Loading...
Structural Calculations - Building FMc McClendon Engineering Inc TAHOMA TERRA BUILDING F STORAGE Yelm, Washington FINAL STRUCTURAL CALCULATIONS June 30, 2023 Prepared for: Keimig Associates 307 D Street SE Auburn, Washington 98002 Prepared by -. Is McClendon Engineering Inc 1412 West Idaho Street, Suite 240 Boise, ID 83702 Project No.: 1028.23 DE M TAHOMA TERRA McClendon BUILDING F STORAGE Engineering Inc YELM WASHINGTON 1028.23 TABLE OF CONTENTS Page Number GENERAL: Tableof Contents........................................................................................................................ I DesignLoads............................................................................................................................... 2 - Materials and References....................................................................................... DeferredSubmittals..................................................................................................................... 3 SpecialInspection..................................................................................•----------.......................... 3 ProjectDescription..........................................•---........................................................................ 14 GRAVITY DESIGN: RoofFraming ............................................................... Roof Panel Purlins LintelDesign.............................................................. l� WallDesign............................................................... Foundation Design........................................................... J! Wall Footings LATERAL DESIGN: Lateral Analysis............................................................ Z r7 Wind Base Shear Seismic Base Shear Diaphragm/Chord Analysis....................................................i! Shear Wall Design.......................................................... go—q7 X -Braced Walls 1 DMC McClendon Engineering Inc GRAVITY DESIGN LOADS: Roof Dead Loads Roofing: - Decking: 2 psf_ Framing: 2 _ DSf Insulation: 2 psf Ceiling: - M & E Collateral: 3 psf Miscellaneous: I psf E Roof DL: 10 psf Roof Live Loads Snow Load: 25 psf Roof LL: 20 psf Floor Dead Loads FIooring: SOG Framing: Insulation:_ Ceiling: M & E Collatei Miscellaneous: E Floor DL: Floor Live Loads Occupancy/Use:.Light Storage Floor LL: 125 psf Occupancy/Use: - Floor LL: - Wall Loads Interior Stud Wall DL: 7 psf Exterior Stud Wall DL: 7 psf CMU Wall DL: 55 psf LATERAL DESIGN LOADS: Wind Loads Seismic Loads Wind: 115 mph Site Class: D - Default Exposure: C Seismic Design Category: D MWFRS: Simple Risk Category: II Diaphragm Importance Factor: 1.0 LOAD COMBINATIONS: Design Method Strength Design: Basic Load Combinations ❑ Allowable Stress Design: Basic Load Combinations ❑ Alternative Basic Load Combinations IR 2 TAHOMA TERRA BUILDING F STORAGE YELM WASHINGTON 1028.23 R: 4 n: 2 p: I SDs: 1.03 SDI: - MSFRS: X Braced CFS Walls Mc McClendon Engineering Inc MATERIALS: Steel Shapes Fy =__50 ksi Plates/Angles/Channel: Fy 36 ksi Hollow Structural Shapes: Fy --A2 ksi Pipe: Fy — - Bolts: A325 Anchor Bolts: A307 REFERENCES: Soils Bearing Pressure = 1500 psf Source of Information: assumed Frost Depth = 18" DEFERRED SUBMITTALS: Steel: Steel member layout Joist/Joist Girders Layout ❑ Metal deck layout Wood: Engineered Truss Layout ❑ Cold Formed Steel: Steel member layout SPECIAL INSPECTIONS: Fabricators ❑ Steel Construction t( Concrete Construction ❑ Masonry- Level 1 Masonry- Level 2 Wood Construction ❑ Soils ❑ Deep Foundations ❑ Special Cases Seismic Resistance ❑ Other: 71 Wood Sawn Lumber: - G1uLam: - Eng. Product: - Lieht Gauee Steel Fy: 55 ksi Code(s) Used 2018 IBC TAHOMA TERRA BUILDING F STORAGE YELM WASHINGTON Concrete r, = 2500 psi fy = 60 ksi Masonry r. = 1500 psi fy = 60 ksi Software Used USGS Enercalc Concrete: Mix Design �f Reinforcement Layout !� Masonry: Mix Design Reinforcement Layout Other: ❑ 1028.23 MDEC McClendon Engineering Inc PROJECT DESCRIPTION: TAHOMA TERRA BUILDING F STORAGE YELM WASHINGTON 1028.23 The Structural scope of work for this project consists of: • The design of a single story light -gauge steel framed storage building. • The gravity system for the building consists of a light gauge steel framed roof supported by steel frames, light -gauge steel framed walls. • The lateral system for the building consists of a simple diaphragm, light framed shear walls reinforced with flat strap cross bracing. o The loads are transferred from the diaphragm to the framed shear walls, to the foundation. Mc I" ) McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLANK L) Mc D McClendon Engineering Inc Projects �rhks►' lq 7F2" No: bZ , Z3 Page: Scope: 67'ge'r a516'Z Date: Z Checked by: Item: By: i I i 7 4N& McELROY METAL Medallion -Lok 1699 1 134" s ani 1 et y ............._..........- 16" COVERAGE - ......... Load Type • •' 2.00 TpP IN COMPRESSION BOTTOM IN COMPRESSION GAUGE FY WEIGHT Va Pa eno Pa ;"I Ix SQ Ma I; 5e M, (KSI) (PSF) kiplft. bs!$. IbslFt. (in.'Ifl.} (in.alft-) kip-in.lft. (in.41ft.} (sn.alft.) kip in.lft. 24 150.01 1.30 {3.7800 218.40 351.600.0860 44 D.0567 1.6800 0.0400 0.0479 1.2480 I, Section properties are calculated in accordance with The 2004 AiSI Node American 5peciflcation for the Design of Cold -Formed Steel Strudul'al Members. 2. Va is the allowable shear. 3. Pa is the allowable load for web crippling on end S interior suppods, A. ix is for deflection determination. 5. Se is for bending. 6. Ma is the allowable bending moment. 7. All values are for one foot of panel width. 0 Allowable Uniform Loads (PSF) Notes: I - Allowable uniform loads are based upon equal span lengfhs. 2. Positive Wind iswind pressure and is NOT increased by 33 1/3 °%. 3. Live is the allverable live or snore load. 4. Deflection (U180) is the allowable load that limits the panel's deflection to U180 wh6e under poaf iv'e or live load. 5. Deflection (U240) is the allowable load that limits the panel's deflection to U240 while under positive or live load. 6. The weight of the Panel has NOT been deducted from the allowable leads. 7, Positive wind and Live load values are 6miled to combined shear d bending using Eq. 03.3.1-1 of the AtSt Specification, 9. Values of ASTM E1592 Wind Uplift Testing include a factor of safety of 1.57. Shaded areas are outside of test range- Contact McElroy Metal for more information, 9. Positive Wind and Live Load values are limited by web criloWilg using a bearing length of 2". 10. Web crippling values are determined using a ratio of the uniform loadaetually supported by the top Aanges of the section. 11. Load Tables are Ynited to a maximum allowable load of 500 psf. s ani et Span Type Load Type 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5 k0 550 600 6 83 : 00 7 50 9 00 85r Positive Wind 500 497 280 179 1 124 91 70 55 44 37 1 31 25 22 19 17 15 Single Live Soo 497 280 179 124 91 70 55 44 37 31 26 22 19 17 15 DeWhon(U180) 500 500 500 481 276 175 117 82 60 45 34 27 21 17 14 12 Deflection(U240) 500 1 500 500 350 208 131 88 fit 45 33 26 20 16 13 11 9 Positive Wind 56a 337 197 128 90 66 51 40 32 27 22 19 tfi 14 12 1z 2 Span Live 500 337 1 197 128 90 66 51 40 32 27 22 19 16 14 12 1! Deflection 11-1180) 500 500 500 500 "1 309 207 145 18fi 79 St 48 38 31 25 21 Deleclion(U240) 500 500 500 500 368 232 155 109 79 59 46 36 29 23 19 16 Posltive Wind 500 407 j4 158 111 82 63 50 41 34 2e 24 21 38 16 14 3 SPan Lva 5W 407 241 158 I 111 62 6' S0 A4 ?A 2 2>x 21 18 1T� 14 DeflevionfU130) 500 550 500 50 3a4 242 1 152 114 a3 62 4i 37 30 24 20 le Defection(U240) 500 500 500 498 288 181 1 121 85 62 46 36 28 22 18 15 12 PosifivelVnd 500 385 227 148 104 77 59 47 38 31 26 22 19 17 15 13 4 Span Live 500 385 227 148 104 77 59 47 38 31 26 22 19 17 15 13 Deflection (U180) 509 500 506 500 408 257 172 T21 88 66 51 40 32 26 2117 Deflecficn(U240) 500 500 500 500 306 i92 129 90 66 49 38 30 24 19 16 }3 ASTME1592'AindUplift Testing 1 69.5 1 61.1 1 52.9 49.1 45.2 1 41-3 1 37.7 1 33.8 30.1 NOTEST DATA AVAILABLE Notes: I - Allowable uniform loads are based upon equal span lengfhs. 2. Positive Wind iswind pressure and is NOT increased by 33 1/3 °%. 3. Live is the allverable live or snore load. 4. Deflection (U180) is the allowable load that limits the panel's deflection to U180 wh6e under poaf iv'e or live load. 5. Deflection (U240) is the allowable load that limits the panel's deflection to U240 while under positive or live load. 6. The weight of the Panel has NOT been deducted from the allowable leads. 7, Positive wind and Live load values are 6miled to combined shear d bending using Eq. 03.3.1-1 of the AtSt Specification, 9. Values of ASTM E1592 Wind Uplift Testing include a factor of safety of 1.57. Shaded areas are outside of test range- Contact McElroy Metal for more information, 9. Positive Wind and Live Load values are limited by web criloWilg using a bearing length of 2". 10. Web crippling values are determined using a ratio of the uniform loadaetually supported by the top Aanges of the section. 11. Load Tables are Ynited to a maximum allowable load of 500 psf. m� lD Project:- 17�,a0vVIA TY"YLYL,_4 No: Page: McClendon Scope: TDLMIGr,3 Date: Checked by: Engineering Inc Item: By: 10 1 -0 W) zros"r &sk) i 5 - tog A TU r- 4 -pi P -jV- x CHC-ciL. WC -AK �xrs gicN t,)o 5nA?,- WpL_= /0 :M , i F I _ ��= 175« �I2`' �8 _. 15-D FT� 1b Pt2.D V IV e- 6 'A Z Y?- 9 1& 6A- (wi a A! -fi-fi d ---�--�._ a m � e w m m w m m0 M v r a m tp w w rp • rn n o m m m �v M v n m 'vn o m r JALr 0 0 0 0 0 0 o a o o p o a 0 0 0 w �5 w o m n R w +n n n o c ,n m r o m cy h n rn r n R m n o m c4 ri a a o o vl In vii .n �" r ri ri ri ri ni ri ri ri ri Mi M i+i c•i M r7 ri n U m nC m c) Orn n N n n P-� Ci O � In `t C!7 Z} W (O R R tp 4 N M p ,N • N C] r N -- � ill m N N Q Ifs w� 0. �- N N (•] +- N N MI r N N C7 N N M Y a O U x= m M n m m N V N n O cp tp r)f R N O { M to m C 14 IN n T CS N a m ry O N7 In m a R w O a Q R O 00 n [h a V N m m M n M .n M M n m m co h h a G U m C Z V m r i N N m rn m Os a ry E µ _ Q =� " c +�y• b aY � � vi o n o ui cu r o v m n o Iri h c. � Q S1 C Z ry�ry b V V a i m v o a w r m N w o ¢ a O h N �� 3� a :. r m M m In m m m of M m In m m r e> rn m m m m m c! m In m m G aUi m ' 0 0 0 0 o a o 0 0 a 0 p 0 0 0 0 0 o 0 7_ to 3 2Z it LL ,� R m N I{'� M rW m a m N Ip I() M pl 0 0 W 0 L y r n V h m CV n m m 6l tl' n a O a a p 4i F. � n M C7 a n It7 h M m n m fp m In h N1 n R LO T lD m of YS Ll� r M M f`1 m n M N a n Cl tla c7 ps y [L 0. CL C m o ul i!s m 4 ul Its m R N GS a 1I1 >n In n m o In /+ � 4 Ifs P m O 4f n m p Li '" 0 0 0 0 0 o o 0 o d o 0 0 6 0 0 in 43 uj d lfl n t`1 l!'i n M Vl + �`] 1(! n M to n � h W L"S h W i!} n m 44] h C7 N n M � n M n cel h „J n F+ h h Q Ill h M Yd m % M % irj X M X I. j% X N X N X N X N X N X N X N X M X M X C] X M X j r Z u'i u1 u1 t6m, u1 t0 N m �l r N fl r 4] r �ry r Ih � r o'i M M Cj N N N N N N N [V I i Cry' Fi X X X X X X X X X x X O g 0 0 0 a O Q Q a R O 06 a CS tl m m m od W m op m m m ao ai vi w v m VV �n N u: N WZ N In N R N R N R N O ni In N .n n hi ur N m N L:In N � c'i m ri eri m ni ei .,y ri R R o d a o 0 o a s ra m m m m o m ai m Iti u, m ci m' .0 c. LO a m MCDE Project: No: nZ R. 2* Page:- to McClendon Scope:- 15MIA&-r JDLRMIWDate: Checked by: Engineering Inc Item: By:—!564. re f2oo F- (PUaLO, 5"? PO a"r lo, /0 -0 ed? 175&-OL q3'75* tb 0 gst)(7,7 POO) Pwipe: Sr., x Z" )e /(0 AIr. WA 4qfso Pr, IL _ : i 1 n I� Project: J 46MI � Vii _ No: )028 , 23 Page: l McClendon Scope: 5T�L_Welr Date: 6 2 Checked by: Engineering Inc Item: By:&L t Psi PTL- ;- 1750# S min -5PA-tA W.C. j8C a; µ� Yvt = � 58 # (4,, 7 � . d WRLr.- 1. IL F lq�5F �SIZ� = y��Lr ws�- 2 s�1 (s/z) -3 pLF 46 F7,16 C�(+ Mc D 2 rroject: rA No:—O?-Rt?,3 rage: McClendon Scope: 6MIkC•r Oa Eat,4 Date: Z3 Checked by: Engineering Inc Item: By:-5►n j -00 .. = 17tl►o 7 �• M--_!_�.._. I W M IT' -/7-40 A (0 uX- xlZ i fr., lid ME 0 (3 u7 U) Q to [li u) c0 d d O O p o Clo o m ' D o ca n a m o o p o o p a a O) o 0 o 0 rn 0 rn 0 O O O O u w i n m h G) r O M1 G) tO m N O W V t7 V irk M m to (n m (h m M mn W d m M v mj) V m c=1 W 0 6 0 0 o 0 o -v Q .N O OT 7 W n O n M 4 O n O Q n [p d ap V m Q O o N sy N N rnc) N m M O O o7 O o o O N� o0 M Q p p Q W O O W N MI�t O C N N G CA W M1 cP M M1 h CO h M1 O mn M 1-7 W W n m p o o d cV cV N N N N N N m m c1 c6 (� M M M x C O] N 0) mn r co (0 W G7 O r r N co (l) (f] _ Q W N m N N M N N m r LO u� N c, x d Q tp ixS T W N co V N W 0 h N mD M1 (7 Q N J Cn n mfi O O') M1 m Lo Ww O O 4') c9 0 O d N N G 4 n r p O h d m h m M _J > A m h o co h rnI� 'C O m Q O co M Y N 7 n c4. N Q N C M1 N N 1+ N L) � Q 0 a W m u7 mT O �- rn co M1 (t Y O O co (n S (0 NV; N o Q U Q .r co d c) 4+7 m r( y CO h o O Q (0 mn (0 m O U O m o Q Y v (D co ct u) co of LD r rn v (D fh r c LO v v LO �? m OO Lo m O (o N M O w m0 m O c0 N) o M1 o m m t- o m co n o m r o m a N CD h o co Q cd p co O M1 p W p m O m d h 0 W 0 W Ci W L7 m+ O W O W O o0 Qj C C O Q O F C0 N (0 m M r iD C o6 47 u �C N W Ii O) m (0 tf 7 o7 o M h O N W n m cq (D Q o0 W Q O h N U' 10 N Q p 0 0 p 0 O O. 111 � o C� Cn U CQ h co CO h m CO d mSJ n co (o h (t7 h M p3 N y rT d N h Cs O m O N n mT mn M E W .fl W 9 h m 0 Ch M1 p O h m 0 0 o'i (n m q 9) Q d =' NM� ul ° Q W 0 cA Yn a Lo to c > .C: G W c> o un 0 o d k� 0 p o o z 0 O d n mn W O Q 'q QJ mn M1 a U v o o o 0 o o a a o 0 0 0 0 0 0 L o co iq i� m= Z Z o p o 0 0 0 0 0 0 0 0 0 0 0 0 0 Z (A x U7 U, LL 0 ~ U) Z LU m M m OV (�1 N (0 Q m N (D V m N (0 d' c) N C? p p p p 0 0 0ll� (f) lr� u[ 4 0 0 0 m c) n n m 7 V 7 Q N N N N m m M m X C X X x x x x X x X X X x x X X x Q 4 0 0 0 0 0 n o p O 0 O 0 0 0 d m W M1 h ti r n h f� W W m c0 of co W m E Z (0 U 7 U M U N_ U U U U U U r U U U U U U Ip 4 0 X 0 x 4 c i x 4 cri x 0 Q x 0 0 0 0 u] (n `i mn O O O O ('7 U 4 4 0 0 00 x x X O X o x p 0 x 0 x 0 x 0 x 0 x 0 x v M1 h n n n n h m: o� m m m ar �o ao 0 (3 Fr Ib. ! 1b , O, aql� 3 ov t ge- x x t(ep GA CELtT i� T-- - :9 es e.F i 7d q- FT-- lb o�i��G X x I - GA- #LAT W { Mcy Project: T -A fto � ��Y2iLk No: �C��`t , Page: McClendon Scope: .��'{�C'r T� �.0 1&sA bate: Checked by: Engineering Inc Item: By:�j W1 Fr Ib. ! 1b , O, aql� 3 ov t ge- x x t(ep GA CELtT i� T-- - :9 es e.F i 7d q- FT-- lb o�i��G X x I - GA- #LAT W { r` 0 O N6 m (o M N O ab [6 In V r n n co T U) m m v w m m m c7 v h 1~ h h Q O th rn Cn O O C, Cq tr IM '� P Q O O O O O O p o d 0 0 0 0 0 CA O W O - CJ C7 N to « IU (O CJ j �C CY N LTi N Y7 Cn m C^7 m d l7 Q O PS t7 M O 7 4 rt] 7 m a o 0 0 o a o 0 0 o a o 0 ri o 0 Q i Wf 0 o M co m v rn o O m V m --r r c (h 1� c� +f v, X)n (n r7 rn c'> (o (D h m rn n rn W 0 N w N o ra N h c0 w m ❑ 0 0 ❑ 0 O 0 p q O 0 O O X W- co m n v0 too rn a3 tD (D Q �+ 'nlf7 [O (A (D rD o O W O RJ C•Y c+'] th Y N N N N N N 2 X o .� 91 N OD Q2 [rl O f31 m i US N to h T co 'v r N Uj c u'i sD cp t- M rn M h co M ao n o (�7 c , O rn r p� ao v r7 co 0 P� () O o 0 C7 0 O nj LO Q LO " to C 't , n rn c x ('1 h O m Q Q h 7 O G n} rn m cV to m N td d lD to tr. (D 61 N r N n N m M d M It sO co co N h r0 N O> O O1 O Lo �. � 9 O O COTJ W O O co oW Q R W SD u7 try O n O ❑ Y. U � 0 3C Iz O ❑ i r co h It (o n W N N Q O Y (D C) co O Q m 0 c0 7 r h to N r •r m n (D n m LO to sr h m v N CS C m o o � : .- (V (V ri r N tV m (V C9 C7 7 CV O Gr5 O C7 Q a r L'] m M O LID L•7 (D [ (n v y v n os o w rn m o m h r� o (� rn M o w to 00 4. v n h O CO M aO m W i� t` O W rl m 00 9 3+ f� q W tri W c- m h O C'7 m E N C O o g O o o o 0 o q 0 0 h 0 W O W O W C V G O � O - r U C E Cn CDcNo ID n th O f0 m (Q 47 M _�y `h° rn m n rn (P d m v Q v (O a cry .t 0 h a m Q _ Q o c 0 0 0 0 0 o r-! a o o 0 3 O C rn r- W of m W 6'i IN o N E y as a m a n N .- u� rn O rr n ao et n O w O - O M m m 7 `6 1t? V O N n O w _ �- N N r7 N N �'Y N N c'1 m N ni In V 0 o O O 0. O` Z nj N to /i c ftl r/} 0. N o_ 0)o n to rn o us to CD rn cn n us (n llJ O -p u7 h s C Lo O O 0 0 O co 0 a N O 0 p O 0 0 M 0 0 0 0 0 0 Q 0 L? o O❑ 0 0 0 0 0 Z u} x V7 li U- 0 ~ cn R (D d M r T x O O O O LD to [n h J+ rn lq Lq (n h 4? cc N N N N N N N N" N N N CY Cl! N N x c x x x X x x x x x x x x x x x x ❑ 0 a a o 0 0 o a 0 0 0 0 0 Q Q d f i V' V Q v 7 < V v vi ui (7) (ri CO O SO co I E <7 q Z U U U U0 U U C 6 N x 6 x O N Om N C[ (ll N NN cV N N N N N o x O x p x O X Q x O x 0 0 x 0 x d 0 x t7 x 0 x q c 4 R d Lo rn to tp q r` 0 O W(;t.L, ,OT - Za,2pzr,s' p 7~�y Grs Samos 41=0`� lay Fc SSS �G x Z114- x &rvOt C ra C. wC)AV, �Y Gs3c.a�a� = SpSr r,,r; �:r�tcxs. � )E Projecf:.JrP�;ry2(�-- _ - Y._. Na: Page: 16 CCeIIC$OF1 Scope:��.�_GIC�rly pate: Checked by: Engineering Inc ]tem:_ ! j I X f= = ��i )•� -7Z r1 �} W(;t.L, ,OT - Za,2pzr,s' p 7~�y Grs Samos 41=0`� lay Fc SSS �G x Z114- x &rvOt C ra C. wC)AV, �Y Gs3c.a�a� = SpSr r,,r; �:r�tcxs. Project: �! y._%�'�i"i0Y1'll�'Lj4 Mo:_ %C� page:__.__ ir�GC@nG4n ❑ate:.s Checkedby: Engineering Inc Item: By:�___ yAtL- 16 G f �o (A Cis, v 1,Aw- �� zoo Loop ct%c #2 )JON) Project; AROMOr TQ -244A tela_ `Z Fage:.A— McClendon Scope:, G bate: Z 3 � Checked by: �.. Eng ,�eeMig h c item: By: . nLi S7 -t.'65 S -0 "O<., .fir j r' 1 75pc F c��'�� t 1(3K:� mn = '5 K *"� �a = /,&7 Nin Ftzc�,t lal�t Key = �� PA fes, 1. c -�Z \\ 1& " 4 p, 57 " ,.o -.s 0 0 0 O LL 0 J m z Q J IL Z 04 z D J Oa LL U) Iq C �.No: JAZ�, z3 page., so rra�ect: McClendon 111P" , 6TV2uzr 'fl+ s'1'ht4 bate: 5145 Checked by: Engineering Inc Item. -- gY f sit mac, y'`[3C� lqq " 4 E j 4/ ! I,�, c�.�a. t l��r�s . 7-4 rz�rz Project- -rA t+om Page. '211 McClendon Scope: -.!��J&JdqC .-VLWOf.N Date: Checked by: Engineering Inc Item- By: �Q,��} D+�'1-t dam] 4�s�S � [.! ,.,.> .. _. .F._.... _._.._._ .... A U— S. L ............ 77-1 o P 777; 0; 2& t- t,\,:4(L. 7 .......... C-F� C- 0c3r- L L4 I-J, Ar ref Project;,-1Aftm &—:[kLgA N0' page: I McClendon Date- Checked by: Engineering Inc Item: By, - IPLP- S'p 4LF -Soo # 6 Sr- F -n. L + Iq OTL. 1-5Z 3 -7 u MOendon Engineering, Inc. MM E 1412 VV. Idaho Street, Suite 240 Boise, Idaho 83702 (208)342.2919 McClendon Eng;needrid Inc Beam on Elastic FoUridatioln Seam CODE REFERENCES Project Title: TA ftm Or, 'T 6-VLAA- Engineer: Protect ID: ,I Z ; -$ Project Descr: ftocmtomta Calculations per ACI 318-14- IBC 2012, Load Combinations Used : ASCE 7-16 Material Properties fc 112Z50 " ksi Phi Values Flexure: 0-90 fr = Pc 7.50 - 375.0 psi Shear: 0.750 ttr Density - 140.0 pct P1 - 0.850 X Lt Wt Factor = 1.0 Elastic Modulus = 3,122.Oksi Soil Subgrade Modulus = 250.0 psi /(inch deflection) Load Combination ASCE 7-10 fy - Main Rebar = 60.0 ksi Fy - Stirrups = 40.0 ksi E - Main Rebar = 29,0170.0 ksi E - Stirrups = 29,000.0 ksi Stirrup Bar Size # _ # 3 Number of Resisting Legs Per Stirrup 1.0 BQam io surpqrteJ 2p an awd:10.19.1.30 . :d3 C3(3.36i S{0.51+1) 0(3.351 5{0.5G7) d(d-61% %{t3.284) #T4t.sa15(0.,2Q4j c>a9.3s,, {Q.9s7y . ,,. Crory Section & Reia(o ting Niki Rectangular Section, Width = 12.0 in, Height= 24.0 in Span #1 Reinforcing.... 245 at 3.0 in from Bottom, from 0.0 to 48.0 it in this span Applied Loads _ Service loads entered. Load Factors will be applied for calculations. Load for Span Number 1 Uniform Load, D =1.680, S = 0.2840 klft, Extent = 0.0 -->> 0.6670 ft, Tributary Wfdth =1.0 ft Uniform Load: D = 3.361, S = 0.5670 klft, Edent =11.333 -->> 12.667 ft, Tributary Width =1.0 h Uniform Load : D = 3.361, S = 0.5670 klff, Extent = 23.333 -» 24.667 ft, Tributary Width =1.0 ft Uniform Load: D = 3.361, S = 0.5670 klft, Extent = 35.333 -» 36.667 ft, Tributary Width =1.0 ft Uniform Load; D = 1.680, S = 0.2840 klft, Extent = 47.333 -» 48.0 fi, Tributary Width =1.0 ft Section used for this span Mu: Applied Mn ` Phi: Allowable Load Combination Location of maximum on span Span # where maximum occurs maximum Soil Pressure = Alfawable Soil Pressure = Bear Stirrup Requiremonta Typical Suction 3.369 k -ft 6.335 k -ft +1.20D+0. 50 L+1.605+1.60 H 4.518 h Span # 1 0.468 ksf 1.50 ksf Max Downward L+Lr+S Deflection Max Upward L+Lr+S Deflection Max Downward Total Deflection Max Upward Total Deflection at 24.00 ft LdComb: +D+S+H OK Entire Beam Span Length: Vu < PhiVcl2, Req'd Vs = Not Reqd, use stirrups spaced at 4.000 in Myimum Forces A Stresses f0t load Combirirtkn Load Combination Location (R) Bending Stress Results (k -ft) Segment Length Span # in Span Mu : Max Phi`Mnx Stress Ratio MNGmum Bending Envelope Span # 1 1 47.435 -0.34 6.33 0.05 0.000 in 0.000 in 0,013 in 0.000 in -n McClendon Engineering, Inc. M C 1412 W. Idaho Street, Suite 240 Boise, Idaho 83702 (208)342.2919 McClendon Engineeririg Inc Beam on Elastic Foundation DESCRIPTION: Gude Beam Project Title: T-&�to yvL,h TV -.-04 A Engineer: Project ID: f Project Descr. File= M.)!!McE ProjeM%2ota Pri)jectsl1074.18 Buckley Storage SadW.vvCaOf WFNERGALC.INC.I Load Combination Location (R) Bending Stress Results (k -ft) 'd' Vu Segment Length Span # in Span MU: Max Phi'Mnx Stress Raba Phi Vs Spacing (in) +1,400+1.60H Number (R) (in) Actual Design [k-0) Span # 1 1 47,435 -0-32 6.33 0.05 Suggest A10D+1.60S+0.50W+i.60H +1.2 0 D +0, 50 Lr+t .60 L+1.60H 0.00 21,00 0.10 0.10 0.00 1.00 Span # 1 1 47.435 -0.28 5.33 0.04 +1.20D+1.60S+0.50W+160H 1 +1.20D+1.60L+0.50S+1.60H 21.00 -1.10 1.10 0.34 1.00 19.12 Span # 1 1 41.435 -0.30 6.33 0.05 1 1.13 +1.20D+t.60Lr+0.50L+1.60H -1.16 1 16 1.09 1.00 19.12 Vu < Phil/c12 Span # 1 f 47.435 -0.28 6.33 0.04 1.69 21.00 +1.20D+1.60Lr+0.50W+1.60H 0.97 1.75 1.00 19.12 Vu < PhiVd2 Not Reqd Span # 1 1 47.435 -028 6.33 0.04 21.00 -0.77 +1.200+0.50L+1,605+1.60H 2.30 9.00 19.12 Vu<PhUd2 Not Reqd 0,00 Span 1 1 47.435 -0.34 6.33 O.C5 -0.58 0.58 +1200+1.60S+0.50W+1.60H 1.00 19.12 Vu <PhVd2 Not Reqd 0.09 0.co Span # 1 1 47,435 -0.34 5.33 0.05 0.38 3.06 +1.20D+0.50Lr+0.50L+W+1.60H 19.12 Vu <PhUd2 Not Reqd 0.00 0.00 +1.201)+-f.60S+0.50W+1.60H Span # 1 1 47.435 -0.28 6.33 0.04 3.27 1.00 +120D+0.50L+0,50S+VV+1,60H Vu <PhYd2 Nat Reqd 0.00 0.00 +i 29D+1.60S+0.50V1A.60H 1 Span 41 1 47.435 -0.30 6.33 0.05 0.22 18-21 +1.20D+0.50L+0.20S+E+1.60H Not Reqd 0,00 0.00 +1,20D+1.60S+0.50W+1.601-1 1 5.08 Span # 1 1 47.435 .028 6.33 0.04 19.12 Vu <PhiVcl2 +0.90{3+W+C WH 0,00 0.00 Span # 1 1 47.435 -0.21 6.33 0.03 +0.900+E+0.90H Span # 1 1 47435 -0.21 6.33 0.03 Overall Maximum Defieetions - Unfactoted Loads Load Combination Span Max. ',' Dell Location in Span Load Combination Max. '+ Dell Location in Span Span 1 1 0.0130 24.000 0.0000 0.060 Maximum Defiedions for Load Combinations • Unfactvred Loads Load Combinatod Span Max. Downward Deb Location in Span Max. Upward Do] Location in Span +1)+H 1 0.0111 24,000 0.0000 0.000 +D+L+H 1 0.0111 24.000 0.0000 0.000 +D+Lr+H 1 0.0111 24.000 0.0000 0.000 +D+S+H 1 0.0130 24.000 6.0000 0.000 +D+0,750Lr+D 750L+H 1 0.0111 24.000 O.000O 0.000 +D+0.750L+0.7505+H 1 0.0125 24.000 0.0000 0.000 +D+0.60WIf 1 0.0111 24.000 0.0000 0.000 +D+0.70E+H 1 0,011f 24.000 0.0000 0.000 +D+0.75OLr+0.750L+0.450W+H 1 0,0111 24.OK 0.0000 0.000 +D+0.750L+0.750S+0.450W4i 1 0,0125 24,000 0.0000 0.000 +D+0.750L+0.75CS+0.5250E+H 1 0.0125 24.000 0.0000 0.000 +0.6013+0.6OW+0.60H 1 0.0067 24.000 0.0000 0.000 +0.600+030E40.60H 1 0.0067 24.000 0.0000 0.000 DOnly 1 U111 24.000 0.0000 0.000 Lr Only 1 0.0000 0.000 0.0000 0.000 L Only 1 0-0000 0.000 0.0000 0.000 5 Only 1 0.0019 24.000 0.0000 0.000 WOnly 1 0.0000 0,000 0.0000 O.00O E only 1 GA00 0.900 a.9000 0.000 H Only 1 0.0000 0, DOC 01000 9.No Detailed Shear information Span Distance 'd' Vu (k) MU d+Vu1Mu Phi*VC Comment Phi Vs Spacing (in) Lead Combination Number (R) (in) Actual Design [k-0) (k) (k) Req'd Suggest A10D+1.60S+0.50W+i.60H 1 0.00 21,00 0.10 0.10 0.00 1.00 19.12 Vu <PhUcl2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+160H 1 0.56 21.00 -1.10 1.10 0.34 1.00 19.12 Vu<Phi~Ic12 Not Reqd 0.00 0.00 +1.20D+1.60S+0,50W+1.60H 1 1.13 21.00 -1.16 1 16 1.09 1.00 19.12 Vu < Phil/c12 Not Reqd 0.00 0-00 +1.200+1.60S450W+1.60H 1 1.69 21.00 -0.97 0.97 1.75 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.2CD+1.60S+0.50W+1.80H 1 2.26 21.00 -0.77 0.77 2.30 9.00 19.12 Vu<PhUd2 Not Reqd 0,00 0,00 +1.200+1.60S+0.50W+1.60H 1 2.82 21.00 -0.58 0.58 2.73 1.00 19.12 Vu <PhVd2 Not Reqd 0.09 0.co +1.20D+1.60S+0.50W+1.60H 1 3.39 21.00 -0.38 0.38 3.06 €.00 19.12 Vu <PhUd2 Not Reqd 0.00 0.00 +1.201)+-f.60S+0.50W+1.60H 1 3.95 21.00 -0.17 0.17 3.27 1.00 19.12 Vu <PhYd2 Nat Reqd 0.00 0.00 +i 29D+1.60S+0.50V1A.60H 1 4.52 21.00 0.03 0.03 3.37 0.22 18-21 Vu <PhVc12 Not Reqd 0,00 0.00 +1,20D+1.60S+0.50W+1.601-1 1 5.08 21,00 0.24 0.24 3.35 1.00 19.12 Vu <PhiVcl2 Not Reqd 0,00 0.00 Z-5 McClendon Engineering, Inc. Project Title: -rA 1+bv1A T& l�E 1412 W. Idaho Street, Suite 240 Engineer: M 9oise, Idaho 83702 project pescOL8.75 McClendon (208) 342-2919 Engineering Inc Beam on Elastic Foundation File=h4UIWEProjeclsVY018Projeds11C74.t6BuckleySlaragaBuiidings',CalcsVomng,ecoME[. = Bch -we owrtbl ENERCAM INC. 1983.2019. Butd:10.191.30 . , DESCRIPTION: Grade Beam Detailed Shear Information Span Distance 'd' Vu )k) Mu d VA1u Phi`Ve Comment Spacing (in) Load Combination dumber (ft) (in) Actual Design (k -ft) (k) (k) (k) Req'd Suggest +1.20D+1.6OS40.50W+1.60H 1 5.65 21.00 0.46 0.46 321 1.00 19-12 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.200+1.60S+0.50W+1.601`1 1 6.21 2).00 0.68 0.68 2.96 1.00 19.12 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.2OD+1.80S+0.5OW+1.60H 1 6.78 21.00 0.91 0.91 2.57 1.00 19.12 Vu<PhiVc12 NotRegd 0.00 0,00 +1.20D+1.60S+0.50W+1.60H 1 7.34 21.00 2.15 1.15 2.06 1.00 19.12 Vu < PhiVr12 Not Reqd 0.00 0.00 +1.20D+1.60S4O.50W+1.60H 1 7.91 21.00 1.39 1.39 1.41 1.00 19.12 Vu < PhiVd2 Not Ragd 0.00 0.00 +1.200+i.6CSA.5OW+1.60H 1 8.47 21.00 1.65 1.65 0.63 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1-20D41.60S+OEOW+1.60H 1 904 21.00 1.91 1.91 0.30 1.00 19,12 Vu<PhiVd2 Not Reqd 0.00 0.00 +1,200+1.6OS40.501N+1.60H 1 9.60 21.00 2.18 2.18 1.38 1.00 19.12 Vu <PhiVC12 NotRegd 0.00 0.00 +120D+1,60S+0.56W+1.G0H 1 10.15 21.00 2.46 2.46 2.61 1.00 19.12 Vu <PhjVd2 Not Reqd 0.00 0.00 +1,20D+1.60S+O.50W460H 1 10.73 21.00 2.75 2.75 4.00 1.00 19.12 Vu<PhiVd2 Not Reqd 0.00 0-00 +1.20D+1.60S+0.5OV1+1.60H 1 11.29 21.00 3.04 3.04 5.55 1.00 19.12 Vu , PhiVd2 Not Reqd 0.00 0.00 +1200+1.605+0.50Nl+1.60H 1 11.86 21.00 0.74 0.74 6.59 1.00 19.12 Vu , PhiVd2 Not Reqd 0,00 0.00 +1.200+1.60S+0.50W+1.60H 1 12.42 21.00 -1.74 1.74 6.22 UO 1912, Vu<PhVd2 Not Reqd 0.00 0.00 +1.200+1.60S+0.56W+1.601-1 1 12.99 21.00 -2.64 2.64 4.70 1.00 19.12 Vu < PhVd2 Not Reqd 0.00 0.00 +1 20D+1.6OS+0.50W+1.5OH 1 13.55 21,00 -2.33 2.33 3.21 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 14.12 21.00 -2.03 2.03 1.89 1,00 19.12 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S40.50W+1.60H 1 14.68 21.00 -1.72 1.72 0.75 1.00 19.12 Vu e PN"Vd2 Not Reqd 0.00 0.00 +1.20DA60540.50W+1.60H 1 15.25 21.00 -1.42 1.42 0.23 1.00 19.12 Vu<PhiVd2 Not Reqd 0-00 0.00 +1.200+1.64S+O,50W.F1.60H 1 15.81 21.00 -1.12 1.12 1.03 1,00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0,50rN+1-60H 1 16.38 21.00 -0.81 0.81 1.66 1.00 19.12 Vu<PhiVd2 Nat Reqd 0.00 0.00 +1.20D+1.60S+0.SOW+I. SOH 1 16.94 21.00 -0.51 0.51 2,12 MCI 19.12 Vu<PhiVd2 Not Reqd 0.00 0.00 +120D+1.6OS+0.50W+1.60H 1 17.51 21.00 -0.21 0.21 2.41 1.00 19.12 Vu < PhiVd2 Net Reqd 0.00 0.00 +1.20D+1.66S40.50W+1.60H 1 18.07 2UO 0.10 0.10 2.53 0,91 19.01 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.66S+0.50W+1.60H 1 18,64 21 AO 0.40 0.40 2.47 1.00 19.12 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.20+7+1.605+O.50W+1.60H 1 19.20 21.00 0.71 0.71 2.24 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.200+1,60S+G.5GW+1.60H 1 19.76 21.00 1.02 1.02 1.84 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0,00 +1.200+1.608+0.5OW+1.5OH 1 20.33 21.00 1.34 1,34 1.27 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 20.89 21.00 1.65 1.65 0.51 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S40.5OW+1.60H 1 21.46 21.00 1.98 1.98 0.42 1.00 19.12 Vu <PhVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 22.02 21.00 2.30 2.30 1.54 1,00 19.12 Vu <PhiVd2 Nat Reqd 0.00 OR +1.200+1,64SQ 50W+1.60H 1 22.59 21.00 2.63 2.63 2.84 1.00 19.12 Vu < PhiVd2 Nat Reqd 0.00 0-00 +1.20D+1.60S+0,5QW+1.64H 1 23.15 21.00 2.96 2.96 4.32 t.00 19,12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 23-72 21.00 1.39 1.39 5.63 1.00 19.12 Vu <PhiVc12 Not Reqd 0.00 0.00 +1.20D+1,60S+0.50W+1.60H 1 24.28 21.00 -1.06 1.06 5.63 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.80S+0.5OW+1.60H 1 24.85 21.00 -2.63 2.63 4,32 1.00 19.12 Vu <PhUc12 Nat Reqd 0.00 0.00 +1.20D+1.60S+MOW+1.6OH 1 25.41 2100 -2.30 2.30 2.84 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S-O 50W+1.60H 1 25.98 21,00 -1.98 1.98 1.54 1.00 19.12 Vu < PhlVd2 Not Reqd 0.00 0.00 +1200+1.60S+0.5CW+1.64H 1 26.54 21.00 -1.65 1.65 0.42 1.00 19.12 Vu <PhiVrl2 Not Reqd 0.00 0.00 +1.20D+1.6OS+0.50W+1.60H 1 27.11 21.00 -1,34 1,34 0.51 1,00 19.12 Vu <PhiVd2 NotReqd 0,00 0.00 +1.20D+1.6OS+O.50W+1.60H 1 27.67 21.00 -1.02 1.02 1.27 1.00 19.12 Vu <PhiVd2 Not Reqd 0 00 0.00 +1.20D+1.60S+0.5OW+1.60H 1 28,24 21.00 -0.71 0.71 1.84 1.00 19,12 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.6OH 1 28.80 21,00 -0.40 0.40 2.24 1-00 19.12 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.200+1.605+0.50W+1.60H 1 29.36 21.00 -0.10 0.10 2.47 0.93 19.04 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 29.93 21.00 0,21 0.21 2.53 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0,00 +1.200+t.60S+0'50W+1.50H 1 30.49 21.00 0.51 0,51 2.41 1.00 1912, Vu<PhiVd2 Not Reqd 0.00 CIA +1.2CD+1.60S+0.5OW+1.60H 1 31.06 21.00 0-81 0.81 2.12 1.00 19.12 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.S0S+0,5OW+1.6OH 1 31.62 21.00 1.12 1.12 1.66 1.00 19.12 Vu e PhiVd2 Not Reqd 0-00 0.00 +1.20D+1.60S40.50W+1.64H 1 32.19 21,00 1.42 1.42 1.03 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+160S+0.56W+1.60H 1 32.75 21.00 1.72 1.72 0.23 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1,20D+1.6OS+0.56W+1.6OH 1 33.32 21.00 2.03 2.03 0.75 1.CO 19.12 Vu<PhiVd2 Not Reqd 0.00 0.00 A.2CD+1.60S+0.50W+1.60H 1 33.88 21.00 2.33 2.33 1.89 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.2CD+1.60S+0.50W+t.60H 1 34.45 21.00 2.64 2.54 3.21 1.00 1912, Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 35.01 21.00 2.95 2.95 4.70 1.00 1912, Vu <Phivd2 Not Reqd 0.00 0.00 +1.20D+1.60S+4.50W+1-60H 1 35,58 21.00 2.05 2.05 8.22 1.00 19.12 Vu <PhiVd2 No(Reqd 0.00 0-00 92 McClendon Engineering, Inc. mE 1412 W. Idaho Street, Suite 240 Boise, Idaho 83702 {208) 342.2919 McCienaon Engineering Inc Beam on Elastic Foundation DESCRIPTION: Grade Beam Detailed Shear Information Project Title: TA HOMA T -oz -a4 Engineer: Project ID: }per. 23 Project Descr. LNC. 19812019, BulflO 19.1.30 . Span Distance V Vu (k) Mu d'VulMu Phi'Vc Comment PAWS Spacing (in) Load Combination Number (ft) (in) Actual Design (k -ft) (k) {k) Reqd Suggest +1.200+1.60S+0 50W+1.60H 1 36.14 21.00 -0.44 0.44 6.59 1.00 19.12 Vu < PhiVcl2 Not Reqd 0.00 0,00 +120D+1.50S+0.50W+1.60H 1 3631 21.00 -2.75 2.75 6.55 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.40 +120D+1.60S+0.50W+1.60H 1 3727 21.00 -2.46 2.46 4.00 1.00 19.12 Vu < PhiVd2 Not Reqd 0 06 0.00 +126D+1.60S+0.50VV+1.60H 1 37,84 21.00 -2.18 2.18 2.61 UO 19,12 Vu < PhVd2 Not Reqd 0.00 0.00 +1-20D+1.60S+0.50W+1.60H 1 38.40 21.06 -1.91 1.91 1.38 1.00 19-12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.5%V+1.60H 1 38.96 21-00 -1.65 1.65 0.30 1.00 19.12 Vu < Ph WO Not Reqd 0.00 0.00 +1.20D+1.608+0.50'N+1.60H 1 39.53 21.00 -1.39 1.39 0.63 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.200+1.60S+0.50VV+1.60H 1 40.09 21.00 -1.55 1.15 1.41 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.200+1,605+0.50W+1.60H 1 40-66 21.00 -0.91 0-91 2.06 1.00 t9.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.200+1.60S+0.50W+1.60H 1 41.22 21.00 -0.68 0.68 2.57 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1,200+1.60S+0.50W+1.601-1 1 41.79 21-00 -0.46 0.46 2.96 1.00 f9.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1,20D+1.60S+0.501N+1.60H 1 42.35 21.00 -0.24 0,24 3.21 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1200+1.60S+0.50W+1-60H 1 42.92 21.00 -0.03 0.03 3.35 0.22 18.21 Vu < PhiVd2 Not Reqd 0,00 0.00 +120D+1.60S+0.56W+1.60H 1 43.48 21,00 0.17 0-17 3.37 1.OD 19.12 Vu<PhiVcf2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.601-1 1 44.05 21.00 0.38 0.38 3.27 1.00 19.12 Vu < PhiVd2 Hot Reqd 0.00 0.00 +1.240+1.60S+0.501N+1.601-1 1 44,61 21.00 0.58 0.58 3.66 1.00 19.12 Vu < PhiVc12 Mol Reqd 0.00 0.00 +1.100+1.60S+0.50W+1.60H 1 45.18 21.00 0.77 0.77 2.73 100 19,12 Vu<PhiVtl2 Not Reqd 0.00 0.00 +1.200+1.60S+O.50W+1.60H 1 45.74 21.00 0.97 0.97 2.30 1.00 19.12 Vu<PhiVc12 Not Reqd 0.00 0-00 +120D+1.6084.50V1+1.60H 1 46.31 21.00 116 1.16 1.75 1.00 19.12 Vu<PhiVd2 Not Reqd 0.00 0.00 +1,200+1.60S+0.50V1+1.601-1 t 46.$7 21.00 1,36 1.36 1.09 1.00 19.12 Vu<PhVd2 Mot Reqd 0.00 0.00 +L29D+1.605�.50W+f.60H 1 47.44 21.00 1.30 1.30 0.34 1.00 19,12 Vu <PhiVc12 Not Reqd 0.00 0.00 md . d) McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLANK Md D Project:-TA RtM4---7Z99A No: --/0ZS,ZS Page: -Z--7 McClendon Scope: Date: Z3 Checked by: Engineering Inc Item: By: LA- Ripa.ysf YK iX3� IN iEF 7 ef Col. Paz - 1) C7- cp . -01145 a) Kv A-k O)ja, Cox iry v Z I*F F6F v 6122/23, 3:46 AM U.S. Seismic Design Maps TQ i GL�ORMA Tahoma Terra Yelm, WA, USA Latitude, Longitude: 46.9420431, -122.6059582 1 st Street Nail Ba Ma and Pa's Family Diner ��ss Yelm-Tenino Trail OSH PD https://www.seismicmaps.org Map data 02023 113 The Shipiap Shop Tahoma Valley T & Coffee House Golf Course 507 South Puget Sound Habitat for... a Google Date 612212023, 3:47:15 AM Design Code Reference Document ASCE7.16 Risk Category II Site Class D - Default (See Section 11.4.3) Type Value Description SS 1.288 MCER ground motion. (for 0.2 second period) S1 0.465 MCER ground motion. (for 1.0s period) SMS 1.545 Site -modified spectral acceleration value SM1 null -See Section 11.4.8 Site -modified spectral acceleration value SDS 1.03 Numeric seismic design value at 0.2 second SA SD1 null -See Section 11.4.8 Numeric seismic design value at 1.0 second SA Type Value Description SDC null -See Section 11 A.8 Seismic design category Fa 1.2 Site amplification factor at 0.2 second Fv null -See Section 11.4.8 Site amplification factor at 1.0 second PGA 0.509 MCER peak ground acceleration FPGA 1.2 Site amplification factor at PGA PGAM 0.611 Site modified peak ground acceleration TL 16 Long -period transition period in seconds SsRT 1.288 Probabilistic risk -targeted ground motion. (0.2 second) SsUH 1.418 Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration SsD 1.5 Factored deterministic acceleration value. (0.2 second) S1RT 0.465 Probabilistic risk -targeted ground motion, (1.0 second) S1UH 0.522 Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration. S1D 0.625 Factored deterministic acceleration value. (1.0 second) PGAd 0.509 Factored deterministic acceleration value. (Peak Ground Acceleration) PGAUH 0.552 Uniform -hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration https://www.seismicmaps.org Map data 02023 113 6122123, 3:46 AM U.S. Seismic Design Maps 219 Type Value Description CRS 0.908 Mapped value of the risk coefficient at short periods CR1 0.891 Mapped value of the risk coefficient at a period of 1 s Cv 1.358 Vertical coefficient https://www.seismicmaps.org 2/3 Mc Project: A H-omA, No:__jr2� — Page: 30 McClendon scope: " T � N Date: Z Checked by: Engineering Inc Item: By: Ari C 1.03; sc j2 4 i*0F - /0P$F IPA C C- i Tdrfft�GWOU43 BOTH JD�kmnat4s Vi PL-F)i i � I � j � (F�— - (�Y-- — O N CI n I J m z Q J a_ Z a Q r LL _ LL 0 L J 0< L1_ {n 3z a-- LL O N PI T � - Project; I-%'�ilAt �I L D�MACF �'Sr No:,L C6 P Z3-7 Page:? 3 McClendon Scope._��C°-�_ _Df�(��� �_ Date:—q/Z3-- Checked by: Engineering Inc Item: By:, ��-- I 'Drrzu-c�ro� 3�'L7f 4F �L�d�•r.��� T ` 3Z7P(-F ( zo' I ,, " 3 Z,7D f+ ��tirvr • � 3- Spr�� Cora, C Project:t:�J4►-L___ Ido: lC� 2�� Z3- Page:-3-1— McClendon $cape:� [�Y�G�� _ __ Date: ��� Checked by, Engineering Inc Item: 'FL&r Sr ps Z, 17 rase Ute.~ (-,. LOAD -� 72 fafrF/ Z7S` Z.Uq< psr J GDF L=7t-- til ��o S�c►'�G��ti1C� �C� C C. Mf--A =04CL-tfro - �1'(.C�r�JC7 �t12c.r,a� � ��A'':vc• � `r't�P:..'--- 0 Project: +_i it — M1fa:.: Z3 _ Page -3s McClendon Scnpe:�-l� . Date: -5-143----C hecked by: Engineering Inc item:__ — By._:.._ _ '".5k_- ►fix s / Ty zi_ SS(Ls.: it = Zig Cm G.1►v�sn?sx� � �,Z,tl7 �vSF,L s'� ca PC F ISO tb•FT- IJ Hn � w = i0Psr 2Spjr S'� t (7S� l� FT I�u2�+;.�cxt-x Z%z x 1l�GA. = 0.3ety,;� �rLye_ AG -rt vii 7 �2, N1NXo Com s i.� �C •��. 7S(7-t.o� KJX, TRK" CrtAVr MC )E Page: 3� McClendon scope., � r �67h) pate. ,�?? - checker! by: Engineering Inc [tem: 4A, „� . ►�'�:YLi�-[ .. �'c:-S � G may, .. - � Y�-pM. 2. �l-,vt - - � - -_ . "_ .�. � ..s.,,... : s i�Zo'� 47`14' i 1� 7ZSec� �c e zr_s� L la *, ala. 1r/ - 101 Tyre , sr'r.,0,-P cJ d 7-4 'PV -O 41 D- S: -44 &W►J 4A, „� . C -� Project,f--� No:_ _ Page,- -3 McClendon Scope:_ t_- P-6754 -10 Date: _ ,,/7 4 _ Checked by: Engineering Inc Rem: By,-. -DI tt T/G - Z9 % SLC~' ~n/c m .A i?. t✓�� D12 er—TIO--5` 1 ,�. i�G, 71 e. nn i;.:! emo OK Gy Project._ t l�HOMA- IlW96- No._/OZe. Z–;-- Page:31— McClendon5cape:s -SLC c f__ �Cr�-i9� Date: �/� ? Checked by: Engineering Inc item:_.__ _ By �51•y_— — i _.._ _. ��O - p• `� sus: �e 't,fn '' bil-I 0 CM0 t b, g s b s �C , i.i p L- Hca' 0,41 IZa t.o i z 1, e) 1 KS G �r tyz_ -rot . 39 Project; No:- Page:- McClendon Date: Z Checked by: Engineering Inc Item: — Lz Sc CZE "A Ys d(Z iC';, TY,-, + z V.'a psr- 1(4 "/oz. 397# p— 04 C, Tz 1 Z'Vl? V --n.. ) -79,f. K- - -SM'VI- LIU CAAO I- WALL;/r,�, L)(c C, i, Y S. m I-egv ton N SrLAD sk�:umo"--) . — 0 0 0 0 0 0 o� 0 0 0 0 0 0 0 0 0 qo r— -----------L—, I I I I I I I � I , I I , I , � a I , I I I j 4 o I I I I i I LL � o o a I i OL] I I � I I � p Ix I I I Oo � o� I Zw I I I Z J o I I I I ° C) o I � I I I I I w.aoN a I � I I I I I I 0 L ----------k 0 0 0 qo Mc Project: l'ti p, No: IOZ!• ZS Page: I McClendon Scope: SMM-T- 6r,3 ©ate: Checked by: Engineering Inc Item: By: r�.1�FEh�2 IVIS Prtta � 4 I � Project: I A FiQMA I EYZAA No:1Oz8 • ?_3 Page: "l McClendon Scope: tkVT N Date: Checked by: Engineering Inc Item: By: Z- T3�o E - ...a_ of 5 7�6-4 X I V� - .� 7 (zo ��21/1-0 fI11C Project: �fttA4 r!� McClendon Scope: Engineering Inc Item: No: toVrl ZI Date: By:1 Page:_ Checked by: 13'x* - I *30*- -j ZZ (a0 _.. i20J l pr,�- : ! CM 5-2, � � ` CON- 16TYL,4P Mc Project: A"M4 4 TaL No:--IOPPage: H McClendon Scope: e -T- Date: 23 Checked by: Engineering Inc Item: By; I L -VO E � � ,F — c y85 /Icy` — f �}�pz� - 70r = �� 13'x* - I *30*- -j ZZ (a0 _.. i20J l pr,�- : ! CM 5-2, � � ` CON- 16TYL,4P 280 , Canriec(o!s.lor,Eold Formed Steel Construction Coiled Straps CMSTC provides countersunk fastener slots that provide a lower screw head profile. CS, CMST and CMSTC are continuous utility straps which can be cut to length on the job site. Packaged in lightweight cartons (about 40 IN. Finish: Galvanized, Some products available in ZMAXA coating; see Corrosion Information, pp. 18-21. Installation: • Use all specified fasteners; see General Notes, • Refer to the applicable code for minimum edge and end distances. • The table shows the maximum allowable loads and the screws required to obtain them. See footnote f11. Fewer screws may be used; reduce the allowable toad by the code lateral load for each fastener subtracted From each end. Codes: See p. 11 for Code Reference Key Chart 0 T CS16 Hale Pattern (all other CS straps similar) n u c czrsrCe ranw.�.��' r CMST'C16 Hole Pattern Gauge stamped on part for easy identification. SIMPL- Stronjcg=,;-Tie N Fasteners to be symmetrically placed Provide minimum 3x screvi diameter and distance per code for CS and CMST Typical C5 frlstallation as a Floor -to -Floor Tie Madel No, Total Length Connector Material Thickness mil (0.) Width (K) w scL Allowable Tension Load (ib.) Code Ref. W-4 t1P, 33 alif (2(1 qa.) 43 mil{iB ga.) 54 mfl (16 ga.) CMST14 Hole Pattern — 43 MU(18 qa.) (CMST12 similar) CMST121 n u c czrsrCe ranw.�.��' r CMST'C16 Hole Pattern Gauge stamped on part for easy identification. SIMPL- Stronjcg=,;-Tie N Fasteners to be symmetrically placed Provide minimum 3x screvi diameter and distance per code for CS and CMST Typical C5 frlstallation as a Floor -to -Floor Tie Madel No, Total Length Connector Material Thickness mil (0.) Width (K) Faste ate (Total) Allowable Tension Load (ib.) Code Ref. Rafter/5ta►d/Jn15tThickness 33 alif (2(1 qa.) 43 mil{iB ga.) 54 mfl (16 ga.) 33 mil (241 ga.) — 43 MU(18 qa.) 54 mA (16 ga) CMST121 40'-3" 97 (12) 3 (104) #10 (70) ,"t0 (40) #10 9,080 CMBT142 62'-6- 68 (1d) 3 (7g R10 {59j f€t4 i0 8 CMSTC 6 54' 54(161, 3 1 (541 #10 (3p #10 (3ol #10 C 4.600 CS14 100` 68(14) 14'r (28)#10 jujo0 (?x#10 2;3p5 C316 150' 54 (16) 1 %4 {18) #i0 (12) #10 (8) #10 1,550 IP1, L2, FL CS18S 1001 43 (18) 1'b (14) #10 (10) #10 (6) #10 1,235 CS18 200' 1'/, 114) #10 (10) #10 (S) #10 1,235 CS20 250' 33(20) 1 y4 (12) #10 (8) #10 (6) #10 945 CS22 300' 1 27 (22) 15/, (10) #10 (6) #10 (6) #10 775 These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong -Tie for details. 1. Use half of the fasteners in each member being connected to achieve the tsted loads. 2. Far CMST straps: End Length pnches) ='h total fasteners x rA' + 1" when all holes filled. Double length If only round holes filed. 3. Far CMSTC 16 straps: End Length (inches) - h total fasteners x 3S" + 1' when all holes filled. Double length if only round hales filled, 4. Far CS straps: End Length (aches) = h total fasteners + 1'. 5. Total Cut Length = End Length + Gear Span + End Length. No. of Screws Used 6. Cafculale the connector value for a reduced number of screws as follows: Allowahle Load = x Table Load Example: CMSTCI6 on 54 mil with 24 su24 Screws (Used) ews: x 4,50016- = 3.680 Ib. No. of Screws in Table 30 Screws (Table) 7. Loads are based on lesser of steel strap capacity and AfSI S 100 fastener calculation. 8. See pp. 138 through 171 for more information on Simpson Strang -Tie fasteners. L45 i MC Project !9—� Romy+ -EEO-A No: 1.028, Z3 Page:__ � iv lillCC£'1CI017 Scope:_ �J�fACr' T _ �L�fC�I __ bate:�Z Checked by: Engineering Inc item: By:— �YYi _ ---------_ FF K1u...ti� 4FL,a�S,g Gi 4 f- i-'14 �'�-up S € � r�(�.az r s �'u,.e.. Fir � � fo' o' a • , . Typ F ._------------- TI r € �- Fur_ qtr r 7.47 i 16r { } € VIZ. .101k A_ 7iy ± G XMCA-'L6 Iot X-zlI�LiL• �f'T .. E } i 1 � F TI r � � co dcD �n y o U in M a O uO M O 3) -1 LO J w h r- V co cp w m h h O W U) W Co h O 03 m W m m r, h 0 W M W co W O O d d O O d 0, o o o 0 O O O O L C f� r r O o4 N CO N M 0 <D O co n o W Q Q d] N lD V 0 O C = co T Ln o ai O Nto LO h a5 h o Cri i Q 0 d O N c d co G O Q O m isM I cn 16 c LO CO 3 Uy -vo o o c U] U Z O Q m 1 Q7 Lo Q> a) CD h mcD h u's h M p Q O oZ O> G7 U} — [j3 Cl) r- M cD m h r n7 N O h QY o ¢ a M cu vv'i r U @ 0 II SI w U, li h � fl � tG m � � M P] 0') 11 N d m m <n 0) r- I, h h N N N tl' O C}) ❑) G) 0 0 o a of o)'l'l of �l ll�of of-Nl of ol�1�Ki,Ol �l � sLn CI. (o -IQI-1�I-1-IN17-1NINl',1010101� NI Nl NI NI NI Nl Nl NI NI NI NI NI NI NI NIO Nf �IrININI�I�IIq NINI�I l�IInININ 7IM ll I WIO mI I hl UI 111 m�QlQn o W O'1 47 [D f— I'D N h 00 4O ID h O nIN��1 SIN �YlMl!f�i'too lmlvf�lrl�lT I O� '-A mIt:I�Ir E c0 7 M N CD 7 O Q (•) N c2 :e .;2 N U U U C) C3 0 C) U (.) U UU f -J CJ 0 U z d O O O Ln L' Om n l7 O O o d � U7 m O M M Mc-; c'7 m, m, m, `r, V 7 7 N N N N % X X X X X X X x X X % % x x X U d O8 O o o O O O O O O O d a O 0 <D 0 <D cQ cD CD d cp to 0 <D 40 W 7 co dcD �n n o c0 in M a O h M O 3) -1 J w h r- O co co cp w m h h O W n m W Co h O 03 m W m m r, h 0 W M W co W O O d d O O d 0, o o o Q O O O O f� (D O o4 N CO N M r <D O co n W< W d] N lD O O M m co T 7V n] O Nto h rn o Cri d O o d Q O O Ul Lo Q> a) CD h mcD h u's h M p o O> G7 [j3 Cl) r- M cD m h r n7 N O h QY 0 0 m f3 M M M [P m In d M h 0 w 7 N m V N M Q CL K JQ C,to O h o W o d O W 0 Q n O h000 T h Oo 10 u 0 x,o00 0 od eoor0 Q r Q O O Q O o 0 o 0 0 a 0 O o 0 0 o ~ ra Z m O r ti r i) r N r cD r- ti M r N r D r 7 r M r N r 27 r r M r N r 0 O O O Vf LC7 U� Lq 0 4 Q 0 4? ri] 47 Iq ,n C') M M M M m m M I V' v 7 N N N" x C_ x X x x x x X x X X X X x x x % O O O O O a o 0 0 0 0 0 0 O 0 0 cp tD cp CD c0 CD <p 0 co cD lD M r t• ti r - E c0 7 M N CD 7 O Q (•) N c2 :e .;2 N U U U C) C3 0 C) U (.) U UU f -J CJ 0 U z d O O O Ln L' Om n l7 O O o d � U7 m O M M Mc-; c'7 m, m, m, `r, V 7 7 N N N N % X X X X X X X x X X % % x x X U d O8 O o o O O O O O O O d a O 0 <D 0 <D cQ cD CD d cp to 0 <D 40 W 7 . I" ) Mc McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLANK