Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Structural Calculations - Building E
Mc McClendon Engineering Inc TAHOMA TERRA BUILDING E STORAGE Yelm, Washington FINAL STRUCTURAL CALCULATIONS June 30, 2023 Prepared for: Keimig Associates 307 D Street SE Auburn, Washington 98002 Prepared by: McClendon Engineering Inc 1412 West Idaho Street, Suite 240 Boise, ID 83702 Project No.: 1028.23 Mc McClendon Engineering Inc TAHOMA TERRA BUILDING E STORAGE YELM WASHINGTON 1028.23 TABLE OF CONTENTS Page Number GENERAL: Tableof Contents........................................................................................................................ DesignLoads.................................................................................................. 2 Materials and References............................................................................................................ DeferredSubmittals..................................................................................................................... 3 Special Inspection..................................................................... 3 ........................................ ProjectDescription...................................................................................................................... L4 GRAVITY DESIGN: RoofFraming............................................................... Roof Panel Purlins LintelDesign............................................................... 4� WallDesign............................................................... 16 Foundation Design...........................................................19 Wall Footings LATERAL DESIGN: Lateral Analysis ....... ..................................................... 1,7 Wind Base Shear Seismic Base Shear Diaphragm/Chord Analysis ................................................... 3 ShearWall Design.......................................................... X -Braced Walls MC McClendon Engineering Inc GRAVITY DESIGN LOADS: Roof Dead Loads Roofing: - Decking: 2 psf Framing: 2 psf Insulation: 2 psf Ceiling: - M & E Collateral: 3 psf Miscellaneous: 1 psf I Roof DL: 10 psf Roof Live Loads Snow Load: 25 psf Roof LL: 20 psf Floor Dead Loads Flooring: SOG Insulation:_ Ceiling: M & E Collate Miscellaneous: E Floor DL: Floor Live Loads Occupancy/Use: Light Storage — Floor LL: 1225 12sf Occupancy/Use: - Floor LL: - Wall Loads Interior Stud Wall DL: 7 psf Exterior Stud Wall DL: 7 psf CMU Wall DL: 55 psf LATERAL DESIGN LOADS: Wind Loads Seismic Loads Wind: 115 mph Site Class: D - Default Exposure: C Seismic Design Category: D MWFRS: Sim Ie Risk Category: I1 Diaphragm Importance Factor: 1.0 LOAD COMBINATIONS: Design Method Strength Design: Basic Load Combinations ❑ Allowable Stress Design: Basic Load Combinations ❑ Alternative Basic Load Combinations 9 TAHOMA TERRA BUILDING E STORAGE YELM WASHINGTON 1028.23 R: 4 52: 2 p: 1 SDs: 1.03 SDI: - MSFRS: X Braced CFS Walls Mc McClendon Engineering Inc MATERIALS: Steel Shapes Fy = 50 ksi Plates/Angles/Channel: Fy= 36 ksi Hollow Structural Shapes: Fy =—A2 ksi Pipe: Fy = - Bolts: A325 Anchor Bolts: A307 REFERENCES: Soils Bearing Pressure = 1500 Psf Source of Information: assumed Frost Depth = 18" DEFERRED SUBMITTALS: Steel: Steel member layout IX Joist/Joist Girders Layout ❑ Metal deck layout z Wood: Engineered Truss Layout ❑ Cold Formed Steel: Steel member layout 59 SPECIAL INSPECTIONS: Fabricators ❑ Steel Construction Concrete Construction ❑ Masonry- Level ❑ Masonry- Level 2 r Wood Construction ❑ Soils ❑ Deep Foundations ❑ Special Cases 0 Seismic Resistance ❑ Other: ❑ TAHOMA TERRA BUILDING E STORAGE YELM WASHINGTON Wood Sawn Lumber: - GluLam: - Eng. Product: - Light Gau¢e Steel Fy: 55 ksi Codes Used 2018 IBC Concrete: Mix Design Reinforcement Layout Concrete f c = 2500 psi fy = 60 ksi Masonry G = _1500 psi fy = 60 ksi Software Used USGS Enercalc Masonry: Mix Design Reinforcement Layout Other: ❑ 1028.23 DE McClendon Engineering Inc PROJECT DESCRIPTION: TAHOMA TERRA BUILDING E STORAGE YELM WASHINGTON 1028.23 The Structural scope of work for this project consists of. • The design of a single story light -gauge steel framed storage building. • The gravity system for the building consists of a light gauge steel framed roof supported by steel frames, light -gauge steel framed walls. • The lateral system for the building consists of a simple diaphragm, light framed shear walls reinforced with flat strap cross bracing, special reinforced masonry wall/piers, and steel intermediate moment frames. o The loads are transferred from the diaphragm to the framed shear walls, to the foundation, 4 Mc McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLANK � I I N J 2 J � LU � o J J m _ j 1 J a - z; tLL J LL.