
a
O
O
O
C
(il
(D
co0
O
O
O
O
0
rn
0
0
A-
q
O
0
O
O
d
O
o
0
{.
}
n
c']
n
Oi
_
u7
n
Oi
CEJ
m
N
O
W
V
C
M
I'�
O
V
n
r-
N
f7
0
47
M
m
x
47
�
Ii i
[A
�
In
cD
q
x
0
0
0
0
0
0
O
O
0
0
0
0
0
0
�
Q
O
Oi
V
q
n
a,
O
D1
to
r,-
o
O
Q
cn
O
(D
W
4
} C_
O
V
h
O
l7
C'
(17
(D
GS
m
O
N
q
U
= +.
o
cc
0
a
m
0
0
c6
N
z,.
cD
C
N
N
C
Os
q
g
ar
n
n
m
�-
rn
m
In
V
V
M
�x
n
n
r.
n
q
q
cc
co
0
0
o
p
r
_N
N
N
N
N
N
N
N
N
[7
M
C1
M
M
M
x
r
d
co
O
0
n
In
tD
_
V'
r
In
N
ti'
(D
Cp
In
_
"t
N
g
N
113
Q
47
M
T
(A
V
q
N
a0
10
O
r
h
r
V
N
n
W
V'1
In
N
co
N
C7
N
N
l`7
N
N
M
LO
Lo
L
N07
W
(N
n
co
a
0
0
M1
Lo
(]
x PC
-
l�
r
co
N
0
ti-
N
l
r-
M1N
M
Lo
V
CO
N
�4
ra
n
a3
C7
q
4
N
Li
...E
(n
uj
O
n-
o
O
n-
M
u7
m
(p N
Q
0
0
n
0
0
n
0
M
n
M
cel
n
c7
Y
m
r
rn
q
n
m
m
v
o
m
C?
m
Nr
n
N
r
Cl
tl'
r�
r
N
V
M1
N
N
V
1`
N
r
U
T
C
C
Q
72
p
�-
Q
(4
cc
W
7
Ol
I
O
0
co
n
I!'i
O
O
c0
(D
�D
CD
[�
V
D
LD
ID
s
L7
(D
N
M
O
O
V
6
d
O
U
^� Y
O
m
f7
M
�
Ch
n
n
V
(`'7
n
O
LL7
(p 0
O�
Q
"-'
V
v
(P
of
v
4')
C')
Gs
cn
n
V
t0
t--
d
C
In
0 y
(L) 10
(c
I17
M
O
(D
ICi
M
O
(b
47
M
0
(D
(D
b
ti
W
m
m
ti
q
m
co
n
E N
V
J 'C
"
0
0
o
c
n
o
q
0
W
0
M
0
0
0
0
0
n
0
D.7
0
q
0
4q
0
O
(0
C
D O
O
O
v
co
Rf
C
LO
co
N
ID
Ifl
(+]
4
(D
Lr7
[")
N
Q
In
n
r
0
O
d7
9
Ql
C
m
0
m
W
(�7
(nD
ani
W
V
llO
O
N
LlU
3°
Q
o
0
0
0
0
0
a
a
a
m
C:
(nui
C U
¢
Co
n
co
(D
n
1D
ti
m
�
a
rn�
ci
,-
N
M1
ci
m
o
c7
rn
r
N
n
rn
lD
�
M
w E
a
9
m a
m
o
a
r
n
cD
om
n
i
0
rn
w
Lq
r7
q
y Q
a
N
m
C'
V
0i
m
V
(i7
N
M
v
N
(n
V
1(7
i
r
o. p
O Z
y
n
0
CO
In
O
O
LD
0j
d
o
LLJQ
Q1 1[7
n
Y
407
0❑
n
W
O
C7
I0[)
O
p
q
O
4LO
O
W
1x07
q
O
U
cc
t� tT
i� Z=
.�
d
o
0
�-
0
0
0
C,
0
.--
c
O
a
o
O
0
r
0
0
0
O
0
0
r
0
0
x
cn
x
ui
LL
LL p
t—
zO
b'
[ri
N
W
V
M
N
!D
V'
(2
N
q
V
M
N
Q
t
>t
0
0
0
0
0
❑
O
4
In
to
In
47
O
O
O
P
m
m
co
CO
M
a
V
V
a
N
N
N
N
m
co
:i
M
X C
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
{}
0
0
0
0
Ci
0
0
0
0
0
0
0
6
C)
0
0
rr
n
rn
n
n
n
M1
n
m
q
m
ai
W
W
c0
W
Qi
(a
v
r2
N
f6
z
U
UU
U
C,7
U
U
U U
U
U
U
U
U
U
U
C
�
o
x C
X
o
M
a
M
o
C7
n
o
o❑
V
rn
7 N
u7
N
(D
N
;
0
0
0
0
U
O
X
O
X
d
X
d
x X
O
k
O
X
o
X X
0 0
x
X
0
X
0
X X
0
X X
0
X
0
x X
0
x
67
n
M1
n
f+
M1
n
n
n q
q
no
a7
cc
W
co
O
13
DE
MC
project: 7FA 1+omh X212 No: IQ Zr,?_3_ Page.
McClendon $Cope'— -- Rate: Checked by:
Engineering Inc Item: By:
tA) /of-if:
3
M lZ1 Fr �b
I I
14 6 A-
I Ve
it p L
Z57
P
Fr: Lb
-o- 844 vA /(4# (0) (6�-14)owo)
Zkoi
vi'`3fr 4C X Z
•.► - -�-...�--__._...-_._..__ _---- ^ it
Ff
i i
W,
U)
P
n]
N
L
V
r
h
h
O
h
CIDV)
h
m
t
m
h
m
V
M
V
M
v
m
O
M
m
c?
m
r]
rn
In
CI
O
O
Ci
Ci
G
O
0
0
U
6
o
Ci
O
O
Ci
o
u
r
�
.�.
M
4
m
as
to
�
EV
Cl)
f4
?
f8
Co
N
ti
2
N
O
N
O
in
0
0
CY
0
M
0
0
�
4
C`t
4
'Q
0
Y1
O
Q�
O
O
o
a
p
�
Q
�y
..
> PC
V
Crl
M
Cl)
O
i'')
HCl
O
tD
C'1
11
m
m
00
h
V'
W
�D
m
N
W
O
N
O
O
0
O1
N
h
V
m
W
W
m
4
O
o
p
O
O
O
O
C
O
O
o
O
O
O
r
4
v
WCD
`ti
aoQ
ib
4
m;
r
O
FO
.�
in
vs
ui
v}
cp
tO
O
o
m
m
m
N
m
Cl?
'M
r
N
N
N
N
N
N
X
Lt
�
nC
mN
m
M
N
n
O
O1
rl-
W
V
r
�n
N
h
m
M
vy
CD
h
m
�
!O
D3
O
[�
m
r
96
V
o]
m
(�
�(
Ci
o0
o
o
+-�
o
r
M
to
d
v
to
W
o
n
cD
a
m
r,
m
h
M
m
(}
x c
ro
C�
a
UJ
n
m
rI-
Cl!
io
U]
CRN
l0
o
[0
m
O
m
(D
0r=
m
m
W
c0
a
tD
a
m
U)
ni
r
r
C4
N
N
m
m
v
m
v
16
r6
cn
to
lu
N
h
O
N
m
a
rn
rn
u7
�
oVo
4
O
Cm7
QD
O
OM
m
ap
4W'1
S`7
O
v
cn
u7
co
h
r�
Ln
w
r�
r7
zn
i.
ai
m
ori
h
i
U
r
ro
0
CD
W
h
G
00
O
o
Q
Itl
O
G
h
N
iY
ti
m
h
m
t0
V
h
m
V
N
a
J
m
r
n
a�
N
fn
ca
a
o
m
m
r
W
o
c
p
Q
''-
N
N
M
r
N
N
t`7
N
C]
En
V
Ci
iCi
lD
L!')
T7 y Lr)
M
Q
117
Lo
[`]
O
W
N
M
4
W
C7
O
m
vi
p
CL o
�}
Q C
h
ti
O
W
M
W
w
m
I-
F�
O
ao
Cl
W
Go
DD
n
h
O
m
!•]
op
W
W
!�
O
C']
90
N
`.
a
O
C]
O
O
O
o
0
0
0
0
0
f+
¢
00
p
00
0
W
0
U G
O
Q
ID °
m
Lo
m
67
N
Iq
N
W
t0
h
(`7
m
a0
b)
fD
V
m
V
O
7
iq
=17
il
C7
O
V
G
h
c7
0q
O
Ln
N
Q-
D
o
3
w
r
a U
z7
j
ar s
o c
r
itl
b
C U
N
aa) C
N
¢
-C
[»
Co
L7
h
m
O5
V
�f1
N
W
ni
.-
u7
0o
O
N
co
G7 A
r
d7
h
{
a0
m
Ea
h
V
O
w
O
m
(�
V
LD
V
c0
N
C> Q
,�
-
N
N
OF O L
�
O
Q
N
r]
r
N
N
M
N
N
M
M
N
N
c7
V
CL
o Z
v�
.—
to c
I4 )
y N
y
m
o
n
n
m
o
m
m
o
in
u�
w
o
'o
'o
LU a s
v
kc) n
Y
o
0
0
-
o
0
o
r
a
o
m
o
o
n
o
<-
co
0
y
=
o
If !i
L V
o
0
0
0
0
0
0
0
0
0
0
r
0
0
0
o
0
CT
-
Q
U7
� ti U.
�
Z
Cn
m
V
M
N
r
CD
V
M
N
fD
G
[+7
N
SD
V
C7
N
d
O
O
CJ
6
UL
V1
4(7
IQ
w')
to
cn
q
47
U!
W?
Vt
G:!
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
X C
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
o
a
o
0
0
0
o
a
o
0
o
a
d
V
V
V
v.
V
G
cn
'o
i+7
DC7
fD
1L}
tD
t6
61
i
I
EM
'U
C1
PI
N
tD
V
M
N
m
Q
P
N
iD
y
Ci
N
Z
U
U
U
U
U
Cj
U
U
i.]
U
U
CJ
U
C5
U
U
O
O
(�
X
O
x
O
X
O
n
to
X
Lo
X
47
X
Mf
llq
(y
W7
47
X
W7
x
14
X
O
O
O
O
o
0
X
O
X
C)
C7
o
O
O
x
O
o
,
G
v
V
V
V
4
Q
u7
Lolun)
to
O
co
W,
Pro°ecf:i 1 L�,Y'
-No: Page,A_
Scope:��_�°�- -G�'Z�
McClendon
Date: Checked b v:
Engineering Inc Item:
exfl�ps,v? Lr
�5sr,
r
G z0' 's
1.6
C. Iwo, - Za.2foci=
5•o pip -
) t eAjj�, Zd•Zp�F 1•2gS
`� � Zs,o psi ��•��
__ =_- ls,�. !'SF --(r�s�� . __ .... ..
7 e y G rs sruos
Z a" a.c,
r'DG K Zt%Z x fLa tirvt3.S
��rf_1'f C3=t.✓# i`Y
Project ril6±fPMP-- 11;�-- . No:_ / Fnge:__I
GC��EEIC�4T1 Scope: �T j2�,tC�__�L'�IC�lJ _ bate:.- 3 Checked by:
Engineering Inc item:
0
` -rL Cosa #
LaY,44 CC►wr, #Z ( Jjo,�-Qe� we+ -�
IPT7
t.JLa,,�p
L o � ' Cis . > �I (+�- �,
Dc: F �. � �.a = Z- yo
Ww�a 7Spc.rw o•�rz,
= 3(.s (at-F32C,)
+� Q
pfoject;u 14 iid1�1�P$ �- I1I0:_. LZ V
page:.
--
cClendQi1, scope:, c ite: 23 Checked by: _..__.
Enginee'i ig inc item:
75P( -F .CIO �! o
Pn
Frzol AIC -1
ti
1\ �A ins -
.\
.0
19
I
�
,
I
,
I
�
�
1
1
I
I
1
I
'
I
I
I
I
3
1
,
,
,
,
I
I
I
I
I
I
�
I
;
,
,
;
,
,
,
,
k
I
I
I
I
I
;
,
,
,
I
I
I
I
I
f
I
I
I
I
I
�
�
�
,
�
,
,
,
3 ,
� I
I
I
�
r
k
I
r
I
ss 3
f
I
I
I
1
!�
i
I
I
I
I
I
I
I
�
�
1
�
�
I
�
r
t
f
,
r
r
r
r
k
r
r
r
r
�
�
�
r
I
,
,
,
,
,
r
r
,
1
r
r
r
I
\
y
1
,
�
I
I
�
1
I
I
1
I
1
f
�
1
1
�
�
.\
.0
19
DMC
Project., Rom page:
McClendon 11oP-:M. Date'. 23 Checked by:
Engineering Inc ItemL--
7,
P
7t:��(D cl;= TTI� Z10
oj
Z,
WA L L
6AA
F
63Wit_7p S d Pz
--- -------- --
7W,)/�LAfl S114? PL-F
Al
--44
41
I-J, P: TH Pr?&-D
E
MC
Project:, _T�Aftmpr 1O;w_W-R-P1 NO: 102R473— Page: Z
McClendon scope;. Date:-- Checked by:
Engineering Inc item: By:__ !L2
C'MO A"I/F-1 uam, FTS
volosr- (S'A� + IL-4
"Soo
6 3
T
IPTL _TZ 1-7
TL rL'F
44"
oi/
COT
A
23
McClendon Engineering, Inc.
A1►IrE) 1412 W. Idaho Street, Suite 240
I11►1 Uoise, Idaho 83702
McCtendan (208) 342-2919
Engineering Inc
Beam on Elastic Foundation
Beam
C00a M-FEREMCF$
Project Title: 7' 4 atom or -
Engineer;
Project ID: ID7.V' t-!5
Project Descr:
Calculations per ACI 318-1r1; IBC 201%
Load Combinations Used: ASCE 7-1(,
Material properties
0.000 in
rc V22.50
ksi Phi Va€ues Flexure: 0.00
k= Pc ' 7.50 -
375.0 psi Shear: 0.750
V Density -
145.0 pcf R t 0.850
X Lt Wt Factor =
1.0
Elastic Modulus =
3,122Aksi
Sal Subgrade Modulus
- 250.0 psi 1(inch deflection)
Load Combination ASCE 7-10
fy -Main Rebar = 60.0 ksi Fy - Stirrups = 40.0 ksi
E - Main Rebar = 29,000.0 ksi E - Stirrups = 29,000.0 ksi
Stirrup Bar Size # _ # 3
Number of Resisting Legs Per Stirrup 1.0
Begm lZ suppQrted 2n an elaqfic fipundetion,
prolectstl
SIA-mP- A-
0(3.36x1 5G0.5S7) d(3.36i 5(D.58Y} D(3.361S(0-567) D0.66)S(0.284)
_Cross Section & Reinforcing t7 W13
Rectangular Section, Width =12.0 in, Hefght = 24.0 in
Span 41 Reinforcing....
245 at 3.0 in from Bottom, from 0.0 to 48.0 fl in this span
Applied Loads Service loads entered. Load Factors will be applied for calculations.
Load for Span Number 1 �-
Uniform Load: D = 1.680, S = 0.2840 klft, Extent = 0.0 -->> 0.6870 ft, Tributary Width =1.0 ft
Uniform Load : D = 3.361, S = 0.5670 klft, Extent =11.333 ->> 12.667 ft, Tributary Width = i3O ft
Uniform Load : D = 3.361, S = 0.5670 kA Extent = 23,333 » 24.667 ft, Tributary Width =1.0 ft
Uniform Load: D = 3.361, S = 0.5670 klft, Extent = 35.333 » 36.667 ft, Tributary Width =1.0 ft
Uniform Load, D =1.680, S = 0.2840 ktft, Extent = 47.333 ->> 48.0 ft, Tributary Width =1.0 ft
DESIGN 80MMARY ro
Section used for this span
Typio3l Section
Max Downward L+Lr+S Deflection
0.000 in
Mu : Applied
-3.369 k -ft
Max Upward L+Lr+S Deflection
O.Ow in
Mn " Phi: Allowable
6.335 k -ft
Max Downward Total Deflection
0.013 in
Load Combination
+1.20W-50L+1.60S-t-1.80H
Max Upward Total Deflection
0.000 in
Location of maximum on span
4.518 it
Span # where maximum occurs
Span # 1
W&M Soif Pressure =
0.466 ksf
at 24.00 ft LdComb: +D+S+H
Allowable Soil Pressure -
1.50 ksf
OK
9T of Stirrup R quirera imis
Entire Beam Span Length: Vu < PhNci2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in
Mulmum Forces & 81tesses lest load C ir*t Y18
Load Combination Location f R1 Bending Stress Results (k -ft)
Segmerrl Length Span # in Span Mu: Max Phi Mnx Stress Ratio
Mmum Bending Envelope
Span 9 1 1 47.435 -0.34 5.33 0.05
7N
+1.40D+1.60H
McClendon Engineering, Inc.
Project Title: 'T��h'C> A
�E
M�
1412 W. Idaho Street, Suite 240
Engineer:
1Y�
Boise, Idaho 83702
Project ED: f C)t.g, T'+S
0.05
(208)342-2919
Project Dem.
McClendon
1
Hilt
Engineering Inc
47.435
-0.28
Beim C♦C1 Elastic Foundation
Rte=KVIWEPfojeds12018 Piojecis41074.1$BuddeyStorage 8uildings'calesvool[nq.ec5.
KW -06007747
-
WWar%WW9NENERCALC,INC.19612019 Ndd10.39,1.30.
DESCRIPTION,
Grade Beam
Span # 1 1
Load Combination
Location (ft)
Bending SUess Results (k -ft)
Segment Length Span # in Span
NIU: Max Phi'Mnx Stress Ratio
+1.40D+1.60H
Span
Max. Downward Defl
Location in Span
Max. Upward Defl
Span # 1 1
47.435
-0.32
6.33
0.05
+1.200+0.5OLr+1.60L+1.60H
0.900
+D+L+H
1
Hilt
Span # 1 1
47.435
-0.28
6.33
0.04
+1.20D+1.6CL+0.50S+1.6OH
24.000
0.0000
0,000
+O+S+H
Span # 1 1
47435
-0.30
6.33
0.05
+1.20D+1.60Lr+O.5OL+1.6OH
1
0.0111
24.000
6.0600
Span # 1 1
47.435
-0.28
6.33
004
+1.200+-L6OLr+O.5C W+1.6OH
0.000
+D+0.60W,Hi
1
0.0111
Span # i 1
47.435
-0,28
6.33
0.04
+1.24D+O.50L+1,605+1.6CH
24,000
0.0000
0.000
+D+0.75OLr+0.75OL+0.45OW+H
Span # 1 1
47.435
-0.34
6.33
0.05
+1.20 D+1.60S+O. 5O W+1.60H
1
0,0125
24,000
0.0000
Span # 1 1
47.435
-0.34
6.33
0.05
+1.20D+O.50Lr+(L 50 L+W,1.60H
0,000
+0.600+O.60W+0,6CH
1
0.0067
Span # 1 1
47.435
-0,28
6.33
0.04
+1.20D+0 5OL+O.5OS+VV+1,60H
24.000
0.0000
0000
D Only
Span # 1 1
47.435
-0.34
6.33
005
+1.20D+0.5OL+0.2OS+E+1.6OH
1
0.0000
0.000
0.0000
Span # 1 1
47.435
-0.28
6.33
0,04
+0,90D+W+0.90H
0.000
S Only
1
0.0019
Span # 1 1
47.435
-0.21
6.33
0.03
+-0.90D+£+0.90H
0.000
6.0000
0.000
2Only
Span#1 1
47,435
-0,21
6.33
0.03
Overall Maximum Deflgcftns • Unfactored Loads
1
0.0000
Load Combination
Span
Max. '-'0e&
Location in Span
Load Combination Max. '+' Defl Location in Span
Span 1
1
0.0130
24.000
0.0000 0.000
Maximum Deflections for Load Combinations • Unfactored Leads
0.03
Load Comb�nahon
Span
Max. Downward Defl
Location in Span
Max. Upward Defl
Localion in Span
+D+H
1
00111
24.000
0.0000
0.900
+D+L+H
1
Hilt
24.000
0.0000
0.000
+D+Lr+11
1
0.0111
24.000
0.0000
0,000
+O+S+H
1
0.0130
24.000
0.0000
0.000
+0+0,7501-r+0-750L+H
1
0.0111
24.000
6.0600
0.000
+D+0.750L+O.750S+H
1
0.0125
24,000
6.0000
0.000
+D+0.60W,Hi
1
0.0111
24.000
0.0000
0.000
+D+0.70E+H
1
0.0111
24,000
0.0000
0.000
+D+0.75OLr+0.75OL+0.45OW+H
1
0.0111
24.000
0.0000
0.000
+D+O.75OL+O.75CS+O.45OW+H
1
0,0125
24,000
0.0000
0.000
+D+0.I50L+0.750S+0.5250E+H
1
0,0125
24.000
0.0000
0,000
+0.600+O.60W+0,6CH
1
0.0067
24.000
0.0000
0.000
+0.6CO-470E+0.601-1
t
0.0067
24.000
0.0000
0000
D Only
1
0.0111
24.000
0.0000
0.000
Lr Only
1
0.0000
0.000
0.0000
0.000
L Only
1
0.0000
0.000
OA000
0.000
S Only
1
0.0019
24.000
0.0000
0.000
W Only
1
0.0000
0.000
6.0000
0.000
2Only
1
0,0000
0.000
6.0000
0.000
H Only
1
0.0000
0.000
6.0000
0.060
Detailed Shear Information
0.00
000
+1.20D+1.6OS+fl.5OW+1.6OH
1
4.52
Span
Oistance
`d'
Vu
(k)
Mu
d VulMu
Phi Vc
Comment
Phi'Vs
Spacing (in)
Load Combrna5on
Number
(ft)
(in)
Actual
Design
(k -R)
(k)
(k)
Req'd
Suggest
+1.20D+1.6CS+C.50W+1.60H
1
0.00
21.00
0.10
0-10
0.00
1.00
19.12
Vu<PhI'W2
Not Reqd
0.00
0.00
+1.26D+1.6OS+O.5OWA 60H
1
0.56
21.00
-1.10
1.10
0.34
1.00
19.12
Vu <Philld2
NotRegd
0.00
0.00
+1.20[)+1.60S+0.5OW+1.6OH
1
1.13
21.00
-1.16
1.16
1.09
1.00
19.12
Vu <Phi'1c12
Not Reqd
0.00
0.00
+1.2OD+1.6OS+O.5OW+1.6OH
1
1,69
21.00
0.97
0.97
1,75
1.00
19.12
Vu<PNVd2
NotRegd
0.00
0.00
+1.2OD+1.6OS+0.50W+1.6OH
1
2.26
21.00
-0.77
0-77
2.30
1.00
1912
Vu<PhiVcl2
Not Reqd
0.00
0.00
A20D+1.6OS+O,5OW+1.60H
1
2.82
21,00
-0.58
0-58
2.73
1.00
19.12
Vu <PhUd2
Not Reqd
0.00
0.00
+1.200+1.60S+0.50W+1.60H
1
3.39
21.00
-0.38
0.38
3.06
1.00
19.12
Vu<PhiVc12
Not Reqd
0.00
0.00
+120D+1.60S+6.56W+1.6OH
1
3-95
21,00
-0.17
017
3.27
1.00
19.12
Vu<PhiVc/2
NctRegd
0.00
000
+1.20D+1.6OS+fl.5OW+1.6OH
1
4.52
21.00
003
0.03
3.37
0.22
18.21
Vu<PhNul?
Not Reqd
0.00
0.00
+1,200+1.60S+0.50W+1-60H
1
5.08
21.00
0.24
0.24
3,35
1-00
19.12
Vu<Phtvct2
Not Reqd
0.00
0.00
ZS
McClendon Engineering, Inc.
ME 1412 W. Idaho Street, Suite 240
Boise, Idaho 83702
(208)342-2919
E gsC[endon
ngineeifng Inc
seam on Wast c Foundation
DESCRIPTION: Grade Beast
Detailed Shear Information
Project Title: "�A1 µ6w14, -f'�)4tA
Engineer:
Project ID: j0Z$,25
Project Descr
'018 Prolectsl1074.18 Budley Stomp BuiGrmgslCatesVc
Salt m oapWripht EMRWD, WC.19a2019, 6uid:1
Span
Distance
'd'
Vu
(k)
mm
d'VUfk1v
Phi'Vc
Comment
Phi'Vs
Spacing (in}
toad Combination
Number
(ft)
(in)
Actual
Design
(k -ft)
(k)
(k)
Req'd
Suggest
+1.200+1.605+0.50W+1.60H
f
5.65
21.00
0.46
0.46
3.21
1.00
19.12
Vu<PhVd2
Not Reqd
0.00
0,00
+1.200+i.60S+0.50W+1-60H
1
6.21
21.00
0.68
0.68
2.96
1.00
19.12
Vu <PhiVc/2
NotRegd
0.00
0,00
+f.20D+1.60S+0.50W+1.60H
1
6.78
21.00
0.91
0.91
2.57
1.00
19.12
Vu<Phlld2
Not Reqd
0.00
0.00
+f.20D+1.605+0.50W+1.60H
1
7.34
21.00
1.15
1,15
2.06
1.00
19.12
Vu<PhVd2
Not Reqd
0.00
0.00
+1.20D+1.605+0.50W+f.60H
1
7.91
21.00
1.39
1.39
1.41
1.00
19.12
Vu <PhVcl2
Not Reqd
0.00
0.00
+1.20D+1.60SA,50W+1.60H
1
8.47
21.00
1.65
1.65
0.63
1.00
19.12
Vu <PhiVd2
NotRegd
0.00
0.00
+1.200+1.605+0,50W+1.60H
1
9.04
21A0
1.91
1.91
0.30
1.00
19.12
Vu <PhiVc12
Not Reqd
0.00
0.00
+1.20D+1.805+0.50W+1.60H
1
9.60
21.00
2.18
2.18
1.38
1.00
19.12
Vu < PNW2
NotRegd
0.00
0.00
+1.240+1.60S+0.50W+1.60H
1
10.16
21.00
2.46
2.46
2.61
1.00
19.12
Vu<PhjVd2
NotRegd
0.00
0.00
+1.209+1.605+0.50W+1.60H
1
10.73
21.00
2.75
2.75
4.00
1.0D
19.12
Vu <PhiVd2
NotRegd
0.00
0.00
+1.200+1.60540.50W+4.601-1
1
11.29
21.00
3.04
3.04
5.55
1.00
19.12
Vu <PhiVd2
Not Reqd
0.00
0-00
+1200+1.605+0.50W+1.60H
1
11.66
21,00
0.74
0.74
6.59
1.00
19.12
Vu<PhiVc/2
NotRegd
0.00
0,00
+1.20D+1.605+0.50W+1.60H
1
12.42
21.00
-1.74
1.74
6.22
1.00
19.12
Vu < PhVr12
Nat Reqd
0.00
0.00
+1.200+f.80S+0.50W+1.60H
1
12.99
21.00
-2.64
2.64
4.70
1.00
19.12
Vu<RHO
Not Reqd
0.00
0.00
+1.20D+1.60S+0.50W+1.60H
1
13.55
21,00
-2.33
2.33
3.21
1.00
19-12
Vu < PHW2
Not Reqd
0.00
0.00
+1.20D+1-605+0.50W+1.60H
1
14,12
21.00
-2.03
2.03
1.89
1.00
19.12
Vu<PhiVc12
Not Reqd
0.00
0.00
+1.20D+1.60S+0.56W+1.60H
1
14.68
21.00
-1.72
1.72
0.75
4.00
f9.12
Vu <PhiVd2
Not Reqd
0.00
0.00
+1,20D+1.605+0.50W+1.60H
1
15.25
21.00
-1.42
1.42
0.23
1.00
19.12
Vu <PhjVd2
Nat Reqd
0.00
0.00
+1.200+1.60540,501N+1.60H
1
15.81
21.00
-1.12
1.12
1.03
1.00
19.12
Vu <PhiVd2
Not Reqd
0.00
0.00
+1.200+1.605+0.50W+1.60H
1
16.38
21.00
-0.81
0.81
1.66
1.00
19.12
Vu<PhVr12
Not Reqd
0.00
0,00
+1.20D+1.605450W+1.60H
1
16.94
21.00
-0.51
0.51
2.12
1.00
19.12
Vu<PhVd2
Not Reqd
0.00
0.00
+1.20D+1.64540.50W+1.60H
1
17.51
21.00
-0.21
0.21
2.41
1.00
1912
Vu<PhVcl2
Nat Reqd
0.00
0.00
+1.20D+1.60S+0.50W+1.60H
1
18.07
21.00
010
0-10
2.53
0.91
19.01
Vu <PhUr/2
Not Reqd
0.00
0.00
+1.200+1-605+0.50W+1.60H
1
18.64
21.00
0.40
D.40
2.47
1.00
19.12
Vu<PhiVd2
Not Reqd
0.00
0.00
+1.20D+1.60840.5DW+1.60H
1
19.20
21.00
0.71
0.71
2.24
1.00
19.12
Vu <PhiVd2
NatRegd
0.00
0.00
+1.200+1.60S+0.50W+1.60H
1
19.76
21.00
1,02
1.02
1.84
1.00
19.12
Vu<PhVr12
NofRegd
0.00
0.00
+1.20D+1.605+0.50W+1.60H
1
20.33
21.00
1.34
1.34
1,27
1.00
1912
Vu <PhUcl2
Not Reqd
0.00
0.00
+1.200+i.60S+0.50W+1.60H
1
20.89
21.00
1.65
1.65
0.51
1.00
1912
Vu < PhiVd2
Not Reqd
0.00
0.00
+1.200+1.605+0.50W+1.60H
1
21.46
21.00
1,98
1.98
0.42
1.00
19.12
Vu <17NW2
Not Reqd
0.00
0.00
+1.20D+1,60S40.50W+1.60H
1
2202
21,00
2.30
2.30
1.54
1.00
19.12
Vu <PhiVd2
Not Reqd
0.00
0.00
+1.200+1.605+0.50W+1.60H
1
22,59
21.00
2.63
2.63
2.84
1.00
19.12
Vu <PhiVd2
Not Reqd
0,00
0.00
+1.20D+1.50S+0,50W+1.60H
1
23.15
21.00
2.96
2.96
4.32
1.00
19.12
Vu <PhiVd2
Not Reqd
0.00
0.00
+1.200+1.605+0.50W+1.60H
1
23.72
21.00
f.39
1.39
5.63
1.00
19.12
Vu<PhVd2
Not Reqd
0.00
0.00
+1.20D+1.605+0.50W+1.60H
1
24.28
21.00
-1.06
1.06
5.63
1.00
19.12
Vu <PhiVr12
Not Reqd
0.00
0.00
+1.20D+1.605+0.50W+1.60H
1
24.85
21.00
-2.63
2.63
4.32
1.00
19.12
Vu <PhiVc(2
Nat Reqd
0.00
0.00
+120D+4.60540.50W+1.601-1
1
25.41
21,00
-2.30
2.30
2.84
1.00
19.12
Vu <PhiVd2
Nat Reqd
0.00
0.00
+1.24D+f.60S40,50W+1.60H
1
25.98
21.00
-1.98
1.98
1.54
1.00
19.12
Vu <Phka
Not Reqd
000
0.00
+1.200+i.60S+0.50W+1.60H
1
26,54
21.00
-1.65
1.65
0.42
1.00
19.12
Vu <PhiVd2
Not Reqd
0.00
0.00
+1.201)+1.805+0.50W+1.60H
1
27.11
21.00
-1.34
1.34
0.51
1.00
19.12
Vu < PhjVd2
Not Reqd
0.00
0.00
+1.20D+1.60S-450W+1.60H
1
27.67
21.00
4.02
1.02
1.27
1.00
19.12
Vu < PhiVd2
Not Reqd
0.00
0.00
+1.200+1.60S+0.50W+1.60H
1
28.24
21.00
-0.71
0.71
1.84
1.00
19.12
Vu < PhiVd2
Not Reqd
0.00
0.00
+1,20D+1.60540.50W+1.60H
1
28.80
21.00
-0.40
0.40
2.24
1.00
19.12
Vu <PhiVd2
Not Reqd
0.00
0.00
+1-200+1.60S450W+4.60H
1
29.36
21.00
-0.10
0.10
2.47
0.93
19.04
Vu<PhiVd2
Not Reqd
0.00
0.00
+1,20D+1.60540.50W+1.60H
1
29.93
21,00
0.21
0.21
2.53
1.00
19.12
Vu <RiVr12
Not Reqd
0-00
0.00
+1.20D+1.605+0.50W+1.60H
1
30.49
21.00
0.51
0.51
2.41
f.00
19.12
Vu <PhiVd2
Not Reqd
0.00
0.00
+1.20D+1.605+0.50W+1.60H
1
31.06
21.00
0.81
0.81
2.12
1.00
19.12
Vu <Phivo
Not Reqd
0.00
0.00
+1.200+1.60S+0.50W+1.60H
1
31.62
21.00
1-12
1.12
1.66
1.00
19.12
Vu < PhiVd2
Not Reqd
0.00
0.00
+1.20D+1.60540.50W+1.50H
1
32.19
21.00
f-42
11.42
1.03
1.00
19.12
Vu < PhUd2
Not Reqd
0.00
0.00
+1.20D+160S+0.50W+1.80H
1
32.75
21.00
1.72
1.72
0.23
1.00
19.12
Vu < PhiVd2
Not Reqd
0.00
0.00
+1.20D+1.60S+0.50WAWH
1
33.32
21.00
2.03
2.03
0.15
1.00
19.12
Vu < PhiVd2
Nat Reqd
0.00
0.00
+1.20D+1.60S+0.50W+1.60H
1
33.88
21.00
2.33
2.33
1.89
1.00
19.12
Vu < PhiVd2
Not Reqd
0,00
000
+120D+1.605+0.50W+1.60H
1
34.45
21.00
2.64
2.64
3.21
1.00
19.12
Vu < PhiVd2
Not Reqd
0.00
0,00
+1.20D+4-60S+0.50W+1.60H
1
35.01
21.00
2.95
2.95
4.70
100
19.12
Vu <PNW2
Not Reqd
0.00
0.00
+1.20D+1.605+0.50W+1,60H
1
35.58
21.00
2.05
2.05
6.22
1.00
19.12
Vu <PhiVd2
Not Reqd
0.00
0.00
-6
McClendon Engineering, Inc.
MG 1412 W. Idaho Street, Suite 246
Boise, Idaho 83702
(206) 342-2919
MCUendon
Engineering Inc
Beam on Elastic Foundation
Grade Beam
Detailed Shear Into"ation
Project Title: lA HCyH4 �4-_-MJM
Engineer:
Project ID: JdZ�. 23
Project Descr,
1902013. BWAM9130
Span
Distance
V
Vu (is)
Mu
d'Vu1Mu
Phi Vc
Comment
Phi%
Spacing (in)
Lead Combination
Number
(ft)
(in)
Actual Design
(0)
(k)
(k)
Reqd
Suggest
+1.200+1.G0S- 0M0W+1.60H
1
36.14
21,00
-0.44
0.44
6.59
1.00
19.12
Vu < PhiVd2
NotReqd
0.00
0.00
+1,200+1.60S+0.50W+1.60H
1
36.71
21.00
-2.75
2.75
5.55
1.00
19.12
Vu < PhiVd2
NotReqd
a.a6
0.00
+120D+1.60S+0,5OW+1.60H
1
37.27
21.00
-2.46
2-46
4.00
1.00
f9.12
Vu<PW62
NotRegd
0-00
0.00
+1200+1.60S-450W+1.60H
1
37.84
21.00
-2.18
2.18
2.61
1.00
19.12
Vu < PhiVd2
Not Reqd
0.00
0.00
+120D+1.6GS4O.5GW+1AOH
1
38.40
21.00
-1-91
1,91
1.38
1.00
19.12
Vu<PhiVc/2
NotRegd
0.00
0.00
+1.20D+1.6OS+O.50W+1.69H
1
38.96
21.00
-1.65
1,65
0.30
1.00
19.12
Vu<PhUc/2
NotRegd
0.00
0.00
+1.20D+1.HS+O.5OW+1.60H
1
39.53
21.00
-1.39
1.39
0,63
1.00
19.12
Vu < PhiVc12
Not Reqd
0.00
0.00
+1.200+1.60S+0.50W+1.60H
1
40.09
21.00
-1.15
1.15
141
1.00
19.12
Vu < PhiVd2
Not Reqd
090
0.00
+1.20D+1.60S+0.50W+1.66H
1
40.66
21.00
-0.91
0.91
2.06
1.00
19.12
Vu < PhiVd2
Not Reqd
0.00
0.00
+120D+1.6OS+0.50W+1.SON
1
41.22
21.00
-0.69
0.68
2.57
1,00
19.12
Vu <PhiW2
Not Reqd
0.00
0.00
+1,200+1.60S+0.50W+1.60H
1
41.79
21.00
-0.46
0.46
2.96
1.00
19.12
Vu < PhiVc12
Not Reqd
0.00
0.00
+1200+1.60S+0.5CW+1,60H
1
42.35
21M
-024
0.24
3.21
1.00
19.12
Vu<PhiVc12
NotRe4d
0.00
000
+120D+1.60S+0.50W+1.60H
1
42.92
21.00
-0.03
0.03
3.35
0.22
18.21
Vu < PhiVd2
Nat Reqd
0.00
0.00
+1.20D+1.6OS+O.5OW+1.6OH
1
43.48
21.110
0.17
0.17
3.37
1.00
19.12
Vu < PhiVcl2
Not Reqd
0.00
0.00
+1.20D+1.6OS+O.5OW+1.6OH
1
44.05
21.00
0.38
0.38
3.27
1.00
19.12
Vu < PhiVd2
Not Reqd
0.00
0.00
+1.20D+1.60S+0.50W+1.60H
1
44.61
21,00
0.58
0.58
3.06
1.00
19.12
Vu PhiVd2
Not Reqd
0.00
0.00
+1.20D+1,6QS+0.50W+1,S0H
1
45.18
21.00
0.77
0.77
2.73
1.00
19.12
Vu <PhiVd2
Not Reqd
0.00
0.00
+1.200+1-60S-0.50W+1.60H
1
45.74
21.00
0.97
0.97
2-30
1-00
19-12
Vu <PhUJ2
Not Reqd
0.00
0.00
+1,200+1.6OS+O,5OV/+f.6OH
1
46.31
21,00
1.16
1.16
1.75
1.00
19.12
Vu<Ph1Vd2
Nal Reqd
0.00
0.00
+1,20D+1.6GS+O.5GV1+1.6OH
1
46.87
21.00
1,36
1.36
1-09
1.00
19.12
VU<PhsVJ2
Nal Reqd
0.00
0.00
+1,20D+1.6OS+0,5OW+1.6OH
1
47.44
21.00
1,30
1.30
0.34
1.00
19.12
Vu<PhiVcl2
Not Reqd
0.00
0.00
IVIG
McClendon
Engineering Inc
THIS PAGE INTENTIONALLY LEFT BLANK
DMc
Project: X1
IftMA- I A No: i12�.2_ page: g
McClendon sc°pe: Date: Z3 Checked by:
Engineering Inc Item: By:
LA
- 10 �
I.T.0. 00Z Sip Ka 914
Kok
W.
_`1 Me
I rilt 1Z i
' Ir(11' Z =
Jw ro, PIS (11' z pi.
1
6122123, 3:46 AM U.S. Seismic Design Maps _Z 1Z
CUR9RwA
Tahoma Terra
Yelm, WA, USA
Latitude, Longitude: 46.9420431, -122.6059582
I st Street Nail Bar,9�
Ma and Pa's Family Diner
QTahoma Valle
Golf Course
Go gle
OSH PD
sr
2,
Yelm-Tenino Trail 510
Date
Design Code Reference Document
Risk Category
Site Class
InThe Shiplap Shop
507 & Coffee House
. South Puget
Sound Habitat for...
ti
y
6/2212023, 3:47:15 AM
ASCE7-16
ti
D - Default (See Section 11.4.3)
Type
Value
Description
SS
1.288
MCER ground motion. (for 0.2 second period)
SI
0.465
MCER ground motion. (for 1.Os period)
SMS
1.545
Site -modified spectral acceleration value
SMI
null -See Section 11.4.8
Site -modified spectral acceleration value
SDS
1.03
Numeric seismic design value at 0.2 second SA
SDI
null -See Section 11.4.8
Numeric seismic design value at 1.0 second SA
Type
Value
Description
SDC
null -See Section 11.4.8
Seismic design category
Fa
1.2
Site amplification factor at 0.2 second
Fv
null -See Section 11.4.8
Site amplification factor at 1.0 second
PGA
0.509
MCEG peak ground acceleration
FPGA
1.2
Site amplification factor at PGA
PGAM
0.611
Site modified peak ground acceleration
TL
16
Long -period transition period sn seconds
SsRT
1.288
Probabilistic risk -targeted ground motion. (0.2 second)
SsUH
1.418
Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD
1.5
Factored deterministic acceleration value. (0.2 second)
S1 RT
0.465
Probabilistic risk -targeted ground motion. (1.0 second)
S1 UH
0.522
Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D
0.625
Factored deterministic acceleration value. (1.0 second)
PGAd
0.509
Factored deterministic acceleration value. (Peak Ground Acceleration)
PGAUH
0.552
Uniform -hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration
Map data 002023
https://www.seismicmaps.org 113
6122123, 3:46 AM
Type Value
CRS 0.908
CR1 0.891
CV 1.358
U.S. Seismic Design Maps
Description
Mapped value of the risk coefficient at short periods
Mapped value of the risk coefficient at a period of 1 s
Vertical coefficient
L1
https://www,seismicmaps.org 213
Mc
D
Project:- -T-644LA, _. No: iC)Z5 rage. 3o
McClendon Scope: 5MIAQ-T- V9514N Date: checked by:
Engineering Inc item: By:
Tar
-TV
i
7,7s .F
7' (.1,1
i- . 7 7(97 1-F
171 (OPLP)
= Z,
6-M
71
1/ ®, X8 4 IF !
{
i
f
4
y
V
a
••
HIISDN -i ]
j2
P
Project-.'-- Na: LL�b 1 Page:.__..,Z�
McClendonScope:r � _ �L [C-�r� , Date: _ � Checked by:
Engineering Inc
t�,2� c��►-�
3L7L06-7
qTm 37c! ,cam=
zs = S2)
Kara r
Gtisc.rs. =
�C
ProjecU_�1� �lr L 4i2-4 No: /�.� �a Page:_�_.�
McClendon Scope:, bate: �/ ��_ Checked by:
Engineering Inc Item:
By:
UIJ Lord
-- Z�r7 j✓sr �nnr;x'
Era �rrp►-sr�r�yuz Lc3��. ?2S c��. (� t:
U;,j.IzoL&L LOA 7 Ov-1 C7. �
.(pqf, par
Ttzt 6, W b - 'PUlt �ti �! � p+AC.I rti► '-0 0. C, Tye,
4" a e, ` MAA .
570.# loc-16
�2c be 4M. sCoe(�:�s. L- Wiz. C�r,�
O..G, �ll�
0�4E
Project:... L'TZtZ Na L? Page:s
.�i� �. ._
McClendon Scope:.- Date: __�Checked by:
Engineering Inc Item: gy•_6, _ - -
F>L
IS -0 IL. Fr- /
+
;
l7SpG �
c,A.
Se %
f tJTt-'4 A6-rr a,,% 3
OWL
- -- - --- --_ 4- C�� 8 Z.
t S7.5
Cr A?,r 11 •- 3 L
wu C E N.; Page:
MttJ Date Checked by-.
lc'P'--'
Engineering Inc Item. By. -
i—.— -W
r -M, le-
V?-
vz,
�A Y rx
J
rr-f RL�a Ll
(AAI rJ
C
Project. YY1 v
No:- ��� Page. 3
i�Clend0�1 Scope:_ �__�� .CICI�
pafe`. _�� Checked by:
Engineering Inc Ite.m:—_ – __-_---
By -e m---�
-sCG r y
1f
4A
r
tJ S -v rs,� Z9?. fiv'e F
S
°°
7Z8 pc.F
T/C,
�a. lz Scs2 ��x zao -..
S70 �
pow, -' (E
( ) its Re 4O�J k 7cp C &tz -st -I.IR
OK gy .
IDE
MC
Project. No-/Oze, Page.,
McClendon $c'P"-:, Date:!/Z 337 Checked by.
Engineering Inc item: By
71
Pap
r-Kqe,A,C cc 0 T= CMV
oq sb,
FP L2
SO. 5
7, 1
OWA-K
CM0
C y
Projecl No:, _1OZ,8, Z3 Page: 3q
McClendon Scope' ��C� }���� -- -- pate: ��� Checked by:
Engineering Inc Item: B
_ F '
-pt-E tua C3n.; .
f
` Zd
I
:
397 # !D `^p'' p. C,
Tz _ 397
C�AJ
W ALC. 1F14
- rvrC��t�J
Tye.
5th
r
- rvrC��t�J
Tye.
5th
=wIll
qo
DE
M
Project:mA ;� No: IIZ55, 23 Page: ul
McClendon Scope: Date: t Checked by:
Engineering Inc Item: By:_
r ax TP13 �o' 2) 2
Z o q q
1/ � �J �J� 3� RC Tprr�) 11X5
-- -----
���
rrpe 2
V -S 14
{
I Pic
{
i
MJ��..,,
Project: 1-�0MA No:-16Z�•23- Page:
McClendon Scope: 6TP-L&CT Date: Checked by:
Engineering Inc [tem: By:
---- ---
X b��
I, lily S'�15 � Z7pLFl I
12 o'f
1s�
i
V 547pp F (;W
i fo3
I
• Lfl �o� � _ f
E
Nom- —�� ►�
k
,
I
ml ��
Project: __ No- Page:
McClendon Scope:_ KtX- � _JG, *A Date: Z Checked by:
Engineering Inc Item: By:
X �rpro at) =67 I. C D
� � maces
S��► �c.� 3C�` � � zI I I i
i
-Zo+
9
�L d� 1 1.4 �2 `) t 7p 0 1 = Pyr
s
i
OE
MC
Project: -71'A ftm& rzAm
McClendon SCope: :ST&M-T M16tJ
Engineering Inc Item:
Date:
By:
Page: 4H
Checked by:
Connecters for Gofd-Farmed Stee! Consfructrnn $IMPSQN
i 45
SIHDU HoldownsstiO3=I'lE
The S/HDU series of holdowns combines performance
with ease of Installation. The pre -deflected geometry
virtually eliminates material stretch, resulting in low
deflection under load. Installation using self -drilling
screws into the studs reduces installation time and
saves labor cost.
Material: 118 mil (10 ga.)
Finish: Galvanized (G90)
Installation:
• Use all specified fasteners: see General Notes
• Use standard #14 self -drilling screws to fasten to studs
• Anchor bolt washer is not required
• See SB, SSTB and PAB anchor malts on pp. 163-164
for cast -in-place anchorage options
• Sea SFT-XPe and AT XP* adhesive products at
strongtie.com for anchor bolt retrofit options
Codes. See p. 11 for Code Reference Key Chart
a
7 z/-�1
Pilot holes for
manutacluring
Purposes
(fastener
net required)
S/HDU
US Patents
5,979,130 and
6,112,495
Typical S/HDU Installation
Madel
H
(in.)
Fsateners
- -
Stud Member
Thickness'
mil (ga.)
-
Tension
Load
ASD (lb.)
Deflection at
ASD Load'
LRFD ph.) -
Tension Deflectlogat
Load LRFD Loads
-
Nominal
Tension Load
' (lb,)
Code
Ret
Andwr Bolt
lllameter,
(In.)
Stud
Fasteners'
S/HOU4
7'/e
(3s )
(6) #14
2-33(2-20)
2,320
0.093
3,705
0.149
5,685
2-43 2 18 3-85 0.115 61105 0.190 9,365
3 0.093 6,345 0.156 9,730
Steel fixture 4,470 0.063 7,155 0•.103 12,120
f
S/HOU6
10%
-
'h
(12) #14
2-33 (2-20
4,895
0,125
8,495
0,250
10,470
2-43 (2-18) -_ 6125 0.119 9,690 0.250 15,460
2-54 (2--16) 6,125 0108 9,785 0.234 15,005
Steel fixture 5,995 0.060 _ 9,580 0,136 14,695.
51NDU9
12r/s
'/a
(18}#14
2-33(2-20)
6,965
0.103
11,125
0.189
13,165
FL, LA
2`43 2-18) 9,255 0.125 21,810 u
2-54(2-15) 9,990 0.106 24,480
FO�225
a20,510
Steel fixture 12,715 0.125 31,455
rA
(27) #14
2-33(2-20)
6,965
0.103
13,165
2-4312-18) 9,595 0.096 23,515
.2-54 (2-16) 9,675 0.110 15,460 0.158 _ 23,710
S/HDU11
16%
7/8
with heavy
hex not
(27)#14
2--43(2-16"
11,100
0.125
17,500
0.250
24,955
2-'i4 2-16}• 12,175 0.125 19,445 0.243 29,825
Steel fixture' 12,945 0.111 20,680 0.163 31,715
- These products are available with additional corrosion protection. Additional products on
this page may also be available with this option. Check with Simpson Strong -Tie for details.
1. The designer shall specify the foundation anchor
material type, embedment and configuration. Some of Shearwall
the tabulated holdown tensicn loads exceed the tension chord studs
strength of typical ASTM A36 or A307 anchor bolts.
2. Stud design by specifier, tabulated loads are based
on a minimum stud thickness for fastener connection. Hoitlowr $
3. VV self -drilling screws may be substituted for bearing Holdown
#14 self -tapping screws. plate
4. A heavy hex nut for the anchor bolt is required to
achieve the tabfe loads for S/HDU11. —Rod
5 Deflection at ASD or (_RFD includes fastener slip,
hotdown deformation and anchor rod elongation for 18' max.
ho#downs installed up to 4' above top of concrete. 5' slope max. �12L)
Holdowns may be installed raised, up to 18' above 1
top of concrete, with no load reduction provided that Coupler
additional elongation of the anchor rod is accounted for. y
6. The Nominal Tension Load is based on the tested Top of Bottom
average ultimate (peak) load and Is provided for concrete --� r 1.5' max. track
design in accordance with section C5 of AISI S213 a
that requires a holdown to have a nominal strength •••���
to resist the lesser of the amplified seismic load or
the maximum force the system can deliver.
7. See Fastening Systems catalog (C -F-2019) on Holdown Raised Off
strongtie.cnm for more information on CFS Bottom Track
Simpson Strong -fie fasteners.
Typical S/HDU
Floor -to -Floor
' Installation
Cornute s
member (bdmig
Pills dapp
1
is
Mc
1
280
Connectors for Cold-F"armed Steet Construction SlMPSON
Coiled Strapsft071-SIB
CMSTC provides countersunk fastener slots
that provide a lower screw head profile. CS,
CMST and CMSTC are continuous utility
straps which can be cut to length on the
job site. packaged in lightweight cartons
(about 40 Ib.),
Finish: Galvanized. Some products
available in ZMAX" coating; see Corrosion
fnformation, pp, 18-21.
Installation:
• Use a4 specified fasteners; see
General Notes.
• Refer to the applicable code for
minimum edge and end distances.
• The table shows the maximum alowable
loads and the screws required to obtain
them. See footnote #1. Fewer screws
may be used; reduce the allowable load
by the code lateral Toad for each fastener
subtracted from each end.
Codes: See p. 11 for Code Reference
Key Chart
F,
0
-- —
�� �S YBUJA _
r
�ii'tY•
Connector
of
Thickness
mil (ger.)
Width
(in.)
r zH.•..{
A;lowable Tension Load (lb,)
CS16 Hole Pattern
(alt other CS straps similar)
33 mil (20 ga.)
oarx uwoe r 1K'
CMSTI 4 Hole Pattern
(CMST12 similar)
--
CJ15iCr8 u mur,E � ��• r
c a
Cfv1STC16 Hole Pattern
Gauge stamped on part for
easy identii5cadon.
Fasteners to be
symmetrically placed
End
1en9S1' Cul
screws"'
required in
clear span
End
Provide minimum 3x screw
lapgd'
diameter end distance per
code for CS and CMST
Equatnumberof /
specified screws
in each end
Typical CS Installation
as a Floor -to -Floor Tie
ANN.
No.
Total
Length
Connector
of
Thickness
mil (ger.)
Width
(in.)
Fasteners' (Total)
A;lowable Tension Load (lb,)
Cod.
Code
Ref.
33 mil (20 ga.)
43 mil (18 ga.)
54 mil (16 ga.)
33 mil (20 ga.)
43 ttdf (Ill ga.)
54 pill (t6 ga.)
CMST121
40'-3"
97112)
3
(104) #10
(70) 910
(40) #10
9,080
CMST1
fit' -6"
68 (14)
3
(72)1€10
{50) #10
(2%410
CMSTC 6
CS14
54'
54 (16)
3
(54)110
(361+110
(30) #10
SE—
100'
68 (14)
1 !4
(28) #10
ji> 1f10
{12}110
2.305
CS16
1501
54 (16)
1 /4
{18) #10
(12) #10
{8} #10
1,550
1P1,
L2, FL
CS18S
100'
43 (18)
t'A
(14)410
(10) ol0
(6) #10
1,235
CS fa
200'
1'14
(14)#10
(10)#10
(6)#10
1.235
CS20
250'
33 (20)
1 A
(12) #10
(8) #10
(6) #10
945
CS22
300'
27 (22)
1'h 1
(10) #10
(6) #10
(ti) #t0
775
i These products are available with additional corrosion protection. Additional products on
this page may also be available with this option. Check with Simpson Strong -Tie for details.
1. Use half of the fasteners in each member being connected to achieve the listed loads.
2. For CMST straps: End Length poches} ='h total fasteners x'h' + 1' when all holes filled. Double length if only round holes filed.
3. For CMSTCI 6 straps: End Length (nchesl = 1h total fasteners x + 1 ` when all holes filled. Double length if only round holes filled.
4. For CS straps: End Length (inches) _ % total fasteners + 1'.
5. Total Cut Length = End Length + Clear Span + End Lang€h. No. of Screws Used
6. Calculate the connector varue for a reduced number of screws as follows: Allowable Load = x Table Load
24 Screws (Used} No. of Screws in Table
Example: CMSTCI6 on 54 mil with 24 screws: 30 Screws (table) x 4,600 Ib. = 3.660 Ib.
7. Loads are based on lesser of steel strap capacity and A1Sf S 100 fastener calculation.
B. See pp. 138 through 171 for more information on Simpson Strong -Tie fasteners,
q7
C- ®
Project. btu � � No: JDA i L3 Page:. 4 �I
McClendon
scope;_ �r=�fCr�1
Date:
Scope; Checked by:
Engineering Inc item- By:—
'Dos
y:__
C'7 t �` G� (' lO D 7W.
svkr
= f
Its K �•,-ua 16 = 1.47
i t
.. � . i f . �� tit:=. ►: _
Q
O
N
a
M
CN
(li
�C
C
N
O
,,(D^
vl
c
0
T)
47
IN
f1 C
N
N
N
N
7
a
P
n
a
N
0)
N
QJ
N
aJ
C7+
LO
O
Cl)
N
Cf)
1�
Q
N
W
CCJ
F
«J
m
O
R
M
Cp
CD
r
N
O
M
0
O
7
_
ED
NQ
CCA
fl
m
O
Cn
W
C5
a7
M
Q
:n
CO
X
O
C5
0
o
Cj
4
Q
0
0
O
O
Ci
O
a
1
O
Q
Fy.
M{D
CTW
r�
M
M
o
cou�nn
W
c)
IN
N
N
N
M
O
O
O
4
(Q
OO
O]
C7
Q
C'7
CD
O
0
0
Q
d
0
tD
Co
Cn
P
[�
o
N
r
0
N
N
N
N
N
N
N
N
N
N
N
N
N
Q
O
P
co
N
(D
00
C
N
P
7
'rM
N
V
Cn
U]
W
CD
0
N
N
t
SD
V
N
V)
(D
�'
R
N
m
4n
Q
LYS
P
CA
M1
u'i
C[)
R
CO
I i'U
OI
fA
11')
R
fT
N
n
01
msn
n
m
f�
ICJ
O
J
ov
a
rn
ti�CD
F-
r
>
7
N
Q
.�
Cl
LO
n
M
SCJ
h
C7
l[ j
n
C4
P
n
z
�
MMCrJ
CInp
[CDb
W
IrJ
CD
M
W
Cro
rNlD
OUro
J!
roY='
Oa
N
AM
[
C
rn
C
Q
M
Lo
n
m
It
0
MQRV
hvch�
o
0
c _
LO
n LO
n0
M
C)
w
u7
Cl)
C]
CD
Il)
M
O
1p
[n
M
O
(D
CC)
r C�
Q C
1`
0
C9Cq
n
O
M
n
n
O
M
W
h
O
M
W
h
W
co
m
h
m
m
00
R
W
[p
W
n
P]
W
tb
N
C
to
O
O
O
O
O
O
O
G
0
O
Q
O
Q
Q
Q
Q
V C
O
O
o
I
m
C
M
W
O
W
N
w
W
M
w
o
m-
m
a
W
CO
y a
to
0
0
0
N
n
m
co
ao
P
h
ca
co
o
In
c
R
of
M
W
rn
v,
co
a
N
Cj
n
rn
o
rr
3
Q
o
0
0
0
0
0
0
o
�
�
m m
o c
V)
w
9
U
y
Q
L
r
L
II)
61
Qi
C7
Co
i+
co
w
h
U*)n
M
to
m
T
CP
OY
m
U7
R
O
co
F-
9)
n
N
O
!,
m
ICJ
co
O)
M1
M
uJ E
tj) Q
aJN
p
Lu_
,.�,Cu
w
9
V
N
m
Co
CD
't
N
C]
m
Q
o)
P
T
N
Cl�
M't
M
M
to
CA
N
t7
M
f1
co
LD
-T
O
O
�
O
CL
Q
N
? Z
y
a
y
QJ
O
Cli
o
O
Lo
Lo
O)
O
.
In
O)
O
Ili
Zn
.;.�
O
J
C
Lf1
n
n7
0
n
W
d
V)
h
W
o
to
R
tl>
Q
w
o a
-a
h
x ._
`�
o
o
a
r
o
c
o
.-
d
d
n
r
o
0
0
F
V L
@ t6
11 II
Z
L
0
Q
p
p
p
0
0
0
0
0
0
0
0
0
d
d
V)
x Uj
L� Ll-
Q
~
Z
C n
(D
P
0-)
N
CD
V
co
N
cA
Q
M
N
O
V
[*)
N
0
O
O
O
O
LQ
ICJ
VC
to
C]
b
p
Q
Un
Lq
I?
U?
m
M
M
r -i
M
m
M
m
M
-'r
"i
v
P
N
N
N
N
x C_
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
0
0
0
0
0
0
0
0
C7
O
g
q
O
O
Cp
CD
CO
CD
W
Co
CD
C9
CO
W
O
tO
R
r --
CD
L-0
Q
M
N
ca
Ll
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
c
o
m
0
c)
0
co
o
c)
In
co
, n
r
LO
c
In
CX,,F
a
x
o
Px
o
x
a
x`
u)
x
r
uJ
x
x
x
x
x
0
x
G
x
0
x
g
x
0
0
0
0
oq
O
O
d
x
Q)
tD
Cp
CO
CD
CO
[D
[D
tD
C9
Co
to
AD
N
h
M1
N
(f)
Q
O
N
a
M
CN
(li
�C
C
N
O
,,(D^
vl
c
0
T)
47
IN
McE
McClendc
Engineering 11
THIS PAGE INTENTIONAL