� O¢ F � �H12l4N J S, E MC .!9 Project: Jj:H-nm Pt 7'� A No: ZS Page: McClendon Scope: —Date: Checked by: Engineering Inc Item: By: eki4e ;i� Tl- Z,7 Z)"& MCELROY METAL 1 Medallion -Lok 161119 + ' ' •' iOP IN COMPRESSION eDil"01,+1 IN COMPRESSIOf GAUGE FY WEfGHi Va. P■ end PaChl I 1x Se Ma I% Se Ma (KS[) (PSF) kipfftIbslfF. Ibslft. (in'Ift-) (in.2111.) kip-inlft. (in''lft.)(iikip-irl.lft. 10.0479 75r, - 19 4 00 17 24 50.0 I.30 0.7800 1 21840J_351.60 1 0.0860 0.0561 1 1.6800 0.0400 497 1.2480 1. Section properties are calculated in accordance with the 2004 AiSi Nodh American Specification for the Design of Cod -Formed Slee] Strtrtltrrat Menters. 2. Via is the allowable shear. 91 70 3. Pa is the allowable load for web crippling on end & interor supports. 44 37 4. Ix is for deflection determination. 26 22 5. Se is for bending. 17 15 6. Ma is li allowable bending moment, Defiection(U18C) 500 7 All values are for one feet of panel width. SOC 481 Allowable Uniform Loads (PSF) Spars Type Load Type Positive Wind 100 500 1-50 497 2.00 250 2.50 179 3.00 124 3.50 91 Span 4.00 70 i 4.50 55 _ ,Nc 44 e# . - : 37 - 31 _ . , . 26 TOC 1 22 75r, - 19 4 00 17 R 5n 15 Single Live 500 497 280 179 124 91 70 55 44 37 31 26 22 19 17 15 Defiection(U18C) 500 530 SOC 481 278 175 117 82 60 45 34 27 21 17 14 12 Deflection (L1240) 500 500 500 360 2n8 131 88 61 45 33 26 20 16 13 11 9 PosiHve Wind 500 337 197 128 90 66 51 1 40 32 27 22 19 to 14 12 11 2 Span live 500 337 197 128 90 66 51 40 32 27 22 19 16 14 12 11 Dellectiar(1-1180) 500 500 500 500 491 309 207 145 106 79 61 48 38 31 25 21 Deflec5on(11240) 500 5w 500 50D 368 232 155 109 79 59 45 36 -2-9-F-23 19 16 Posl ive Wind 500 407 241 158 111 82 83 50 41 34 2R 24 21 118 is 14 5-0 417 n 241 SGS -_ 114 15 5: 242 e3 11,2 30 f4 4? h3 34 ;2 21 46 24 3' 21 _ 3? 16 2< !8 2C 1.1 +3 Defleuiion(L1240) 500 500 500 49E 298 181 121 85 62 46 36 26 1 22 18 15 12 Positive Wad 500 385 227 148 104 77 59 47 38 31 26 22 19 17 15 t3 4 Span live 500 385 227 148 104 77 59 47 38 31 26 22 19 17 15 13 Defieclion (U180) 500 500 500 5110 408 257 172 121 88 66 51 40 32 1 26 21 17 0efledion(L1240) 500 5C0 540 500 306 132 129 90 66 4939 30 24 19 16 13 ASTM Et 592 Wind Uprifl Testing 1 69.5 61.1 52.9 1 49.1 1 45.2 41.3 37.7 33.6 1 30.4 NO TW DATA AVA1kA9!_>; Notes: 1. Allowable uniform loads are based upon equal span lengths. 2. Positive Wind is wind pressure and is NOT increased by 33 113 %- 3. Live is the allowable live or snow load. 4, Deflection fU180) is the allowable load that limits the panel's deflecfien to U180 while under positive or live load. 5. Deflection (L1240) is the allowable lead that limits fha panei's deflection to L1240 while under positive or Ii W_ load. S. The weight of the panel hasNOT been deducted from the allowable leads. 7. Positive wind and Live load values are Wiled to coffbined shear & bendlag using Eq. C3.3.1-1 0l the AISI Specification. S. Values ofASTM E1592 Wind Uplift Testing include a fatter of safety of 1 6 Shaded areas are outside of test range. Contac McElroy Metal for more information. 9, Positive Wind and Live Load values are limited ty web crippling using a beariq length of 2". 10. Web crippling values are determined using a ratio of the uniform loadactually supported by the top Ranges of the section. 11. Load Tables are incited to a maximum allowable land of 500 psf. I } TZ P 4 O O O Q O O O 4 h W M1 a .- M m O m N h h m O> m N h Q m F m Ip t Y x C ` d1 6s W h V W_ _M O O O O Y] Vl N 4] ri ri ri c�i Ili ri Ili ri c6 m m Ni vi o � U L i !n O O M F O r T 0 o 4l I'+ Ol m m N N Y m N N 7 z Y+ CA LO N f'1 r y') r r u: m N N N F V co o o t• m D �„ N CY M Y N _ C Q � r W W m W m v: a co rn vs h I- m N N O m m T O N m h r O E N LO C ua a Ce) 07 w J m ro R o n o°ii M o n rn o v m v r~ ui r 4 m r. ai ui of Y � d � m N h m h m N p as P] G m O n M E Y � � •- N� O P PW+ � ro� m� m� r f (� C O r D 1p a r p m Q m m c p m m m m rn m m w m m m m m m w r N N m T F Q O O P t F M m O h In r n m t� m m m F N 9 r F f5 iD W ICi M M 1� M D C L+7 Q Ri Q N {L d T O N u'1 (A O 47 ll] O/ O N m h m D m F QC v v o 0 0 0 D o C o O O p p p p p O O I 4 lu 9310 � 7 [7 r�r N IO T M N m ? !7 f�f �6 P SM1 N N c] cri M M ml t17 x Wf'i X X C7 X C[ % N % N X M X N X N x N % N X Nj x x �ry K M X x ri In rj r; h x n p P Q Q 6 d Q O m m m m m m m m m m cti m ai ai w m z .n IR v o 0 m m m m m m m m m m m o m m Qi a qi Mcr Project: --T-PRom.Y-,- :Tm-ava, No:Page:_1 M Date: Checked by: cClendon sOOP�"- Engineering Inc item: By: .. . ..... . .. �C>OF F—T) P= 176D OAjO SPAN "JOESM E -M A- pr. MJ Project: No: Page: M cClendon Date: 2 Checked by: Engineering Inc Item: By - P5 1-. PT -L- 175D BC 16 �k Th M -D C-1pr C — - - ----- . .... . . .... ... C4 IL PG p rzo F M i Ft 'A Project: No: Page: (21 McClendon Scope: Date: Checked by: Engineering Inc Item: By: 0 0 co 13 4) lfi Ir n U15 U� 47 to cp eD sn V O C? C] O C 0 4 0 0 ID tD cD ED a o d O cn m rn m V V V O� W 0 0 0 0 0 0 �+ O o O o w M M fD Q n r N [eJ 4 4] N tD v � 7 llu) CA cO cq m x C7 C1 0 0 0 0 Ci 0 0 0 0 0 Q O Q y C C, O O rn 4i Ct N m m m rn - 0 rn cI7 n C7 4 0 n CD rn W V- M Cn O N (O .-, O n 0 M O1 cn IA W W O N io QO O V 04) 7 W O C} W IA G N N rn m N to o'0 N n tB n n 0 Ln V V M_ N n n_ n r m W m OR o Q Q o r N N N N N N N N M M M m m m m m X X y Y l/) c Q7 g O N m 0 67 N Lr,-, O Yi r u) w M rn [O 'o ap N 0 p [� r V V g h o W co X17 t` in N c0 r LO LO N CD N m (,r} x �C O 't ED LO N_ m `- N m N Sa co Q n N r LD h J Cn (n rn n 4 O rn h 47 M 47 m 0 O 0 W C) 4 `° o r o rn� v 0 r v a r J ' g ano co c�*7 m � Q} Y N d' n N N d' h r N •Y n� N 7 n r U T Q C 7T t4 'a Q d @ m m o 'o m CD 0 r M 0 n v n 4) O 0 W (D n O lb �� O U N 0 Lr CD N M 4 o CU m o Q Y v v co 05 r 416 co a a+ v h vi v r M c i n v o m rn d1 O (O M O 0 Lo M CL N 4 O m = C] c7 W 1+ C) m G� N G 4 4 0 4 o p p p p 0 0 0 0 0 O U C C o Q U td M n5 U -^ LO N In in co O SD If] m N w ,n M r (D Q an U 4=. Co U C N i� W 0 r .-- 47 n N n W CO cc V' n cp V m rn V' CA r C7 M m GQ O N u) Q Lo O m a {!7 lw �' d t cc n m c>a n m cp a cD n ccm n LO n M M N G N s Q1 .y 1.1• m y m f, (') N OC? n Cl r Q1 r- O C!? rn g 01 nm N O- 1� 4/ rn n "'Q' Eo M M w U Q N 'Q Q yL... •.� N M V V J M V LO N [ J V' V N C 7 V V'7 z � `o Oo O O ZrL y N _ �Ny ti m m m O S O C 1Oo a O m O 40'7 O 0 0 r O 0 a r ca fl II L O O O O0' O O Q O O O O O 0 0 0 f/7 Z � Cn cD '7 M N cD 'V M N cp M N tp 7 M N Y £� G 0 C7 CJ C] C7 O 4 0 0 ><i 1!7 to 4) 0 0 0 0 m M M M M r N N N N M n m M x F x x x x x x x x x x x x x x x x 0 0 0 0 g 0 O o 0 0 ti n n n n i� n n m m FF."] eo od eo U z C o M< 0 i 0 (17 0 M 0 4 0 'T o 't•t a In N 47 N In N u) N O c'7 o m 0 :`� 0 m .0 x O x O x O x O x d X 0 x 0 x 0 K 0 ?[ X O X O X o X q X 4 X 4 x N m n n n n n N n n a7 m-0 �o ai ' o m 0 0 co 13 Project: lioyA& No: Page: McClendonSco Dnte �heched�y ~ r~' ' Engineering Inc Item: By [-----------'� ----[--------''--T---'-----�'--'-------'��--------- T----- --' � M k N Q CO CD M NQ D [D u'i N CC) V' M N co R T W m q m T Off] m Ch Qmi 0 (h C7 C) r VT � C 4"1 ST1 MS o [n 1'Ln N'+ O C Cn [�'1 ?C tN C D N o P1 o p tR o M a C o a 0 c'1 0 ! 0 sr. 0 � [[r [j o C a d a ra o M o W'r rn a m rn a m yr c S'7 f'') 7 � 47 CD I+ C7 W CD of O m h W O O O O O 0 0 0 0 G o p r p p p h 'v N ro O CO `t ak' K wCO h Lf] UT (h O o 0 M W h V w a' u LQ (L7 g w m m � N tV CV ry N N � X X W (7 O r} d h CO m of O .- r 7 ' F N O =n S(1 h CY M M P coO N O 0 r tq CA O M� r of L+O r 7 W fi r l(y d (� x C C7 m Cfl m i+ Ca r N CD n D h CO o w m t7 m (0 O W It m CO m d' ID 0 O cn c i r c N ci ri V5 v ri a U3 C6 cn S !1J o N v i h LO CD rn N v M� h CO m IN c a O In Cn r pi y7 P-- � J -21- W O O m . . 4 ao ao ac Cn Q} CQ LC O ri c7 LO 0 t� m N h m M Lf) t+ i r y CC6 O Y- m O r v !• n N h V' m h N N o o v w d00 Q (C r tD .- CO N c6 O il- C W Cn 0 v h W v N = a ,_j Q Y. N N M r N N M NC) V' N 4 C] Cn C'] o 7 m SrJ O C(i m IO C = � N L0 S� t•'1 O 0 in m O o N M o CD (C5 rI O 16 In CL O �} _ '� � W m m n C P3 Cf] 000 m m Cq N v o o Q a o o a o o CD 0 O f` Q cn DD C C] O � M m r> tp n r G Q to m m CD W IG 4'] tl' M 0 1[] (O P a? G G [+] C `� In CP T` W fm . Cp C7 Co M h 0 r h CO O N 3 Q o 0 o a o d O 0' C> r C C� o F c6 .,Cq o c {n w O U O Q G I4 N N G a7 �. t C_» m G'i t• N m W 4] 4] W N h c-0 tt m 0 W Cn n ttl W r tl' O V7 N CD mC7 QJ N h r to r C7) M Ln N QCL L O N ( Q D O Z Lo O a) d 0 LO in m O IC] lfi [n 4 R +n 47 fA O !D eq iL n _ a -C C LO h C Y 47 O a b W O 0 r Ifl 0 h 0 DD 0 O r L9 n C] Cn 01,710 O N h 0 to O n r Jam. 11 If Z `� C7 0 0 0 0 0 0 0 0 0 Ci 0 C7 0 0 0 Z 0 .� X co � lL LL o ~ Z 01 C.p d' C'7 N tD 7 C7 N m r V C*? N m 7 co N TF co 0 N 0 CN 0 N 0 N (n N =n N v? N sn CN V� LV (n SV in N U� N N vi [V cn CV C X X X X X X X X X X X X X X X X 0— o C3 o 0 o a 0 o n n o 0 o C P 0 V M 7 [r V' � V Q C1'i u7 tJ7 1C} fD (p ID LD - f N m v ch a Z U 0 U i� U U U U U U r U O COy X C N4 X 0 X vI X (4yi ul X C4N] lCiy7 LLi x Ln X Cn 4] X X to X 0 0 o X a o ]f Cl X v o c a s +� o M k E C Project No- Page; McClendon ScnpO:- ��55k3& Date: Chet ed by: Engineering Inc stern: C.C,r) Lip S�vp.- i/Gt ( z Kr -t - 1,o Zs'0 W/ L✓C.)� i�S" !S•U r]S1 �f!'S.i� (�Jdj'':( 7vO V 1 }flJ �1 l.WS)I rt.a± E52L��c. Project i _.._-1'-� No;_ 1 ozF3.21. Page._ �.. McClendon Scope: �! j2�C� __�(:�1C�1� Dale: ��. ��� Checked by Engineering Inc item: — _-.— sy:-6 -D E"-. S C, it 3 Psi `Pry c,)r.J No"j,t 2r� C 10 Project: r!"Iiavrc�; �- }4 NQ:. 1Q2$•Z Fage:.-1.0 McClendon, scp:_T - « _�__� Date: Checked by: Engineah, g- Ino Item. By: r .-4- : i. c7 'Rn V7 C�ttN�zrt- i1-li=(r�7E, jf 4- C. OCI5 6,-7 t 6 k ( o. s R' . Z� 0 t� V O W CD J M .0-.OZ � N W Project.,. -rA Ropiel No: 10LBA'- Page: -ZJ M 3 Checked by: cClendon Date: Engineering Inc Item:---- . . ...... ... .... F Ij S. L tF T1 L ps F aev'ls,� 0 o 7e 1V I C P -age: MCK on ucop ooYe Checkedby Engineering inc Uem' By -2-3 McClendon Engineering, Inc. DME 1412 W. Idaho Street, Suite 240 Boise, Idaho 83702 McCfendon (208) 342-2919 Engineering Inc Beam on Elastic Foundation DESCRIPTION: Grade Beam CODE REFERENCES Project Title: r ft o.- l �y p.A- Engineer: Project ID: IOZrs 2� Project Descr. 018 Projectsll p74.18 Bualey Slarepe sorrara mof.M El4RGlo, W- I Calculations per ACI 31$- kl, 113C 2015, Load Combinations Used: ASCE 7-16 Material Properties _ fc V22.50 ksi Phi Values Flexure: 0.90 u ft= fc R 7.50 - 375 -ops! Shear: 0.750 W Density - 145.0 pof 01 = 0.$50 k Lt Wt Factor = 1.0 Elastic Modulus = 3,122.0ksi Soil Subgrade Modulus = 250.0 psi! (inch deflection) Load Combination ASCE 7-10 ' fy - Main Rebar = 60.0 ksi Fy - Stirrups = 40.0 ksi E - Main Rebar = 29,000.0 ksi E - Stirrups = 29,000.0 ksi Stirrup Bar Size # _ # 3 Number of Resisting Legs Per Stirrup 1.0 s Beam is supported on an elastic ioundotion. D(i.�se) s J,2e4) ot3.36>I s<,a.ssa) E)(3.36 %.S [](3.36/S(0.5&7) D(1.88)w(4.28A) _Cross 5ecttno & Reinforcing Details Rectangular Section, Width = 12.0 in, Height= 24.0 in Span #1 Reinforcing.... 245 at 3.0 in from Bottom, from 0.0 to 48.0 ft in this span Anolied Loads Service loads entered. Load Factors wilt be applied for calculations. Load for Span Number 1 Uniform Load., D =1.680, S = 0.2840 klft, Extent = 0.0 ->> 0.6670 ft, Tributary Width =1.0 ft Uniform Load: 0 = 3.361, S = 0.5670 klft, Extent =11.333 ->> 12.667 ft, Tributary Width =1.0 ft Uniform Load: D = 3.361, S = 0.5670 klft, Extent = 23.333 -» 24,667 ft, Tributary Width =1.0 ft Uniform Load: D = 3.361, S = 0-5670 klft, Extent = 35.333 -» 36-667 €b Tributary Width =1.0 ft Uniform Load: D =1.680, S = 0.2840 Vft, Extent = 47.333 --» 48.0 ft, Tributary Width =1.0 ft DESIGN SUMMARY Sectfon used for this span Mu : Applied Mn " Phi: Allowable Load Ccmbiinaticn Location of maximum on span Span # where maximum occurs Ma)dmum Soil Pressure = 0.468 ksf at 24.00 k L-dComb: +D+S+H W .•. i = OAD: 1 Maximum Deflection _ - - --- --- - _- -- Typical Section Max Downward L+Lr+S Deflection 0.000 in -3.369 k -ft Max Upward L+Lr+S Deflection 0.000 in 6.335 k -ft Max Downward Total Deflection 0.013 in +1.24D+0.50L+1.60S+1.60H Max Upward Total Deflection 0.000 in 4.518 ft Span # 1 Ma)dmum Soil Pressure = 0.468 ksf at 24.00 k L-dComb: +D+S+H Aliawable Soil Pressure = 1.50 ksf Cil - Shear Stirmp Reyuiremen#.a _ - - --- --- - _- -- Entire Beam Span Length; Vu < PhiVcf2, Req'd Vs = Not Reqd, use 3d rups spaced at 0.11011 in tfkasmum Farces A 81m3ses for Load CoTnbirlalions Load Combination Locatiors (ft) Bending Stress Results(0) Segment Length Span # in Span Mu : Max PWNInx Stress Ratio MAAmurn Bending Envelope Span 4 1 1 47.435 -0.34 6.33 O.D5 McClendon Engineering, Inc. oe 1412 W. Idaho Street, Suite 240 Boise, Idaho 83702 (208) 342.2919 M1 le don Engin..eing the Project Title:r1`tps�cr Engineer: Project ID: Project Descr, Load Combination Location (ft) Bending Stress Results (k -ft) SegmeniLength Span # in Span Mu: Max PhiWnx Stress Ratio 1 47,435 -0.32 6.33 0.05 .60L+1.60H 1 47.435 428 6.33 0.04 +1.20Dt1.60L+0.50S+1,60H Span Max. Dawn. Ward UeH Location in Span spin # 1 1 47.435 430 6.33 0.05 +1.2GD+1.60Lr+0,50L+1,60H 1 HT11 Span 91 1 47.435 -0.28 6,33 0.04 +i.20D+1,60Lr+0.50W+1.60H +6+L+14 1 Span # 11 47.435 -0.28 6.33 (1.04 +1,20D+0.50L+1.b0$+1.50.1 0.000 +D+Lr+H Spin ff 1 1 47.435 434 6.33 0.05 +1,20D+i,60S+0.50W+1,60H 0.0000 0.000 span 91 1 47.435 -134 6.33 0.05 +1.20D+0.50Lr+0.50L+W>1.60H 24.000 GAO Span # 1 1 47.435 -0.28 6.33 0,04 +1.20D+0,50L+0,50S+W+1,60H 0.0111 24.000 Span # 1 1 47.435 -0.30 6.33 0.05 +1.20D40.60LE0,20S+E+1-MH 1 0.0125 Span # 1 1 47.435 -0.28 6,33 0.04 +0AD+1W+0.94H +D+4.60W+H 1 Span # 1, 1 47,435 -0.21 6.33 0.03 +0.904+E+0,90H 0.000 +D+O.70E41 Span # 1 1 47,435 -0.21 6.33 0.03 ovetall Maxxhnum Deffecttans - tinfat; owd. Dads 0;0000 Load. Combination Span Max.'-' De0 Location in Span Load Combination Marc'+' Den Location in Span Span 1 1 0.0130 24.000 0.0000 0.000 Maximum ©eFleciians for Load Combinations . Unfaclored Leads 0.0060 Load Combin0on Span Max. Dawn. Ward UeH Location in Span Max. Upward oee Locakon in Span +DtH 1 HT11 24.000 0.0000 0.000 +6+L+14 1 O,Oiii 24.004 0.0000 0.000 +D+Lr+H i 0.011 i 24.000 0.0000 0.000 +D+8+H 1 0.0130 24.000 GAO 0.000 +D+0.760Lr+0.7501_+H 1 0.0111 24.000 0.0006 0.000 +D+{i.750L+0.750S+H 1 0.0125 24.000 0.0000 0.000 +D+4.60W+H 1 0.0-111 24.000 0.0000 0.000 +D+O.70E41 1 0.0111 24.000 0;0000 0.000 +D+0.7501s+0.754L+0.454W+H 1 0.0111 24.000 0.0060 0,000 +D+0,750L+0,750S+0.450W+H 1 0.0125 24.000 0.0000 0.000 +D+0,750L40.756S+045250E+H 1 0.0125 24.000 0.0000 0.000 +0.60M.60W+0.60H . 1 0.0067 24.000 0.0000 0.000 +0.6bD40.70E+0.60H 1 4.0067 24.000 0.0000 0.000 D Only 1 0.0111 24.000 0.0000 0.000 Lr Only 1 0,61100 0.000 0.0000 0.000 LOnly 1 0.0000 0.000 0.00110 0,1100 6Only 1 0.0019 24.000 0.0000 0.000 UVOnly 1 0.0000 0.000 0.0000 0.000 E Only 1 0.0000 0.000 0.0000 0.000 H Only 1 0.0000 0.000 0.0000 0.000 Detalled Shear Informailoif Span Disfance 'd Vu (k) Vu d'Vu1Mu Phi'Vc Comment Phi'Vs Spacing (h) Load Combination Number (ii) (in) Actual Design (k -ft) (k) (k) Rod Suggest +1 .20D+1.609+0..50W+1.80H 1 0.00 21.00 0.10 0.10 0.00 1.00 19.12 Vu <PhNrJ2 NotRegd 0.00 0.00 +110D+1.60S+0.50W+1.60H 1 0.56 21.00 -1.10 1.10 0.34 1.00 19.12 Vu<PhVci2 NotRegd 0.00 0,00 +1.2QD+1.60S+0.50W+1,60H 1 1.13 21.00 -1.16 1.56 1-09 1.00 19.12 Vu <PhVrJ2 NotRegd 0.00 0,00 +1.20D+1.60S+0.50W+1.60H 1 1,69 21,00 -0,97 0.97 1.75 1.00 1912 Vu < PhIVcJ2 Not Regd 0.00 0,00 +1.200+1.50S+0.50W+1,60H 1 2.26 21,00 -0.77 0.77 2.30 1.00 19.12 Vu < PhVc12 Not Regd 0.00 0.00 +1.29D+1.64S+0.50W+1.60H 1 2,82 21,00 -0.56 0.58 2.73 1.00 19.12 Vu<PhVU2 NotRegd 0.00 0.00 +1.2gD+1.60S+0.50W+160H 1 3:39 21.00 -0:38 0.38 3.06 1A 19.12 Vu<PhV02 NotRegd 0.00 0,00 +i.200+1,608+0,50W+1.60H 1 3.95 21.00 -0.17 0.17 3.27 1.00 19.12 Vu < Ph1V62 Not Regd 0.00 0.00 +1.200+1.60S+0.50W+i:60H 1 4.52 21.00 0.03 0.03 3.37 0.22 16.21 Vu <PhiVd2 NotRegd 0.00 0.00 +1.20€1+1.60$+0-50W+1.60H 1 5.08 21.00 0.24 0.24 335 1,00 19.12 Vu <PhiVc12 NotRegd Ho 0.00 M 25 Engineering, Inc. Project Tiitle: - rA FF'5r Ik T -& E 0McClendon 1412 W. Idaho Street, Suite 240 Engineer: C Boise, Idaho 83702 Project Id: Jbz8.?3 (208) 342-2919 Project bescr. McClendon Englneerfrtg Inc C pp ���� �� ���#� �-E��1���l,Ul� Fie =M:IAGEPtejeclsOlaPR*c[.0074,188uel.eySlorageBWldulg5ralc5Voo0ng.ec8 , ! So0war8oaQyr%�rtEHl:iiCALC�,INC:198a2019.BifYd:10.19.i.'J} . Ase DESCRIPTION: Grade Beam Detailed Shear Inforillaffan Span Distance V Vu (kj Mu d'VAlu Phi Vc Pht'Vs Spacing (in) Load Combination Humber (ft) (in) Actual Design (k -ft) NComment W Reqd Suggest +1,20D+1.60S40.50W+1.60H 1 5.65 21.00 0.46 0.46 3.21 1.00 i9A2 Vu ,PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0,50W+1.64H 1 6.21 21.00 0.68 0.58 2,95 1.00 19.12 Vu <Phi*12 Not Reqd 0.00 0.00 +1.20D+1,60S+0.50W+1.60H 1 6.78 21.00 0,91 0.91 2.57 1.00 19.12 Vu <FWU2 Not Reqd 0.00 0.00 +1.20D+1.60S+O.50W+1.60H 1 7.34 21.00 1.15 1,15 2.06 1.00 19.12 Vu < Phi e/2 Not Reqd D.DO 0.00 +1.20D+i-6OS40.50W+1.60H 1 7.91 21.00 1.33 1.39 1.41 1.00 19.12 Vu < PhiVc12 Not Reqd 0,00 0,09 +1.20D+1.60S+0.50W+1.60H 1 8,47 21.00 1.65 1.65 0.53 1.00 %12 Vu < PhiVd2 Not Reqd 0.00 0,00 +1.200+UOG+0.50W+1.60H 1 9A4 21.00 1.91 1,9t 0.30 1.00 19.12 Vu<PNW2 Not Reqd 0.00 0.00 +11011+1.60S40:50W+1.60H 1 9.60 21.00 2.18 2.18 1.38 1.00 19.12 Vu<PhVd2 Not Reqd 0.00 0.00 +1.200+1.60S+0.50W+1,60H 1 10,16 21.00 2.46 2.46 2.61 1.00 19,12 Vu <PNW2 Nat Reqd 0.00 0.00 +1,200+t.60S+0.50V'J+1.60H 1 10.73 21.00 2.75 2.75 4.00 1.00 19.12 Vu <PhiVr12 Not Reqd 0.00 0.00 +1.20NI.605+0.56W+i.60H 1 11.29 21.00 3,04 3.04 5.55 1.00 19.12 Vu <PhiVr12 Not Reqd 0.00 0.4)0 +1.200+1.6OS+0.50Y1+1.60H 1 11.86 21.00 0.74 0.74 6.59 1.00 19.12 Vu<PhVd2 Net Reqd 0.00 0.00 +1,20D+1.6GS40.50W+1.60H 1 12.42 21.00 -1,74 1.74 6.22 1.00 19,12 Vu <PhVd2 Not Reqd OR HO +1.20D+1.6OS+0.50W+1.60H 1 12.99 21,00 -2.64 2.64 4.70 1,00 19.12 Vu <PhIW2 Not Reqd 0.00 0.00 +1.20D+1.609+0.50W+1.60H 1 13,55 21,00 -2.33 2.33 3.21 1.00 19.12 Vu<PhiVc12 Not Reqd 0.00 0.00 +1,20D+1.60S+6.5OWA60H 1 14,12 21.00 -2.03 2.03 1.69 1,00 19.12 Vu<PhW2 Not Reqd 0.00 0.00 +1.20D+S.608+0.50W+1,6OH 1 14.68 21A0 -1.72 1.72 0:75 1A0 19.12 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.2017+t.6OS+0.5OW+1.60H 1 15,25 21.00 -1.42 1.42 0.23 1,00 19.12 Vu <PhiVc/2 Not Reqd 0.06 0.00 +1.200+1.60S+O,501N+€60H 1 15.81 21.00 -1.12 1.12 1A3 1,00 18.12 Vu <PhiVG2 Not Reqd 0.00 0.00 +1,20D+1,605+4.50W+1.6OH 1 16.38 21.00 -O.Si 0.81 1.66 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 16.94 21.00 -0.51 0.51 2,12 1.00 19.12 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.200+1.60S+0,50W+1.60H 1 17.51 21.00 -0,21 0.21 2.41 1.00 19.12 Vu<PhUc12 Not Reqd 0.00 0.00 +1.20D+1.80S+0.50W+1.60H 1 18.07 21.00 0,10 0.10 2,53 0.91 19.01 Vu <PhVd2 Not Reqd 0.00 0.40 +1.20D+1A0S+0.50W+i,60H 1 18.64 21.00 0.40 0.40 2,47 1.00 19.12 Vu < PhNr12 Not Reqd 0.00 0.00 +1.20D+1:60S40.50W+1,60H 1 19.20 21.00 0,71 0.71 2.24 1.00 19.12 Vu<PhVd2 Not Reqd 0.40 0.00 +1.20D+1.60S+0:50W+1.60H 1 19.76 21.00 1.02 1.02 1.84 1.00 19.12 Vu <Ph1Vr12 Not Reqd OAO 0,00 +1.200+1.605+0,50W+1,60H 1 20.33 21.00 1.34 1.34 1.27 1.00 19.12 Vu<PhssVd2 Not Reqd 0.00 0.00 +1.20D+1,60S+0.50W+1.60H 1 20.89 21.00 1.65 1.65 0,51 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1200*1.605+0.60Wi.60H 1 21.46 21.00 1,98 1.98 0.42 1.00 1912 Vu <P1iVc12 NotRegd 0.00 OA0 +1.20DA64S+0.50W+1:60H 1 22.02 21.00 2.30 2.30 1.54 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.200+1.60540,50W+1.60H 1 22,39 21.00 2.63 2.63 2.84 1.00 19.12 Vu <PhiV& Not Reqd 0.00 0.00 4200+1.60S-f0,50W+1.60H 1 23.15 21,00 2.96 2.96 4.32 1.00 19,12 Vu <PhiVc12 Not Reqd 0.00 0.00 +1,20D+1.60S456W+1,601-1 1 23.72 21.00 1,39 1.39 5.63 1.00 19.12 Vu<PhiVc/2 Nat Reqd 0,00 0.00 +1.20D+1.6OS+0,50W+1.60H 1 24.28 21.00 -1,06 1.06 5.63 1.00 19.12 Vu <PhVW2 Not Reqd 0.00 0.00 +1.29D+1,605+0.50W+1.60H 1 24.85 21.00 -2.63 2.63 4.32 1,00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1,200+1.60S+0.50W+1,60H 1 25.41 21.00 -2.30 2.30 2.84 1.00 19.12 Vu <PhVd2 Nat Reqd 0.00 0.00 +1.200+1.608+0.50W+1-601-1 1 25.98 21,00 -1.98 1.98 1.54 1.00 19.12 Vu <PhVd2 Not Reqd 0.00 0.00 +1.20D+1.60S450W+1.6OH 1 26.54 21,00 -1.65 1.65 0.42 1,00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.200+1.60S-iO.50W+1.60H 1 27,11 21,00 -1.34 1.34 0,51 1,00 19.12 Vu <PhiVc12 Not Reqd 0.09 0.00 +1.20D+1.6OS+0.50W+1.60H 1 27.67 21.00 -1.02 7.02 1,27 1,00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.200+1,608+4.50W+1.60H 1 28.24 21.00 -0.71 6.71 1,84 1.00 19.12 Vu < PhiVd2 Not Reqd 0.D0 0.00 +120D+1.60S+O.50W+1.6OH 1 28.80 21.00 -0.40 4.40 2.24 1.00 19,12 Vu <PhiVc12 Not Reqd HO 0,00 +1.20D+1.6OS+0.50W+1.6OH 1 29,36 21.00 -0.10 0.10 2,47 0.93 19.04 Vu , PhiVd2 Not Reqd 0.00 0.00 +1.20D+1,6OS+0.50W+1.60H 1 29.93 21.00 0.21 0.21 2.53 1.00 19,12 Vu <PhiVcJ2 Not Reqd 0.00 0,00 +1.200+1.60540.64W+1.601-1 1 30.49 21-00 0,51 0.51 2,41 1.00 19.12 Vu <PhiVd2 Nat Reqd 0.00 0.00 +1.20D+1,60S40.50W+1.60H 1 31.06 21.00 0.81 0.81 2.12 1.00 19.12 Vu <PhiVc12 Not Reqd 0.00 0.00 *1.2017+1.69840.50W+1.60H 1 31.62 21.00 1.12 1.12 1.86 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50vvA60H 1 32.19 21.00 1-42 1.42 1.03 1,00 19.12 Vu<PhIVd2 Not Reqd 0.00 0,00 +1.200+1.605 0:50W+3.60H 1 32.75 21.00 1.72 1.72 0.23 1.00 i9.12 Vu <PhVc12 Not Reqd 0.00 0.00 +1.20D+1,6OS40,50W+1.60H 1 33.32 21.00 2.03 2.03 0.75 1.00 19.12 Vu < PhiVd2 Not Reqd UO 0.00 +1.20D+1.60SA.50W+1.60H 1 33.88 21.00 2.33 2.33 1.89 1.00 19.12 Vu <FhVd2 Not Reqd 0.00 0.00 +1.20D+1.6OS+4.50W+i.60H 1 34.45 21.40 2.64 2.64 3.21 1,00 19.12 Vu 4 PhV62 Not Reqd 0.00 0.00 +1.20D+1.66S+0.50W+1.60H 1 35.01 21,00 2.95 2.95 4,70 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 OAO +i.20D+1.60S+0.50W+1.6aH 1 35,58 21.00 2.05 2.05 6.22 1.00 19.12 Vu <PhiVcl2 Nat Reqd O.00 0.00 WClendon Engineering, Inc. E 1412 W. Idaho Street, Suite 240 Boise, Idaho 83702 (208) 342-2919 McClendon Engineering Inc DESCRIPTION: Grade Beam betailed $hear Information Project Title_ l AA HomA `���2,4 Engineer. Project ID: 1Cp2-6. Z3 Project Descr. Span Distance V Vu (k) Mu d'Vu/Ma PhiNc Comment Phi% Spacing (m) Load Combination Number (ft) (n) Actual Design (k -ft) (k) (k) Raq d Suggest +1. D+1.60S+0.56W+1.6014 1 36.14 21,00 444 0.44 6.59 1.00 19.12 Vu<PhiVd2 NotRegd 0.00 0.00 +1.20D+1.60SA'50W+1,6014 1 36.71 21.00 -2.75 2.75 5.55 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0,40 +1.20;1+1.6oS+0.50W+1.6014 1 37.27 21.00 -2.48 2.46 4.00 1.00 19.12 Vu < PhiVcl2 Not Reqd 0.00 0.00 +1.20D+1.60S{0.504�(+1.60;1 1 37.84 21.00 -2.18 218 2.61 1,00 19.12 Vu<PhiVc12 NotRegd 0.00 0,00 +120D+1.60S+0.50W+1.60H i 38.40 2t.00 4.91 1.91 1.38 1.00 19.12 Vu < PhYcf2 Nof Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 38.96 21,00 -1,65 1,55 0,30 1.00 19.12 Vu<PhiVen NotRegd 0.00 0,00 +1.200+7,60S+0.50W+1,60H 1 39,53 21.00 4.39 1.39 0.63 1.00 19.12 Vu < PhiVc12 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 40.09 21.00 -1.15 1.15 1.41 1.00 19.12 Vu <PNW2 Not Reqd 0.00 0.00 426D+1.60S-,0.56H1+1.60H 1 40.56 21.00 -0.91 0.91 2.06 1.00 19.12 Vu < PhiVc12 Not Reqd 0.00 0.00 +120D+1,60S+0.50W+1,60H 1 41.22 21.00 •0.68 0.68 2.57 1.00 19,12 Vu < Phyrd2 NotReqd 0.00 0.00 +4,20{1+1.505+0,50W+1.6014 1 41.79 21.00 -0.46 0.46 2,96 1.00 19.12 Vu <PhNc12 Not Reqd 0.00 0.00 +1.2DDA66S+0.50W+1.60H 1 42.35 21.00 -0,24 0.24 3.21 1.00 19:12 Vu <PhVc12 tidRegd 0.00 0.00 +1.20D+1AS+0.50W+1.60H 1 42,92 21.00 -0.03 0.03 3.35 0.22 18.21 Vu<Ph":Ve12 Not Reqd 0.00 0.00 +1.20D+i.60S{0.50W+1.60H 1 43.48 21.00 0.17 0.17 3.37 1.00 19.12 Vu <PhVG2 NotRegd 0.00 0,00 +1.20D+1.60S+0.50W+1.60H 1 44.05 21.00 0.38 0.38 3.27 1.00 19.12 Vu<PhUO NotRegd 0.00 0.00 +i200+i.60S+0.5oW+1.60H 1 44.61 21.00 0.58 0.58 3.05 1.00 19.72 Vu <M W2 flotRegd 0.00 0.00 +120b+1.60S+0.50W+1,60H 1 45.18 21.00 0.77 0.77 2.73 1.00 19.12 Vu<PhiVc/2 NotRegd 0.00 0.00 +t.20D+1.60S+0:50W+1,60H 1 45.74 21.00 0.97 0.97 2.30 1.09 19.12 Vu <PhWc/2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50V/+1.60H 1 46.31 21.00 1,16 1.76 1.75 1.00 19.12 Vu<FhiVd2 Not Reqd 0.00 0.00 }1,2011460S+0.50W+1,69H 1 46.87 21.00 1.36 1.36 1.09 1.00 19.12 Vu<PhVr12 Not Reqd 0.00 0.00 -+1.2ob+1.60S{0.50W+1.60H 1 47.44 21.00 1.30 1.30 0.34 1,00 19.12 Vu<PhMQ Not Reqd 0.00 0.00 Mc McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLANK P roj e c t: pae: McClendo No: IOMFzz, g 1,-7 D n "PI: Date: 4v Checked by: Engineering Inc Item: By., AtIftysis 1.01foc> wfaO i :5?L -�V rA?I-f ................. 4r IV C A SI-Ocn 37, C, E�, Ole 00 D. IT, 7 2 f5F 17.7pr-- Ali iAX rittz-t, 6122123, 3:46 AM U.S. Seismic Design Maps 2 V SQA Tahoma Terra Yelm, WA, USA Latitude, Longitude: 46.9420431, -122.6059582 ."PMa and Pa's Family Diner Yelm-Tenino Trai PTahoma Valley Golf Course Go gle Date Design Code Reference Document Risk Category Site Class Type Value Ss 1.288 S1 0.465 SMS 1.545 SMS null -See Section 11.4.8 SDS 1.03 Sp1 null -See Section 11.4.8 Type Value SDC null -See Section 11 A.8 Fa 1,2 Fv null -See Section 11.4.8 PGA 0.509 FPGA 1.2 PGA, 0.611 T, 16 SsRT 1,268 SsUH 1.418 SsD 1.5 S1 RT 0.465 S1UH 0,522 S1D 0.625 PGAd 0.509 PGAe,t 0.552 I st Street Nail Barg 510 C� YThe Shiplap Shop 5J ! Coffee House OSHPD QSouth Puget Sound Habitat for... �a 612212023, 3:47:15 AM ASCE7-16 11 D - Default (See Section 11.4.3) Description MCER ground motion. (for 0,2 second period) MCER ground motion. (far 1.Os period) Site -modified spectral acceleration value Site -modified spectral acceleration value Numeric seismic design value at 0.2 second SA Numeric seismic design value at 1.0 second SA Description Seismic design category Site amplification factor at 0.2 second Site amplification factor at 1.0 second MCEG peak ground acceleration Site amplification factor at PGA Site modified peak ground acceleration Long -period transition period in seconds Probabilistic risk -targeted ground motion. (0.2 second) Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration Factored deterministic acceleration value. (0.2 second) Probabilistic risk -targeted ground motion. (1.0 second) Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration. Factored deterministic acceleration value. (1.0 second) Factored deterministic acceleration value. (Peak Ground Acceleration) Uniform -hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration Map data 02023 https:llwww.seismicmaps.org 113 6/22123, 3:96 AM Type Value CRS 0.908 CR1 0.891 CV 1.368 httpsa/www.soismicmaps,org U.S. Seismic Design Maps Description Mapped value of the risk coefficient at short periods Mapped value of the risk coefficient at a period of 1 s Vertical coefficient -I 213 I' L 9CO F /Op6F (25") W6'LL C 71;S Cl 112)( 1) BIP�r-' -o TA -L 5-6 P1,F V X54 (616Y C) f4,F V6 =0,15 4 ?6- z 6o5mlc ('10vmr45' Mj 1 !9 Project:-��H:nMA- 77Ca2A w No: 10 Page: 0 McClendon "'Pl: 5mua-E a -1c1`3 Dater Checked by: Engineering Inc Item: R�Ecj P, L 6r,5A . .... 051�..... I' L 9CO F /Op6F (25") W6'LL C 71;S Cl 112)( 1) BIP�r-' -o TA -L 5-6 P1,F V X54 (616Y C) f4,F V6 =0,15 4 ?6- z 6o5mlc ('10vmr45' (D -— r � o LLi 0 J m Z- 0 0 ez_ - n7- o- - Q LL LL s- WON -- J 31 0 0 U L:J L80N - - } 3z Project:'p I � � I Lit Na: JaZlrtIS Page: K3 McClendon scbpe:_... _-�r�f � Date: Checked Checked by: Engineering Inc Item:— Oft- t) tem:_o 3 Z7 TZ =7t 12- `tr 3Z7C ' im, Zr = s t-v: _7S'Pc !camq7 ":DE Project:.:_ No: ZBB Z� Page-, '34 McClendon Scope: �1���'��G�CG=�� Date: /4—�3.—. Checked by; Engineering Inc [tern: rboE- — FL,*T- Lbyk. F 7 yes[= �tvtr�x, 1 to( - Uri FIC .,,t LoAcz, 72a pLF/ Cls' Z.(-Pq� psr- T9r0::,, Wc5r FFvra�.� SpYACir)G> , o<< `�a�i- `��-�.a t. -C_, �t.�p s�+�-c� ��G� = /{� `' o.�, 1`•t�x , ?�o. `� Gt�pr?Gt�� � X70 �' �. If2 �c►�, �' Zp # Lz� 570 1ae-10 t :P ; pY -.,1--7- C z_rP MC Project:�j Na:: L Page: 3 McClendon Scope:_!�-.�.u�_}�-tf�i pate:_./ Checked by: Engineering Into Item:_ tci 7`^ti t • J� Fy \i {�i. i 4 4. 4/4.7 -� wkr, r pf-F f f lTO IL, Fj 5trzo>,7C,� fi�c.E:, G�� ( I Opsp ZSp�� AS U` Ifo lusoFT Ze Ai:_- r aiJ f �a= �Sj� r.c�7S 7(,�7y 36 Page. McClendon Scope, �T�.��� �l� ©afe. � � _Checker! by; Engineering Inc Ifem. By—, Zg7pc,r (Z ��jn (co 1�eAc c..S r � € 57 0 / t1V.{ t f- 13 5 Co -s i ,. 70& Ca c�st� C�vttJ CCK uy'i iJSIJE��Ti Ol ) Frojeci.- AOOVMI+ No-/OZe. ZS— Page, -3 -0 -- McClendon Scope:-, uaT- P&-' Date: '4r/,! --3 Checked by: Engineering Inc Item- By .......... or s CAI 0 10+t---2 8" Gv��l �� Dl 01t---cz- 01 41 e, P&F Aic", kL',Z.Y,4 0 r—: C' M' v (,J, 'A' F,p Zen Ke,. X 00 Sa 5 psr- .1 -1 As Z-0 kA A FL ILI and r Projeci: McClendon scope; 174kU z&rc iQ Bate: �,/� checked by: Engineering Inc Item: _ By. _ - Zd` � ff s eta UA0 r w ALU1r-�, tE:(, 1 t) ro srL. D Sri IV d� �y r - .,r I, tE:(, 1 t) ro srL. D Sri H �v Project: L"YLzr* No: .__ IOZS-..Z5_ Pager CCI{'t1C�0i7 Scope: STi2[�1.�-� - ffir� _ Date: Checked by: Engineering Inc Item: 1-13(4� Aczc>T3�aG, F ?< Yy1 X i fL1 = 2,0 /2 % 1 /ZO� --ea.Acc� TYPE Z— _ _ �� ��LI C t _ '�/ f ti✓� f..til 1.x+.1 1 IF Project: No:—LQ-7-45-I-4-3— Page: McClendonScope:Date: 15— Checked by: Engineering Inc Item.- By: MJ MJ Project: 7[A-ftm --- ---- No: Page: Ll 3 Scope:---..6MM� Date:.. -...,5-Y McClendon z5 Checked by:r Engineering Inc Item: By: 6A '5*10P Project: A-1+OwtNo: � 2 Page: L McClendon Scope: Date. 23 _ Checked by: Engineering Inc Item:..._._ 30- �� = 000 Connectors torCofd-Fowned 5teelConstruction Coiled Straps CMSTC provides countersunk fastener slots that provide a lower screw head profile. CS, OMST and CMSTC are continuous utility straps which can be cut to length on the job site. Packaged in lightweight cartons (about 40 ib.). Finish: Galvanized, Some products available in ZMAX" coating; see Corrosion Information, pp. 18-21, Installation: * Use ail specified fasteners; see General Notes. • Refer to the applicable code for minimum edge and end distances. • The table shows the maximum allowable loads and the screws required to obtain them. See footnote #1. Fewer screws may be used; reduce the allowable bad by the code lateral load for each fastener subtracted from each end. Codes: See p. 11 for Code Reference Key Chart r. 1 280 i QY YMall __- t{•I� CS16 Hole Pattern Fasteners to be (all other CS straps similar) symmetrically placed i ._ Total Length Connector Material Thickness Mill (ga.) Width (in.) Fasteners' (Total) Allowable Tension Load AT --!!-- s Rafter/Stud/J&tThicknesa -'--"-' 33 mil (20 ga.) 1rdl{t8 gt.) 54 mil (Ii ga.} ( 33 mil 20 ga.) 43 43 mil (18 ga.} 54 mil (16 ga.) CMST12' ` 97 02) CMST14 Hole Paftem Screws not 170) #10 (CMST12similar) required in CM5T14e clear span w 3 (7.1#10 i56) VO (2$j410 6,365 � Provide minimum 3x screw 54 06) w okrf diameter end distance per (36)4.10 (30) #10 code for CS and CMST CS14 100' 0 (14) CMSTCI6 Hole Pattern Equal number of (10 410 (12) #10 specified screws 0516 n each end 54 (16) Gauge stamped on part for easy identification. ld ten4lft Typical CS Installation as a Floor -to -Floor Tie Madel No. Total Length Connector Material Thickness Mill (ga.) Width (in.) Fasteners' (Total) Allowable Tension Load Code Rafter/Stud/J&tThicknesa -'--"-' 33 mil (20 ga.) 1rdl{t8 gt.) 54 mil (Ii ga.} ( 33 mil 20 ga.) 43 43 mil (18 ga.} 54 mil (16 ga.) CMST12' 40'-3" 97 02) 3 _ (104) #10 170) #10 (40) #10 9,080 CM5T14e 52'--6' 68(14) 3 (7.1#10 i56) VO (2$j410 6,365 CMSTC i 54' 54 06) 3 {54) 910 (36)4.10 (30) #10 4,600 CS14 100' 0 (14) V4 (24 010 (10 410 (12) #10 2.305 0516 150' 54 (16) 1114 (18) #lo (12) #10 (8) #10 1,550 IPI, L2, FL CS18S 100' 43 (18) 1 Y. (14) #10 (10) #10 (6) #10 1,235 CS18 200' 1 Y, (14) 00 (10) #10 (6) #10 1,235 CS20 250' 33 (20) 1'/4 (12) #10 (8) #10 (6) #10 945 CS22 300' 27 (22) 1 Y. (10) #10 (6} 1110 1 (6) #10 775 These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Chack with Simpson Strong -Tie for details. 1. Use half of the fasteners in each member being connected to achieve the listed loads. 2. For CMST straps: End Length (inches) = rh total fasteners x %' + 1' when at holes filled. Double lengih if only round holes filled. 3. For CMSTCI6 straps: End Length (inches) - lh total fasteners x3/4' +V when ail holes filled. Double length if only round holes filled. 4. For CS straps: End Length Cinches) = h total fasteners F 1'. 5. Total Cut Length = End Length f Clear Span s End Length. Noof Screws Used 6. Calculate the connector value for a reduced number of screws as fellows- Allowable . Load = x Tahle Load No. of Screws In Table Example: CMSTCI fi on 54 m 24 Screws (Used) mil with 24 screws: x 4,600 lb. = 3.6801b. 30 Screws (fable) 7. Loads are based on lesser of steel strap capacity and AISI $100 fastener calculation. 8. See pp. 138 through 171 for more information on Simpson Strong -Tie fasteners. Qs E Project: No. A QPage. McClendonScope:_Date: Chet kedby: Engineering Inc Item: By,.— C-7 Fql-)- N T- 10 rO rA u 10 1% J CD Co W1 � � h h (D In tD rD fD u7 m m m N 6 � N n n N Q 'tl: v v tls G? cn T LO O m N u1 >• c0[f) m m m f - v mn I Iq m IR m tNp 4 g m 4 M m� u ~ �1 0 0 0 0 0 0 0 O O O Cf 0 '31 1 ? m u) m e 0 h o rn N w m m co ca in n .- o] co m u) m rn h v rD 1-- o m co a W _ C m m fO m SO m W N n m ID r W r i 0 r N N N m 0 0 4 r N N O w 0 v O a O 00 N� LO ti x = V .- �f Y? � 7 co h h h 0 h aT st sT 7 r.- M H' co tl m N <p co O W h h m 0 A r • C 0r• h m v m -W ut [p (o r N N v r0 v N v m V NN m u'S N LO w v h N w N N r N N N N rD m m m o. O N m as X W O m m� co O O m n� m ch 47 o0 w V ID W Cil N h r r m O v �Ci cC h in L6 t� 0 Ln0 r m 0 o 0 Gi co rn u h rnrn u� h rn m �i h m h n o w.0 O r --N P h N 0 r` N 0 a c) T rn M a; m v, m t` a� [Q s m L6 h m 46 r- r r m L6 h r N v f -Z r U r m <o [P to w r to i[7 [Dco ro LD Co v rIt!4 U Q J Y m O m v N v m 0 O h 7 O C) r m D) WQ1 h N h IJ Q m y ui W m v ui r- Fi v ui n m v n m o 4 c = uO v >� m 4) m O u) m 7 p Ur o. C J .V h h o cq (*) m 00 co Ob h h O o c0 m m CG [p ao h h O co m R W o0 co h h O o w n m W co al w 4 0 E N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 p Cl) v >n � m �o o w N 0 N m �D o w m rD o w n E co y n� M r-7 o C� o en I?N Co m h w Wao co v o h nr m UC 00 n rn o n c? q '- 0 o ,- 0 o v 0 o c �o CL n rn 4m w is n CO L V Q Ln rn W m Co h co ro hin N m h m 0, Q� qj 47 rn '� Ch to h ["5w h 4] h C7 N O h m w m 1n Ln m co m rn N h O m h {D 0 Q L 4 O ?> V N C) Ci v N m v v N m 7 W) N M m 7 Gl ti y d 0 a O a ° Z m m �' y a fA n � O m C u1i � w 4� ti co P Im ti to G h t- LO 0 w o in N u h Q v 0 0 o r cs o a cs o o r o 0 co o r q o U o 0 0 0 0 o 0 0 0 0 o o 0 0 0 0 U r�p u u Z h Z rn K rn ra t1 o N zIF � ro v m N fD v m N co v m N ro v m N x 0 0 0 0 to u) UD ka 0 0 0 0 m un kn In Ci Ci f i f -i ci vi F3 C7 v v v v N C4 CV N X C X x x x x x x x x X X x x X x X p 4 g O 4 4 q 0 0 0 q O q O O q q 0 0 fD cD fD 0 W (0 cD fD fD ED h h h h y N_ (O c m N_ U Z U U U U U U U U U U _m (,) (,) ,U U U U C 0 co 0 m 0 m O C7 47 'Q M co L!) m W m 0 0 0 v 0 V 'X N 3X Ln N Cn (1� LO N X C3 x o x C x o X C3 X 0 X 0 X o X p X p X 0 47 0 X 0 X X 0 x 0 ��� N C0 o eD 0 to 0 n d h h n co Mc McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLANK