Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Structural Calculations - Building G
Mc McClendon Engineering Inc TAHOMA TERRA BUILDING G STORAGE Yelm, Washington FINAL STRUCTURAL CALCULATIONS June 30, 2023 Prepared for: Keimig Associates 307 D Street SE Auburn, Washington 98002 Prepared by: McClendon Engineering Inc 1412 West Idaho Street, Suite 240 Boise, ID 83702 Project No.: 1028.23 MC McClendon Engineering Inc TABLE OF CONTENTS GENERAL: Table of Contents ................................... Design Loads .......................................... Materials and References ....................... Deferred Submittals ................................ Special Inspection .................................. Project Description ................................. GRAVITY DESIGN: TAHOMA TERRA BUILDING G STORAGE YELM WASHINGTON 1028.23 Page Number .................................................................................. ........................................................................... 1 2 .................................................................................. ................................................................................. 3 3 .................................................................................. ................................................................................... 3 L4 RoofFraming............................................................... Roof Panel Purlins Lintel Design.............................................................. >($ WallDesign............................................................... Z/ FoundationDesign..........................................................-2-9 Wall Footings LATERAL DESIGN: Lateral Analysis ....... ..................................................... 34/ Wind Base Shear Seismic Base Shear Diaphragm/Chord Analysis..................................................... 75 Shear Wall Design.......................................................... X -Braced Walls Mc McClendon Engineering Inc GRAVITY DESIGN LOADS: Roof Dead Loads Roofing: - Decking: 2 psf Framing: 2 psf Insulation:. 2 psf Ceiling: - M & E Collateral:_ 3 psf Miscellaneous: I psf Y— Roof DL: 10 psf Roof Live Loads Snow Load: 25 psf Roof LL: 20 psf Floor Dead Loads Flooring: SOG Framing: M & E Collateral: X Floor Floor Live Loads Occupancy/Use: Light Storage Floor LL: 125 psf Occupancy/Use: - Floor LL: - Wall Loads Interior Stud Wall DL: 7 psf Exterior Stud Wall DL: 7 psf CMU Wall DL: 55 psf LATERAL DESIGN LOADS: Wind Loads Seismic Loads Wind: 115 mph Site Class: D - Default Exposure: C Seismic Design Category: D MWFRS: Simple Risk Category: II Diaphragm Importance Factor: 1.0 LOAD COMBINATIONS: D_esian Method Strength Design: Basic Load Combinations ❑ Allowable Stress Design: Basic Load Combinations ❑ Alternative Basic Load Combinations IR TAHOMA TERRA BUILDING G STORAGE YELM WASHINGTON 1028.23 R: 4 0: 2 p: l SDs: 1.03 SDI: - MSFRS: X Braced CFS Walls Mc McClendon Engineering #nc MATERIALS: Steel Shapes Fy W-50 ksi Plates/Angles/Channel: Fy 36 ksi Hollow Structural Shapes: Fy =--42 ksi Pipe: Fy — - Bolts: A325 Anchor Bolts: A307 REFERENCES: Soils Bearing Pressure = 1500 psf Source of Information: assumed Frost Depth — 18" DEFERRED SUBMITTALS: Steel: Steel member layout Joist/Joist Girders Layout ❑ Metal deck layout Wood: Engineered Truss Layout ❑ Cold Formed Steel: Steel member layout 29 SPECIAL INSPECTIONS: Fabricators ❑ Steel Construction N Concrete Construction ❑ Masonry- Level I N Masonry- Level 2 19 Wood Construction ❑ Soils ❑ Deep Foundations ❑ Special Cases N Seismic Resistance ❑ Other: n Wood Sawn Lumber: - G1uLam: - Eng. Product: - Light Gau2e Steel Fy: 55 ksi Codes Used 2018 IBC BUILDING G STORAGE YELM WASHINGTON Concrete f v, = 2500 psi fy — 60 ksi Masonry Gm — 1500 psi f,. — 60 ksi Software Used USGS Enercalc Concrete: Mix Design Reinforcement Layout Masonry: Mix Design Reinforcement Layout Other: ❑ 1028.23 DMC McClendon Engineering Inc PROJECT DESCRIPTION: TAHOMA TERRA BUILDING G STORAGE YELM WASHINGTON 1028.23 The Structural scope of work for this project consists of. • The design of a single story light -gauge steel framed storage building. • The gravity system for the building consists of a light gauge steel framed roof supported by steel frames, light -gauge steel framed walls. • The lateral system for the building consists of a simple diaphragm, light framed shear walls reinforced with flat strap cross bracing. o The loads are transferred from the diaphragm to the framed shear walls, to the foundation. Mc McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLAN Q 0 4 m 0 0 0 0 Q 0 0 0 U O 0 J J M J J J J !h Q J i c� Z L L� °oca ¢ J � HAON r J r J 5 � u I I I I � 2 I I I I I' I' I I I I I I I I 2 I I I I I I I C I I I I I I { { I I' i' I' I' L I' I I' I' I' I I I Qs 3 { II 1 I I I I II II I I M1 II II II I I J J M J J J J !h Q J i c� Z L L� °oca ¢ J � HAON r J r J 5 O 0 0 0 , 1 ro Cj 8 (�) a L1 LI II l II I I I I � a J g3 TF I ! I I I I I z � 2 J1 J I I I I I I z I I I I I Q� I i I I LLLL �Q O� iu OQ I I I I I I I IY y I I I I ! I I E f f E I I I I I I I I I I I J m:� II17lON �V J fT] z Q J1 J J � z Q� LLLL ao O� iu OQ IY y m:� II17lON �V Mc Project: TotffD a m No: 1dZb, Z3 Page: 7 McClendon Scope: �555Gn] Date: Z Checked by: Engineering Inc Item: By: S oar R2tM IrN($ i V-oo F� 5pAt-a : s -o" Cr AX) { E 4 n CELhOY Medallion -Lok 16 METAL i T 13¢„ i 16" COVEUGE Allowable Uniform Loads (PSF) Span'rype TOP IN COMPRESSION BOTTOM IN COMPRESSOOP GAUGE FY WEIGHT Va Pa end Pa nt Ix Se Ma !xL(in,"ft) S Ma (KSI) (PSF) kiplft. Ibslft. Ibslft. (n-1/ft {in.3lft.) kip-inJft. (in-41ft.) kip-in./ft. 24 50.0 1.30 9.7800 21$,40 351.60 0.0860 0.0561 1.6800 O.D40D 9 1.2480 1. Section properties are calculated in accordance with the 2094 AISI North American Specification for the Design of Cold -Formed Steel Structural Members. 2. Va is the allowable shear. 22 19 3. Pa is the allowable load for wen crippling on and A interar supports. 15 single 4. Ix is for deflection determinatfon. 500 497 5, Se isfcr bending. 179 124 B. Ma is the allowable bending moment. 70 55 7. All values are for one foot of panel widib- 37 31 Allowable Uniform Loads (PSF) Span'rype Load Type 1.00 f , 50 200 2.50 3.00 3.50 S 4.00 ani 4.50 i 00 et 050 coo 8 50 700 750 19 00 850 Positive Wind 500 497 280 179 124 91 70 55 44 37 31 26 22 19 17 15 single Live 500 497 280 179 124 91 70 55 44 37 31 26 22 19 1-1 15 Qeteciion{Ll18o) 500 Soo 500 481 278 175 117 82 60 45 34 27 21 17 14 12 Defleclion{LI840) 500 500 500 360 208 Of 88 51 45 33 26 29 16 13 11 9 Positive Wind 500 337 197 128 do 66 51 40 32 27 22 19 16 14 12 it 2 Span Live 500 337 197 128 go 66 5t i0 32 27 22 19 Ib S4 12 11 DeRecdon(1-1180) 500 500 500 500 491 309 207 145 106 79 51 48 38 31 25 21 beflecton{LI240} 500 500 500 500 356 232 155 109 79 59 46 36 29 23 19 16 Poslive Wind 500 407 241 158 117 82 63 50 41 34 28 24 21 16 16 14 3 spam [;c4lecttprt f1-°t8ol `_,0 500 407 5G0 241 SGO 158 5vo 1 111 3" 52 24? P.9 152 5v 11.1 41 y3 34 622 2? 46 2d 37 t1 3p 18 24 t6 20 14 18 Deftetiion{11240) 500 Soo 500 498 288 181 121 85 62 46 36 28 22 7B 15 12 posiuve Nhnd 500 385 227 148 104 77 59 47 38 31 26 22 19 17 15 13 4 Span Live 500 385 227 148 10-0 77 59 47 38 31 26 22 19 17 15 13 Defleclion (L)180) Soo 500 500 500 AM 257 172 121 88 66 51 40 32 26 21 17 6eRedion(L1240) 500 500 500 500 376 192 129 90 65 49 38 30 24 i9 1S 13 ASTM E1592 v4ind Ltprd{ Testing 69.5 61.1 52,9 49.1 45.2 1 4133 1 37.7 1 33.6 1 30.1 NO TUM DATA AVAILABLE Notes 1. Allowable uniform loads are based upon equal span lengths - 2, PnsjWe Mind is wind pressure and isNOT fncreased by 33 113 %. 3- Live is the allowable live or snow load_ 4. Deflection (L11 80) is the allowable load that limits the panel's deflection to V180 Mtge under positive or live load. 5. Deflection (1240) is the allewat; a load that limits the panel's def?ectipn to 1-1240 while under positive or live load. S. The weight of the panel hasNOT been deducted from the allowable loads. T Positive vrind and Live lead values are limited to combined shear 8 bending using Eq. 03.3.1-1 of the AISI Specification. 8. Values of ASTM El 592 Vind Uplift Testing include a factor of safety of 1.67. Shaded areas are outside of test range. Contact McElroy W(al for more information. 9- Positive Wind and Live Load values are limited by web ciippling using a bearing length of 2'. 10- Web crippling values are determined using a ralio of the uniform toadactually supported by the top Ranges of the secl[on. 11. Load Tables are Fmlted to a maximum allowable load of 500 psf. rEd �Mc T Project:_ �4i4omlk IytgA — No: Z Pager McClendon Scope: Date: S Checked by: Engineering Inc Item: By: 0OF �N I 0o F u2.�- �2 P i (� ►� tA� TZ - Z 8 Fr. 16 V l_0L C ff�. W CAK �vI5 8CND mac, �rz` A s , 2. Wm� - 10ppe�r- W I I - .i 0 V } L r f N • '� M m N n o N m m P m n m N P N ly m � m n v Os n n N o <p rn iC. d o 0 0 0 0 0 d o 0 0 �• 4 0 d o d 0 :_� > •c to o n m r o u� o N N m �n o n V Q M1 W a N m OS N n m q Na v7 N a m N 0 ~ C) H] C'1 CS Ci M CJ Nl M 0 M M 6 M I(] of u] Rl N tR h C7 m u �C P m m m C) T i� r - OJ M N n r m n m N r P M fO 0 1. N t{ r V Xm �-' N N <4 N N M T- N N m N N N1 P { x Z La g DE} m m a 6 m N M m P v+ M1 tll m m � 'O � C W (moi m m m N 41 r n N n [+x ❑ LL7 Q Y] . m u r c p u c o r 112N 12 m a n2 �ri r M v co ti ro p c —LO r r r r y C M r u C O O v `m IM J m v. Z `� N m I+ o H a n Y 6 r~ m vi n i— c •� t6 m m m m O O w m M m N m .�.+ TL V O Q T I;y m m M OI Q m M M M o vi � IN � v cp n r R d 1- Qi ui n ai N m a = a m y ci '� iC s mn m� uj LU oc< c Ma ma m 61 Cm 6� Oi 61 m Cm mq mO �-� Z 111 3 x N U. EL �c Q m �] �'i = {p m C o- M1 m N N W n -0 0 W 6- m W O7n m O 6 w (7 m 6 a N I!1 W O b O tu .� m In W �] c r of a �i of P ,r; ry vi O ri v v N o c N r m o .n n m N r m o N n o0 0 Z0 0 0 0 0 0 0 o n d o 0 0 o p o m Z a m� en N Ip P M N m v rs N w P M N IZ CD u Q �y n M m m m W m en cn r M r M n fR n CS mf ]( X X X % X % % X {- fV [V CV "i M M M M Q % X X x X X X X x x x X x x x x K o o g q o 0 o q❑ a o o q q p a m m ad ai ap m oo � ai ai o6 ro vi ai of of u 2 N �'+ N N ui N N N nt N t�. 1J O X X N X X O X O O O Y] uNa uNi vii a o g a o a a d n o g a m m m m m m m eo cd sli u+ m 6 ci a s 0 mlo Project: 2fZ No: -Zi0 R Pager McClendon Scope: kt-'rte 1 �G-,r l _ Date: Checked by: Engineering Inc Item: By: - i 00 F 16 G. -Nm G I C,puaLl, St? Po { 1 75D:# M 10.5 i q WS rb ,Z)Y(q8)(Zq- WA = yrte-, ib j w o z Project: w1IA No: Page:—i— McClendon Scope: Sr42�er ��IC-,,� Date: 2 Checked by: Engineering Inc Item: By: smq FT -L 175D 5PAPA =41 W Z1�8 �Ib dtiD� I aC x Z'I )(/(a 60k ?TL- = y3 # nrn= I�}33 4, 7' y LSC Sc x V17 x I - --� ( LCa� L� A � 1� w� 12a F �r- ;gyp 1S� X CSA i I _J Mc Project: +'' Pc No: 10zR s 23 Page: 1�J McClendon Scope: Sue'rI�►J Date: 23 Checked by: Engineering Inc Item: By: 5* F 12 175D T7+1 AD T15 . =7 C- - _a i cK 1. 17SD (S S') ZACX?000-Kral).( l.l,1 3()Z'jt �t — u r2 -x L i 7tz O I !f) 4"1 V d' LO u3 V7 u, ED to v) > CI Q O d !D ID [O O tT O Q. c,0 t. O !T Q O o O 4tu m 4 y F r O Ol O V W (/} C co a) to 0 fD V o0 n SD W N O _ M CO7 M rN- 10 (O c0 ti ]� d O o o Co, 4 r r 0 0 0 O O G Q Q .V } PC O Cs m N sb h O 7 mO M n 0 T I17 n O O O h CD rn W V 17 V rn O N cU v fh� N N N u3 M (D O m Cl rn O O O O m N In V ID C N N 4` x C rn m n Q M h n N n n m LD Q �_ M N_ n i0 m W m o o O O r- _4 N N N N N N N N M C'I C] C'J (*i Di m M X_ � Q O O� h Iri r iD In N 7 !D LON m ad N rn v1 m tD W Q) O m Lo In Ii) r � Lo d W Q� N V' o x fD . T N CO �. N 1,- M V N [D n O) h m M h 14 QN r M O N f 4� J (n la rn O n O n h rnn G Q n n '� O M m I+ Q N d n M ro n o cor 7 u7 n O c0 n c, v O M r O M Om Y N 'V' N 4 n N V n N N 7 h N U C T r Q 0 p e-' u7 O O n O cA Q (D N 47 N O(D O (q] Q J J�� m r co m O rn O r M m CR n r m ['] ca n o o O m h n � ca c"l sn h a O uD !I['l r7 o COa 0 `-' V [O a7 [p 01 �. Ii7 1- O d' (D r-- o _ Ln N LO 4: h m p rD N M O fD IA M Q <D It) M O (O Lr) O r R Q I� n O ca M m CO cn 7ti n O m (h on co cn I� t O m M m W co f, n O IR M as cc ao N V d O Ci g Q q O O O O O o Q Q Q O C C O Ca O - C7 10 C Lr) N (D 4'? c7 O SD N M N tp to M r (D O cfl C N aD n G7 m Co V It Ol W) M n cp N R rn <- �f o0 'P d N N ID v) 'D O Crn ui Q N h rn O C ii rn N n QS m Ill l'7 N Q ��,., •� N Rl O O � M n M ID N [+] V v N If7 M 0'3 V' c7 If7 Q1 o CL o z N - UJ a N C) O Ir IC Cs q C r 4 d 0 O n 7 0 4 O 7 n 0 m O 47 �C 11J O Q N !() h U 0 0 0 0 0 0 0 co 0 0 0 0 0 fp fl II Z L O O o Q O 0 0 0 0 0 0 0 Q o p p C LL LL 01LL, fu 0 1 O O C] Q O 0 0 0 LI? Lc1 ut u O O P O co c] C') m It It 7 N N N N ['S M m M X C x x x x x x X X X X x x X x X X Q " O O O O O O O O O O o 0 0 0 0 0 W f-- n h t� r-- h h n m o] oo W al co m co t7t I E Q V C1 N (D q c7 N (O "7 N rU M N I o m Z U U U U U U U U U Y (_} U U U U0 O o O p 4 O O O I[') to L7 C) d O O PX X x x x x x !( U 0 0 0 0 0 0 0 X 0 X 0 X O x O x 4 X 0 x 0 X 0 n h h n n n n h o0 a0 of m m oo m � 7tz O I Mc T S Project: wmm 1- No: 1o� f-&— Page: McClendon scape: ST,-uc-r �(n`1 Date: Checked by: Engineering Inc Item: By: j' IV1 IN' �u i 000 591tN = 2.5' P� = 1oP5,F 'bio/z) (s) = Z5 # p�-sppssF!� lo%) ($`) - (05* Lt�VL - /{ pSF 7 - 7Q pzr f 9&Z54 �2ovI Or - (Z) 5�8 " x YI'a ern 0 c McClendon Engineering MC 1412 W Idaho Street Suite 240 Boise, ID 83702 McClendon Engineering Inc Steel Beam -IC# : KW -06017540, Build: 20.22.12.2.8 DESCRIPTION: Roof Beam R133 Project Title: Tahoma Terra l� Engineer: SM Project ID: 1028.23 Project Descr: Project File: Design.ec6 9ring, Inc (c) ENERCALC INC 1983-2022 CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set: IBC 2021 Material Properties Analysis Method Allowable Strength Design Beam Bracing : Beam is Fully Braced against lateral -torsional buckling Bending Axis: Major Axis Bending D(0.250) S(0.6250) D(0.250) W12x19 Span - 25.0 ft Applied Loads Beam self weight NOT internally calculated and added Uniform Load: D = 0.070 klft, Tributary Width = 1.0 ft, (Wall) Point Load : D = 0.250,. S = 0.6250 k @ 5.0 ft, (Purlin) Point Load : D = 0.?50, S = 0.6250 k @ 10.0 ft, (Purlin) Point Load : D = 0.250, S = 0.6250 k @ 15.0 ft, (Purlin) Point Load : D = 0.250, S = 0.6250 k @ 20.0 ft, (Purlin) DESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span Ma: Applied Mn / Omega: Allowable Load Combination Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections Fy : Steel Yield : 50.0 ksi E: Modulus: 29,000.0 ksi 250) 5(0.6250) D(0.250) S(0.6250) Service loads entered. Load Factors will be applied for calculations. 0.302: 1 Maximum Shear Stress Ratio = W12x19 Max. "-" Defl Location in Span Load Combination Max. "+" Defl Location in Span Section used for this span 18.594 k -ft 12.571 0.0000 0.000 Va : Applied 61.627 k -ft Support notation : Far left is #' Values in KIPS Vn/Omega : Allowable +D+S Support 2 Load Combination 2.625 2.625 Location of maximum on span Span # 1 2.625 Span # where maximum occurs 0.283 in Ratio= 1,059 x=360 0.000 in Ratio= 0 <360 Span: 1 : S Only 0.561 in Ratio= 535 -240, Span: 1 : +D+S 0.000 in Ratio= 0 <240.0 3esian C 0.046 :1 W12xl9 2.625 k 57.340 k +D+S 0.000 ft Span # 1 Load Combination Span Max. "-" Defl Location in Span Load Combination Max. "+" Defl Location in Span +D+S 1 0.5605 12.571 0.0000 0.000 Vertical Reactions Support notation : Far left is #' Values in KIPS Load Combination Support 1 Support 2 Max Upward from all Load Conditions 2.625 2.625 Max Upward from Load Combinations 2.625 2.625 Max Upward from Load Cases 1.375 1.375 D Only 1.375 1.375 +D+S 2.625 2.625 +D+0.750S 2.313 2.313 +0.60D 0.825 0.825 S Only 1.250 1.250 1-7 Sirripson S tf c; i ig - T;c A ochorin g, Fa s tening, Resf oration and Strengthening Systems for Concrete and Masonry 16-11 ky, I g*91 g I Strong -Bolt® 2 Design Information — Masonry cm 'J Carbon -Steel Strong -Balt 2 Tension and Shear Loads in 8" Lightweight, Medium -Weight and Normal Weight Grout -Filled CMU IBC 1, The tabulated allowable toads are based on a safety factor of 5.0 for snstagation under the IBC and IRC. 2. Listed loads may be applied to installations on the face of the CMU wall at least 11/4" away from headjoints. 3. Values for 8" -wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, fm, at 28 days is 1,500 psi. 4. Embedment depth is measured from the outside face of the concrete masonry unit. 5. Tension and shear loads may be combined using the parabolic interaction equation In = %). 6. Refer to allowable load adjustment factors for edge distance and spacing on p. 122. 4' min. edge distance (W- to W=dia. anchors) 2' min. edge distance ('/i dia. anchor) f'.riliml ndnn diFfanca Installations in this area for full allowable load capacity Figure 1 Carbon -Steel Strong -Bolt 2 Tension and Shear Loads in 8" Lightweight, Medium -weight and Normal -Weight Grout -Filled CMU Anchor Installed in Cell Opening or Web (Top of Wail) (See Figure 2) Yx - , - 3t 35 1'/s y _ 12 8 2,080 415 (12.7) {89) (47.51 (45) {305) (203) (9.3) (1.8) 5/a 4%55 13/4 12 8 3,200 640 (15.9) (111] (74.6) (45) (305) (203) (14_2) (2.8) 1. The tabulated allowable loads are based on a safety factor of 5.0 for installation under the IBC and IRC. 2. Values for 8' -wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'n,, at 28 days is 1,500 psi. 3. Tension and shear loads may be combined using the parabolic interaction equation In = %). 4. Refer to allowable load adjustment factors for edge distance and spacing on p. 122. Installation in this area for reduced allowable load capacity 4' min. end distance (W- to 45 -dia. anchors) 2' min. end distance (i: dia. anchor) Critical end distance (see load table) No installation within 11/; of head joint [ 111H 1,165 235 3,360 670 (5.2) (1.0) (14.9) (3.0) 1,370 275 3,845 770 (6.1] (1.2) (17.1) (3.4) 1s/; edge distance o•a°pQ o' O••0a Qpo • o o � o . End distanca o � o e oa ea Figure 2 See p. 12 for an explanation of the load table icons. 121 Mc T �� Project: �14 Ho1'y1�t I �"Y�i2- _ No:Page:__.__. McClendon Scope' QCT ViMfdibS Date: Checked by: Engineering Inc Item: By: i 5F P N69 l.6•, r .Pr G� ,Z M.----------- � CD N O Lo m N o Ip CD S!) N N N f. a c n n cc u� o' v v v v v o m co m m m n h n n m m o'rn w m rn rn rn rncl? rn Q o o o O Ci O o 0 0 0 o 0 t. icy C O 4 m G3] 00 7 iL1 (mto O d N m m 4 N li7 m[ 1 (D O '•D fa N N N n r'r rl m �S m C'7 a wf m m �'F st ctT m O •O 0 0 0 4 d G o o Q Cj o 0 0 M co fmD fM7 SDn 07 h 4i m fD N o00 ff m mV7 o O O o o o o r. m n u7 ch N P O O O rn f4 fO ' P 4' C c o0 to _ fn ss m D ro m to 0 o a{ m m M M m G K w K f ,w Y/ C ffl a0 fD h m O= C•1 M m n ai (D O M f� m a0 O ed r O �!] rS m o D m m r cp r y' (A m o r fa N In Q Ui to M m n d1 CY (� X e C m rD m In n n U:2 m N u7 CO Q n 00 N m p SA m O D) p (D lh n qO m fD 7 m p CCA ILE bin a[� rn M N f7f C] Tq-;-- .d. > .Q m o O m m o o zn cc L6 0(h U c t- r- iu p o c ao f- P ul) h so N N n om 0 v m 0 ao 4' M <D n N ui O v O� h co m a N 4z O D `- N N M r N N M N m m P .- [7 m p Lf) M w Q n r> o to o sz o U a h n n co m w m oo U6-6- o 0 0 0 oo 0 1b CS C �w CU N N N w m co m mC_ .a cD nto m d O O O d O o o o a F m m o c fn lu u ro Z v t m h ci N m v co 61 in N oa s} r) In L o N im E (U n•97 n h r r m M O lf1 r f0 r Ql m m cO m V fD N v Q a o N N r'f N N m 2 p Z y cu cu to f0 cn A N lof 0 ri c Y a C rn o LO h u� u� rn m O so o u In h 0 O m �o O h r m m a In In W 2 Q a a C w u'7 h Y- O O O r n O US t< m O �_ ca fJ [d 11 II Z p O O O P O o 0 0 d z co u vi 2 ki u' Q r Z (D P m N CD V m N tp V M N fD v fo N O n O O SCS V7 Lc? uC � to ul R7 to u) ui 4f m N N N N N N N CV N N N" N N N" X C X X x X X X X X X X x X X X x X p d 0 o O O O o O O o 0 o p G o O f{1 ° Q o C! o c In us rs v u. u n Lq a n u r c O N N N N N N SAF N [V N (Y U O O O O O o o o O x v rr> c v v �r ti a a r; vi so CD Wl �G x Z`fz X. �'-t�'r v• t. !�✓ t 'QY LJ Project: ! L Na: Page: 2 i McClendon scope:, Date:E/Z_ Checked by: Engineering Inc Item: ,ate S - i S�0-per /e� i2. _ .._. qtr �__.l r .(�►�.-�a� _. _.. .. _ _ ._ f �VAY � ') => = i Wf�tC irN7 - z(�.,Z!.r 1' qS - Zg% SSI' o p r-.L.o•c�� °- = ls.a.. sF_ ..Cry-s�� j to y c, -F-';. SruoI y' a" a c Wl �G x Z`fz X. �'-t�'r v• t. !�✓ t 'QY LJ Project:', iDWtfl-. T1�-- No: %C� 3 Page: McClendon Date: Scope: �T`)2 i�C�_-�L�IC�1� Date: X Checked by: Engineering Inc Item:— gy �7vDs _0 ►r _. � tit ✓a x Fs� LaY,4l�i ce-ysv� A /()Ps F tjo.. �� 1s pxr- s' 7SpL� tQ�zc, I �sE Projsct: 14 MYOMA -Na._. Scop�;._�'�T_ _ �C-�f~G;7!�!,,.,_ _„ ba' z _ Fagg._ Z McClendon �: 2 3 Checked by: cncir;ear ng inc ftAai: gY: fir. 3 K F ; /,o�s V, P� = l4• ell /47 {. 57 yY M 1k h - I M, 1 WIN A-.Sf m m w m m M, 1 WIN 0 N O Z5 F I I I I I I I I I - -- 1,-----, I I �V' 1 I I I I 1 f 1 E I I 1 I I ! I i ! I 1 I a E I ! I 1 I I ! 1 I ! I I I I 1 I 1 oa 1 I Q %02 I I ! i m ! I Z ! I Q ! I -i — — IL 1 I 1 � I Q Z� I O V) I I 1 HibON - } I I \ V i I I I I I I I 1 i I I I I 1 I I I 1 I I I I I 1 I I I I f I E md Project Bate: Page. e: McClendon scOP":.-S1-KId!C 2=0`1 Checked by: Engineering Inc Hem: By: -FOLW z!� TI: -z 6�-3 Drl7t C, r_J WAU- S� L WTt 41a T74 o F FTC 11 G): -z AA L L� L.. ....... ..... . . 'Zo)YP t -r- I 7es/'Z (_4 VL r'. ti TI SLICE. pc . ...... .... Grs amu,. C. O')C C 4t P� rte TI24'/D'O = I z' Ov, Md P�oje.et: No: Pager McClendon Scop"-:. Dafe: Z Checked by: E=ngineering Inc Iters: gy Zq McClendon Engineering, Inc. MSE 1412 W. Idaho Street, Suite 240 Boise, Idaho 83702 (208) 342-2919 McClendon Engineering Inc Beam on Elastic Foundation DESCRIPTION: CODE REFERENCES Project Title: TA- ftr„ A- Or�-YLgfr Engineer: Project ID: JD 28' Z-$ Project Descr: File = Calculations per ACI 318-14-, IBC 2014, Load Combinations Used: ASCE 7-1C) Material Properties fc 112 = 2.50 ksi 6 Phi Values Flexure: 0.90 fr = fc ' 7.50 = 375.0 psi Show: 0.750 LV Density = 145.0 pd � 1 0.850 X Lt Wt Factor = 1.0 Elastic Modulus - 3,122.Oksi Soil Subgrade Modulus - 250.0 psi Kinch deflection) Load Combination ASCE 7-10 fy - Main Rebar = 60.0 ksi Fy - Stirrups = 40.0 ksi E - Main Rebar = 29,000.0 ksi E - Stirrups = 29,000.0 ksi Stirrup Bar Size # _ # 3 Number of Resisting Lags Per Stirrup 1.0 Beam is supported Qn �n 00.88U(0.284) C3(3.36f S(0.56T) Cross Seciian & Reinforcing DoWis Rectangular Section, Width = Q.0 in, Height = 24.0 in Span #1 Reinforcing.... 245 at 3.0 in from Bottom, from 0.0 to 48.0 ft in this span b(7.36 i�3(D.56T) 0(3.361�s(o.5s7j Storage C, W,1 s rr oft et3)'(0.2e4) f Service loads entered. Load Factors will be applied for calculations. Load for Span Number 1 Uniform Load: D =1.680, S = 0.2840 klft, Extent = 0.0 ->> 0.6670 It Tributary Width =1.0 ft Uniform Load: D = 3.361, S = 0.5670 klft, Extent =11.333 ->> 12.667 ft, Tributary Width =1.0 0 Uniform Load: D = 3.361, S = 0.5670 kA Extent = 23.333 --» 24.667 ft, Tributary Width =1.0 ft Uniform Load; D = 3.361, S = 0.5670 klft, Extent = 35.333 -->> 36.667 ft, Tributary Width =1.0 ft Uniform Load: D =1.680, S = 0.2840 loft, Extent = 47,333 -» 48.0 ft, Tributary Width =1.0 ft DEVON t UMAfARY Section used for this span Mu: Applied Mn ` Phi : Allowable Load Combination Location of maximum on span Span #+where maximum occurs MaxlmUm Soil Pressure = Rlfowabte Soil Pressure = Aear Stirrup Requirements t Typical Sostion -3.369 k -ft 6.335 k -ft +1.20D+0.50L+1.605+1.60H 4.518 ft Span # 1 Max Downward L+Lr+S Deflection 0.000 in Max Upward L+Lr+S Deflection 0.000 in Max Downward Total Deflection 0 013 in Max Upward Total Deflection 0.000 in 0.468 ksf at 24.00 ft LdComb: +D+S+H 1.50 ksf L8ti Entire Beam Span Length: Vu < PhiVcl2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in K-AiMUM Forces A gtrftses for Load O tbiryiiorls Load Combination Location (ft) Bending Stress Results (k -ft) Segment Length Span # in Span Mu : Max Phi'Mnx Stress Ratio MAXimum Bending Envelope Span # 1 1 47.435 -0.34 633 0.05 3a McClendon Engineering, Inc. m E DW 1412 . Idaho Street, Suite 240 Boise, Idaho 83702 McClendon (2aa) 342 -2919 Engineering Inc Beam on Elastic Foundation Beam Project Title: -r&h'0 yt+'F 'r`' of Engineer: Project ID: I bLtS, Project Descr. File = kiAWcE Load Combination Location (ft) Bending Stress Results (k -ft) Segment Length Span # in Span Mu : Max Phi-mnx Stress Ratio Storage Buikfiag3%a1csV0uling.ec6 . :. IHC AMOK. Boid10.19.130 . +1.40+1.60H Span # 1 1 47.435 -0.32 6.33 0.05 +1.20D+0.50Lr+1-60 L+1.60#1 Span # 1 1 47.435 -0.28 6.33 0.04 +1,20D+1.60L+0.50S+1-60H Span # 1 1 47.435 -0.30 6.33 0.05 +1.20D+1.60Lr+0.50L+1.60H Span # 1 1 47.435 -028 6.33 0.04 +120D+1.60Lr+0.50W+1.60H Span # 1 1 47.435 -0.28 5.33 0.04 +120D30,50L+t.50S+1.50H Span 4 1 1 47.435 -0.34 6.33 0.05 +1.20 D+1.6 05+0.50 W+1.60 H Span # 1 1 47.435 -0.34 6.33 0.05 +1.20DA.501-r4fl, 50 L+W+1.60 H Span # 1 1 47.435 -0.28 6.33 0.04 +1,20D+0.50L+0.50S+4V+1.60H Span # 1 1 47 435 -030 6.33 005 +1.20D+0.50L+0.20S+E+1.60H Span # 1 1 47.435 -0.26 6.33 0.04 +0.900+W+0.90H Soan # 1 1 47.435 -0.21 6.33 0.03 +0.90+E+0.90H Span # 1 1 47.435 421 6.33 0.03 Overall Maxknum Def aocros > Unfaldoored Loads Load Combination Span Max.'-' Dell Location in Span Load Combination Max. Y Dell Location b Span Span 1 1 0.0134 24.000 0.0000 0.000 MalilntuM Def ecfians fqr Load Combinations - Unfactored Loads Load Cembinaiien Span Max. Downward Deo Location in Span Max. Upward Dell location in Span +17+H 1 0.0111 24,000 0.0000 0.006 +D+L+H 1 0.0111 24.000 0.0000 0.000 +D+Lr+H 1 0.8111 24.000 0.0000 0.000 +D+S+H 1 0,0130 24.000 0.0000 0.000 +D+0.750Lr+0,750L+H 1 U111 24.000 0.0000 0.000 +D+0.750L+0.750S+H 1 0.0125 24.000 0.0000 0.000 +D+0.604V- ,H 1 0.0111 24.000 0.0000 0.000 +D+0.70E-4-I 1 H iii 24.000 0.0000 1000 +0+0.750LF+0.750L+0.450W+H 1 0.0111 24.000 0,0000 0.004 +D+0.750L+0.750S+4.450W+H 1 0.0125 24.000 0,0000 0.000 +D+0.750L+0.750S+0.5250E+H 1 0.0125 24.000 0.0000 0.000 460D+0.60W+0.60H 1 0.0067 24.000 0.0000 0.000 +0.60D+0.70E+0.60H 1 0.0067 24.000 0.0000 0.000 D Only 1 0.9111 24.000 0.0000 0.000 Lr Only 1 0.0000 0.000 0.0000 0,400 L Only 1 0.0000 0.000 o.aaa4 0.000 S Only 1 0.0019 24.000 0.0000 0.000 W Only 1 0.0000 0.000 0.0000 0.000 EOnly 1 00000 0.000 0.0000 0.000 H Only 1 0.0000 0.000 0.0000 0.000 Detailed Shear Information Span Distance V Vu (k) Mu d'VulMu Phi Vc Ccmment Phi'Vs Spacing (in) Lead Combination Number (d) (in) Actual Design (k -ft) (k) (kj Reqd Suggest +i.20D+1.605+0.50W+1.60H 1 0,00 21.00 0.10 0.10 0,6o 1.00 19.12 Vu <PhUc12 Not Reqd 0.00 0.00 +1.200+1.60S+0.50W+1,60H 1 0.56 21.00 -1.10 1.10 0.34 1,00 19.12 Vu<PhUc12 NotRegd 0.00 0.00 +1.200+1.605+0.50W+1.60H 1 1.13 21.00 -1.16 1.16 1.09 1.00 19.12 Vu <PhiVr/2 Not Reqd 0.00 0.80 +1.200+1.60S+D.50N7+i.6tlH 1 1.69 21.00 -0.97 0,97 1.75 1,00 19.12 Vu<PhVd2 Not Reqd 0.00 0.00 +1.20D+1.50S+0.50W+1,60H 1 2.26 21.00 0-77 0.77 2.30 1.00 19.12 Vu < PhVd2 Nat Reqd 0.00 0.00 +1.200+1,60S+0.50W+1.601-1 1 2.82 21.04 •0.58 0.58 2.73 1.00 19.12 Vu 4PhVcJ2 Not Reqd 0.00 0.00 +1.200+1-60S+0.50W+1.60H 1 3.39 21.00 •0.38 0.38 3.06 1.00 19.12 Vu <phiVc/2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 3.95 21.00 •0.17 0,17 3.27 1.00 1912. Vu < PhiVct2 Not Reqd 0.00 0.00 -I20D+1.60S+0.50W+1.60H 1 4.52 21.00 0.03 0,03 3.37 0.22 18.21 Vu<PhVc12 Plot Reqd 0.00 0,00 +1,20D+1.60S+4.50W+1.60H 1 5.08 21.00 0.24 0.24 3.35 1.00 19.52 Vu <PhVci2 Not Reqd 0.00 0.00 31 McClendon Engineering, Inc. MCS 1412 W. Idaho Street, Suite 240 Boise, Idaho 83702 (208)342-2919 McClendon Engineering Inc on Elastic Fol. nlation DESCRIPTION: Qra3e Beam Detailed Shear l4offnation Project Title: "-p µovAA r&V-12-A Engineer: Project ID: 10? -8.75 Project Descr. File = MAN& Project5128t0 Projeds11074.18 Buckley Storage 5oltrra A OWAA ENERCALC, INC. i Span Distance V Vu (k) Mu d'VufMu Phi'Vc Comment Phi% Spacing (in) Load Combination Number (ft) (in) Actual Design (k -1t) (k) (k) Req'd Suggest +1-201)+f.60S+0.50W+1.60H 1 5.65 21.00 0.46 0.46 3.21 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S-450W+1-60H 1 6.21 21.00 0.68 0.68 2.96 1.00 19.12 Vu < PhiVct2 Not Reqd 0.00 0.00 +1.290+1.60S+0.50W+1.601-1 1 6.78 21.00 0.91 0.91 2.57 1.00 19.12 Vu<PhVc12 Not Reqd 0.00 0.00 +1.20D+1.60S+O,5DW+1.60H 1 7.34 21.00 1.15 1.15 2.06 1.00 19.12 Vu a PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.6OS+0.50W+1,60H 1 7.91 21.00 1.39 1.39 1.41 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.200+1.60S+0.50W+f.60H 1 8,47 21.00 1.65 1.65 0.63 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.6OS+0.50W+i.60H 1 9.04 21.00 1.91 1.91 0.30 1.00 1912 Vu < PhiVd2 Not Reqd 0.00 0.00 +1201)+1.605+0.50W+1.60H 1 9,60 21.00 2.18 2.18 1.38 1.00 19.12 Vu <RMV Not Reqd 0.00 0.00 +1.200+1.6OS+0.50W+1.60H 1 iO.f6 21,00 2.46 2.46 2.61 1.00 19.12 Vu <PhiVd2 Nat Reqd 0.00 0.00 +1.200+1.60S+0.50W+1.60H 1 10.73 2f.00 2.75 2.75 4.00 1.00 19.12 Vu a PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S450W+1.60H 1 11.29 21.00 3.04 3.04 5.55 1.00 19.12 Vu < PhiVc12 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.69H 1 11.86 21.00 0,74 0.74 6.59 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.6OS+0.50W+1.60H 1 12.42 21.00 -11.74 1.74 6.22 1.00 19.12 Vu < PhiVc12 Not Reqd 0.00 0.00 +1.20D+1.60S+0.60W+f.6OH 1 12.99 21.00 -2.64 2.64 4.70 1.00 19.12 Vu <PhVd2 Not Reqd 0.00 0A0 +1.20D+1.60S+O.50W+1.60H 1 13.55 21.00 -2.33 2.33 3.2f 1.00 19.12 Vu <PhUc12 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 14,12 21A0 -2,03 2.03 1.89 1.00 19.12 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60$+0.50W+1.60H 1 14.68 21.00 -1.72 1.72 0,75 1.00 19.12 W <PhVd2 Not Reqd O.00 0110 +1.2OD+t.60S+0.50W+1.80H 1 15.25 21.00 -1.42 1.42 0.23 1.00 1912 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.200+1.60S+0,50W+1.60H 1 15.8f 21.00 -1.12 1.12 1.03 1.00 19.12 Vu <PhVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 16.38 21.00 -0.81 0.81 1.66 1.00 19.12 Vu <PhVcJ2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 16.94 21.00 -0.51 0.51 2.12 1.00 19.12 Vu<PhVd2 Not Reqd 4.00 0.00 +1.20D+1.6OS+0.5OW+1.60H 1 17.51 21.00 -0.21 0.21 2.41 1.00 19.12 Vu<PhIVd2 Not Reqd 0.00 0.00 +1.200+1.60S+0.50W+1.60H 1 18-07 21.00 0.10 0.10 2.53 0.91 19.01 Vu <PhUd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 18.64 21.00 0.40 0.40 2.47 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 19.20 21.00 0.71 0.71 2.24 1.00 19.12 Vu < PhiVd2 Nat Reqd 0.00 0.00 +1.200+1.fi0S+0.50W+1.60H 1 19.76 21.00 1.02 1.02 1.84 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.200+1.66S+0.54W+1.SOH 1 20.33 21.00 1.34 1.34 1.27 1.00 %12 Vu <PhVc12 Not Reqd 0.00 6.00 +120D+1.60S+0.50W+1.60H 1 20.89 21.00 1.65 1.65 0.51 1.110 19.12 W <PhaVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 21-46 21.00 1.98 1.98 0.42 1.00 19.12 Vu<NJ W2 NotRegd 0.00 0.00 +1.20D+1,6OS+0.5OW+1.60H 1 22.02 21.00 2.30 2.30 1.54 1.00 19.12 Vu < PhVd2 Not Reqd 0.00 0.00 +t.20D+1.60S-45OW+1.60H 1 22.59 21.00 2.63 2.63 2.84 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0,50W+1.60H 1 23.15 21.00 2.96 2.96 4.32 1.00 19.12 Vu <PhiVW2 NotRegd 0.00 0.00 +1.20D+1.64S+0.50W+1.60H f 23.72 2f.00 1.39 1.39 5.63 1.00 19.12 Vu <PhiVW2 Not Reqd 0.00 0.00 +1.200+1.60S+0.59W+1.60H 1 24.28 21,00 -1.06 1.06 5.63 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.64S+0.50W+1A0H 1 24.85 21.00 -2.63 2.63 4.32 1.00 19.12 Vu <PhiVd2 Nat Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 25.41 21.00 -2.30 2.30 2.84 1.00 t9A2 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.201D+1.60S+0.50W+f.60H 1 25.98 21.00 -1.98 1.95 1.54 1.00 19.12 Vu <PhVc12 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50VV+1.6OH 1 26.54 21.00 -1.65 1.65 0.42 1.00 19.12 Vu < PhiVc12 Not Reqd 0.00 0.00 +1.20D+i.60S+0.5OW+f.60H 1 27.11 21.00 -1.34 1.34 0.51 1.00 19,12 Vu <PhiVd2 Not Reqd 0.00 0.00 +t.20D+1.60S+0.50W+1.60H 1 27-67 21.00 -1.02 1.02 1.27 f.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 28.24 21.00 -031 0.71 1.84 1.00 19,12 Vu < PhiVc12 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 28.80 21.00 -0.40 0.40 2.24 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20+1.BOS+0.50W+1-601-1 1 29.36 21.00 -0.10 OAO 2.47 0.93 19.04 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20()+1.64S+0.50W+f.60H 1 29.93 21.00 0.21 0.21 2.53 1.00 19.12 Vu<PhVcJ2 Not Reqd 0-00 0.00 +1.2017+1.60S+O.50W+1.60H 1 30.49 21.00 0.51 0.51 2.41 1.00 19.12 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+O.50W+1.60H 1 31.06 21.00 0.81 0.81 2.12 1.00 t9.t2 Vu<PhVcJ2 Not Reqd 0.00 0.00 +1.20D+1.603+0.5OW+1.60H 1 31.62 21.00 1.12 1.12 1.66 UO 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.201)+1-50S+0.50W+1.60H 1 32.19 21.00 1.42 1-42 1.03 t.00 19.12 Vu < PhWd2 Not Reqd 0.00 0.00 +1.20D+1.66S+0.50W+i.60H 1 32.75 21.00 1.72 1.12 D.23 1.00 19.12 Vu <PhVd2 Nat Reqd 0.00 0.00 +1.200+1.605+9.50W+1 -60H 1 33.32 21.00 2.03 2.03 0.75 1.00 19.12 Vu <PhVd2 Not Reqd 0.00 0.00 +1.20D41.60S+0.50W+1.60H 1 33.88 21.00 2.33 2.33 1.89 1.06 19.12 Vu <PhVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 34.45 21.00 2.64 2.64 3.Z1 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0-00 +1.201)+1.60S+0.5OW+1.60H 1 35.01 21.00 2.95 2.95 4.70 1.00 19.12 Vu < PhiVcJ2 Not Reqd 0.00 0.00 +1.200+1.60S+O.5OW+1.60H 1 35.58 21.00 2.05 2-05 6.22 1.00 19-12 Vu <PhiVd2 Not Reqd 0.00 0.00 McClendon Engineering, Inc MGE 1412 W. Idaho Street, Suite 240 Boise, Idaho 83702 (208) 342-2919 McClendon Engineering Inc - Beam on Elasitic Foundation DESCRIPTION: Grade Beam Detailed Shear Information Prcject Title: Engineer: Project lD: Ips. 23 Project Descr. Fle = M. WcE INC. M204, T3cidAM.1.30 . Span Span Distance V Vu (k) Mu d`Vu/Mu Phi'Vc Comment Phi'Vs Spacing (in) Load Combination (ft) (in) Actual Design (k -ft) (k) (k) Reqd Suggest +L20D+1.605+0.50W+1.60H 1 36.14 21.00 -0.44 0.44 6.59 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 36.71 21.00 -2.75 2.75 5.55 1.00 19.12 Vu < PhiVc/2 Not Reqd 0.00 0,00 +f.20D+1.60S+0.50W+1.60H 1 37.27 21.00 -2.46 2.46 4.00 1.00 19.12 Vu<PhVrJ2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 37.84 21.00 -2.18 2.18 2.61 1,00 19.12 Vu < PhVc12 Not Reqd 0.00 0.00 +1.200+1.60S+0.50W+1.60H 1 38.40 21.00 -1.91 1.91 1.38 1.00 19.12 Vu < WW2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 38.96 21.00 -1.65 1.65 0.30 1.00 19.12 Vu<PhAfd2 Not Reqd 0.00 0.00 +1.200+1.608+0.50411+1.601-1 1 39.53 21.00 -1,39 1.39 0.63 1.00 19.12 Vu<PNM12 Not Reqd 0.00 0.00 +1.200+t_60S+0.50W+1.60H 1 40.09 21.00 -1.15 1.15 1.41 1,00 19.12 Vu <PhiVcl2 N01 Reqd 0.00 0.00 -120D+1.60S+0.50W+1.60H 1 40.66 21.00 -0.91 0.91 2.06 1.00 19.12 Vu < PhVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 41.22 21.00 -0.68 0.68 2.57 i.00 19.12 Vu<PhV62 No(Regd 0.00 0.00 +1.20D+1.60S40.50W+1.60H 1 41.79 21.00 -0.46 0.46 2.98 1,00 19.12 Vu < PhVd2 Not Reqd 0.00 0.00 +1.20D+1.6US40.50W+1.60H 1 42.35 21.00 424 0.24 3.2f 1.00 19,12 Vu < PhVM2 Not Reqd 0.00 0.00 +t.20f)+t.60S+0.50W+i.60H 1 42.92 21.00 -0.03 0.03 3.35 0.22 18.21 Vu < PhVc12 Nat Reqd 0.00 0.00 +120D+1.60S+0.50W+1.60H 1 43.48 21.00 0.17 0.17 3.37 1.00 19.12 Vu <phjVd2 Not Reqd 0.00 0.00 41.20D+1.60S+0.50W+1.WH 1 44.05 21.00 0.38 0.38 3.27 1.00 19.12 Vu < PhiVd2 Nat Reqd 0.00 0.00 +1.200+1.60S+0.50W+1.60H 1 44.61 21,00 0.58 0.58 3.06 1.00 19.12 Vu < PhVd2 Not Reqd 0,00 0.00 +120D+1.60S40.50W+1.60H 1 45.18 21.00 0.17 0.77 2.73 1.00 19.12 Vu < PhW2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 45.74 21.00 0.97 0.97 2.30 1.00 19.12 Vu <PhVd2 Not Reqd 0.00 0.00 +1.200+1.60S+0.50W+1AH 1 46.31 21.00 1.16 1.16 1.75 1.00 19.12 Vu <PhVc/2 Not Reqd 0.00 0.00 +1.20D460S+0.50W+1.60H 1 46.87 21.00 t.36 1.36 1.09 1.00 19.12 Vu < PhVd2 Not Reqd 0.00 0.00 +1.200+1.60S+0.56W+1.60H 1 47.44 21.00 1.30 1.30 0.34 1.00 19.12 Vu < PhWl2 Not Reqd 0.00 0.00 DMc o � -3 Project: No: � u � gage: McClendon Scope: 'G2CL �1C-+N Date: Checked by: Engineering Inc Item: By:- f)k4 i -nN F3 (Fgowi 8.153) Fn (Z) z(*Zs-# 1vC 2'_p►, SQ X 102.'' �1'1� N Mc McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLANK M -- Project: MA No: r Z-3 . Page: 3 � McClendon Scope: Date: Z3 Checked by: Engineering Inc item: LAi- Y ,3J7 - �i�n Hr 16' M �-X) T K Nviapy __..._.�_� 146 Cf— IT, 7 C _ 1 q. (, Ah.4~o, r�. I i i rNT 97 J I MAX afts; 7 0611) II i i i i III i I i i t r a j i i I i 6122/23, 3:46 AM U.S. Seismic Design Maps 35 OSH PD Tahoma Terra Yelm, WA, USA Latitude, Longitude: 46.9420431, -122.6059582 \\ 1 st Street Nail Ba 0"` Ma and Pa's Family Diner 01%P r2 Yelm-Tenino Trail 510 Map data 02023 https://www.soismicmaps.org 113 The Shiplap Shop Tahoma Valley T& Coffee House j Golf Course 507 South Puget Sound Habitat for... a� Date 6/2212023, 3:47:15 AM Design Code Reference Document ASCE7-16 Risk Category II Site Class D - Default (See Section 11.4.3) Type Value Description Sg 1.288 MCER ground motion. (for 0.2 second period) S, 0.465 MCER ground motion. (for 1.0s period) Smg 1.545 Site -modified spectral acceleration value SMI null -See Section 11.4.8 Site -modified spectral acceleration value SDS 1.03 Numeric seismic design value at 0.2 second SA SDI null -See Section 11.4.8 Numeric seismic design value at 1.0 second SA Type Value Description SDC null -See Section 11.4.8 Seismic design category Fa 1.2 Site amplification factor at 0.2 second Fv null -See Section 11.4.8 Site amplification factor at 1.0 second PGA 0.509 MCEG peak ground acceleration FPGA 1.2 Site amplification factor at PGA PGAM 0.611 Site modified peak ground acceleration TL 16 Long -period transition period in seconds SsRT 1.288 Probabilistic risk -targeted ground motion. (0.2 second) SsUH 1.418 Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration SsD 1.5 Factored deterministic acceleration value. (0.2 second) S1 RT 0.465 Probabilistic risk -targeted ground motion. (1.0 second) S1 UH 0.522 Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration. SID 0.625 Factored deterministic acceleration value. (1.0 second) PGAd 0.509 Factored deterministic acceleration value. (Peak Ground Acceleration) PGAUH 0.552 Uniform -hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration Map data 02023 https://www.soismicmaps.org 113 6/22/23, 3:46 AM Type Value CRS 0.908 CR, 0.891 Cv 1.358 U.S. Seismic Design Maps Description Mapped value of the risk coefficient at short periods Mapped value of the risk coefficient at a period of 1 s Vertical coefficient -3b https:/Iwww.seismicmaps.org 2/3 Md T- Croject: 1H-oWlh I M_ (,LA No: 11)z59,25Page: 377 McClendon Scope: �Ti2�er 0�16IN3 ©ate: 57/2--s Checked by: Engineering Inc Item: By CS = ,18y - 9COF = l��PsF 3s� 350 = s51ps I� /z�(a} 440 PLS WCL--- 7F6r- (e z)(1) b _P.--..-. ' 3 c.F To - r ass fug V"�18�8 Oa) V, 157fl4, F W _ 'ONO - -- _ ew-r v o. t8 ( Boo \l AAC-61_�= i 9.4 0 0 0 0 0 0 EM 0 8 0 HIMON - @ 3; --5q CO N l 4 V, 0 J Z a J CL Ci Z o Q r a' u U - LL r OW OJ U Q/= N MON—�-F ) qo 0 0 0 Or Lf( Project. rtM� — �L-Y2 _ No:Ld��, Page: _ `-- _ �Li i�r� McClendon Scope: _ _ Date: _�/� Checked by: Engineering Inc item: �C C90 � ' 1�' S � r 2l_'GT7�►--1 1 ' W.. _ L� s ,s. 327r�� W.�. S C -j C = 3Z7,0(r- (7p'4� = _57,70 �r- 3470f+/ rte' G�JSc:rS. a 13301; 7,r= 113pt-F AJ L) MDEE Project:st:�J�-�' ! L ��-- No: z Z Page. 143 McClendon sG°�� � �T ��, Date: �� checked by: Engineering Inc Item:_ - Z`17�t.�- [i� LOA, � ZC? l QLt � t Gi7r Zr w7 as AA,; -X, 72 E tZi W, n,rH I oa,..9pALirV(> = S :Orr +�� 71 570 Cu.y Zo # C (Zj 570 (Z. S Cyt L -w i. G -fl Utz C &(,Q PI.1lLltrd, +TIV P Project: _ !9 No: _ Page:__ w� .� !McClendon Scape:��- ���f C 1� Qaie: _�1� Checked by: Engineering Inc item:,__ Sys. �1 rliCl f. Ty Zl� k. J1 C` 147 IS k zmo-1c-�, Ax, s-, 1010sr zspsr-�� l7Sp�-� to /r o - 17570 l(n, F - Z1,0 IQre AG77 p7J ?e M)Jxn Tib Kt�:Q F c A 4 s ( c FS Cr-tAVr -fib 8e,I0 �C D, Cz,C Vii}Ics�, QSCG"� G%i yA 1LJ [PqA, M C Project:�J401KA- ... t L:, No: Page: 45 MGC@114011 Scape._ `7 fid' I�,I�T_ '�] 1C�IU pate. Checked by- Engineering Inc Item: _ By. _ (AA ,rJ f ''ad t- 1, r s R7pc F (Zo`� Ib !! 60 — S � 1 V2. 1 i r 7ZS,�ut" `IDI/s S T 8e,I0 �C D, Cz,C Vii}Ics�, QSCG"� G%i yA 1LJ [PqA, ?ti+OL-14.S C &A (AA ,rJ me u� Project, �! - 1_L �1� — No:__Page:- McClendon ageMcClendon Scope._ ��1��r j1� L7ate: _��Z_� Checked by: Engineering Inc ftem:Y __ _�_ _�----------By- LJ z9� -r,C lqq rG Sno. 7Z r - 7Z/S 57o _ Z:. q p i ` I vv. c a Z S X3 2 5 Cam t Ca.- z&o C440 OK 13y s( c_rs of Project- 1 f HOMA- ��- ���� ,.._1OZe, 7; Page:__ CG@11C�Ot1 Scape:1 �C� Date: -Checked by: E=ngineering Inc item � _—_ � By �1i12. C_m 0 C,i / �c'-2 $ Civ= p+ �l Sol: ze i fn 18 , r psi 7gPS'r=� ,56 Cmi F)p 3C3, ✓� ASF l � , N (/ks ��� Zl•S�SF �p � Cy►�+v � tri �p, ��.. 4�z�' KC. t PLP Zg, j pl--F � /0 X,, mc Project No: 1OZ18, Z3 Page: McClendonScape:� �;... Date: �Checked by: Engineering Inc Item: L 0 r- Df } &A ys 95fc 10 , T y10, �= ItfS +'�ZI,Q�Ps � !(Q'��izY6(47'� 397 1q+�a" o•c. (S��s.� TZ 1, y x lz Ili err sr-�s �- w C� z Z �6 i Grl 07 S O je�GTIt)N-? CLQ' smo - (q) 1(1 Z , 7jj�p, . . CCt Sii1Q I je�GTIt)N-? CLQ' smo - (q) 1(1 Z , 7jj�p, . . CCt Sii1Q 0 0 LIL, I - I - 10 1 4 N i I j I 1 I I I I 1 I � 1 I I I �/ t I 4 j I I 1 i I I I I; - I I I t >41 I� L q j � t 4 I 1 I t I ifl - - - F c� � I � 1 i � 1 I I 1 Z Oo L� I IIHDN --D I I I I I I I I I 4 I I I I i W .o -ss � b X HLSON 5o 1 1 1 I 1 1 I I � I I I 1 I � I I I I I I I I L-----, 1 I � I � I I I I I I I I I 1 ! 1 I I I I ! I ! I ! 1 1 I I I I I I I I,r I x I I I I I I I I , I � 1 I I I I I r I I ! ! ! ! ! ! 1 I I I I � I I I I I I I I I I 1 I I I I I ! f I I I I I I I I � I I r r I I I I I 1 I 1 1 I X HLSON 5o D � C Project:1+Oy" No: O Page: 5 McClendon Scope: :!�752.40-r pate: 5 Z Checked by: Engineering Inc Item: By: X TACE LOG: C-, Ids s - 15 �r- �7P 14Tz ! 4 ' - Iq �TRR� - /Cos (y30) 7& acv p X - SgNda 7YR 2_ r,) L q 0 5F) '7� 5 P T- q3y# H a TYPE -:1 Mc D� Protect:� 7,m9aA No: IZ rage. 5Z McClendon Scape: p1 Date: 2 Checked by: Engineering Inc Item: By: _ 3 3"ceb U- SdsPLF ' G 7 5r- 6765* Z_ r- 676j*/36,`ia oV IDC : - 2kcC -YF3 HOLfl Dbw0 'D [I 7ps'F (1 j ro FLS 77 Paz V) PC- H-0uD oL,) t -S TYPE I Mc Project: TA ft +p, I!-fi2p�__. No: / . 23 Page: S McClendon scope:6MWL-T Val67fli Date: S 23 checked by: Engineering Inc Item: By: �HE�°g2 W LR Ve (/SEI S = E3 S LF m6x T�Zt(3 = Z /Z t 5"�2) =30' LAS ror TSS S3I� Cos �YL 2 mqU Project:7[-A go :544A- No: 10ZV, ZL- Page: McClendon Scope: dMtnt J bate: Checked by: Engineering Inc Item: By: 1 s 7 TrAX 7 E RC2 i x �rti�x Z Z�C iType i i i IZ S x A W (o Gtr 579A P '. ►°�A1t = w �1 C i �� scams x Z SeR� Connectors for Cold -Formed Steel Construction Holdowns The S/H©U series of holdowns combines performance with ease of installation. The pre-deilected geometry virtually eliminates material stretch, resulting in low deflection under toad. Installation using self -drilling screws into the studs reduces installation time and saves labor cost. Material: 118 mil (10 ga.) Finish: Galvanized (G90) Installation: • Use all specified fasteners; see General Notes • Use standard #14 self -drilling screws to fasten to studs • Anchor bolt washer is not required • See SB, SSTB and PAB anchor bolts on pp. 163-164 for cast -in-place anchorage options • See SET-XPO and AT XP® adhesive products at strongtie.com for anchor bolt retrofit options Codes: See p. 11 for Code Reference Key Chart Zvi 0 2� pilot hales for maaufectur n9 wROSes liastener not required} S/HDU US Patents 5,979,130 and 6,112,495 Typical 5/HDU Installation Model H (in.) Fasteners I chord studs ASD (lb.) LRFD (lb.) Cade Ret. Anchor Bolt Diameter' I Stud Fastenars' Stud Member Nominal Thickness2 Tension Deflection at Tension Deflection at Tension Load mil Me.) Load ASD Load' Load LRFD Load' 8 (lb.) 51HDU4 T/a �e {6} #14 2-33 (2-20 2,320 0.093 3,705 0.149 5,685 2-43(2-18) 3.825 0.115 6,105 0.190 9,365 2-54 -16 C3V-03 6,345 0.156 9,730 Steel fixture 4,470 0.063 7,165 0.103 12,120 S/HDU6 10% _ (12) #14 2-33(2-20) 4,895 0.125 8,495 0.250 10,470 2-43(2-18) 6,125 0.119 9,690 0.250 15,460 2--54 (2-16) 6,125 0.108 9,785 0.234 15,005 Steel fixture 5,995 0.060 9,580 0.136 14,695 S/HDU9 127/e 'A (18) #14 2-33(2 20) 6,965 0.103 11,125 0.189 13,165 IBC, FL, LA 2-43 (2-18) 5 0.125 15,465 0.250 21,810 2 5 - 9 990 0.106 15,960 0:225 24,480 Stee ix ure 12,71 0.125 20,510 0.177 31,455 '/e (27) #14 2-33(2 20) 6,965 0.103 11,125 0.189 13,165 2-43(2-18) 9,595 0.096 15,330 0.162 23,515 2-54(2-16) 9,675 0.110 15,460 0.158 23,710 SlHDU1i 168/e rA with heavy hex nut (27) #14 2-43 (2-18)1 1 11,100 1 0.125 17,500 0.250 24,955 2-54 t2-16)8 12,175 1 0.125 19,445 0.243 29,825 Steel ffxtitree 12,945 1 0.111 20,680 0.163 31,715 - These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong -Tie for details. 1. The designer shall specify the foundation anchor material type, embedment and configuration. Some of the tabulated holdown tension loads exceed the tension strength of typical ASTM A36 or A307 anchor bolts. 2. Stud design by specifier. Tabulated loads are based on a minimum stud thickness for fastener connectlon. 3.'/a" self -drilling screws may be substituted for #14 self -tapping screws, 4. A heavy hex nut for the anchor bolt is required to achieve the table loads for S/HDU11. 5. Deflection at ASD or L RFD includes fastener slip, holdown deformation and anchor rod elongation for holdowns installed up to 4' above top of concrete. Holdown may be installed raised, up to 18' above top of concrete, with no load reduction provided that additional elongation of the anchor rod is accounted for. 6. The Nominal Tension Load is based on the tested average ultimate (peak) load and is provided for design in accordance with section C5 of AISI 5213 that requires a holdown to have a nominal strength to resist the lesser of the amplified seismic load or the maximum force the system can deliver. 7. See Fastening Systems catalog (C -F-2019) on strongtie.corn for more information on Simpson Strong -Tie fasteners. Holdown Raised Off CFS Bottom Track C SS 1 Is Shearwafl Typical S/HDU chord studs Floor -to -Floor Installation Holdown 9 bearing Holdown plate ----Rad 18max, 12L5°slope max. (1 l !! n — Cuupler Top ofBottom d8 concrete 4 1.5' max. d track Holdown Raised Off CFS Bottom Track C SS 1 Is Connectors for Cold -Formed Steel Construction ■ " • e• Anchor Bolt PAB Anchor Bolt --- Anchorage Solutions Design Criteria Diameter {in.) Anchor Bolt 2,500 psi Concrete 3,000 psi Concrete Code Ref. Dimensions (in.) Tension Load (lb,) Dimensions (in.) Tension Load (lb.) de F ASD LRFD de f ASD LRFD 112 PA84 41/2 7 4,270 6,405 4 6 4,270 6,405 O PAB5 4 6 4,030 6,720 4 6 4,415 7,360 6 9 6,675 10,010 51h 8'h 6.675 10,010 3/4 PA86 512 81h 6,500 10,835 5 71h 6,175 10,290 71/2 11'12 9,610 14,415 7 10'12 9,610 14,415 PAN 6 9 7,405 12,345 5112 8'h 7,120 11,870 9 13th 13,080 19,620 81h 13 13,080 19,620 Wind O PA1371-f 9 13112 13,610 22,6B0 81h 13 13,680 22,805 14 21 27,060 40,590 131h 201/s 27,060 40,590 PA38 8 12 11,405 19,005 Ph 11112 11,340 18,900 16 17,080 25,565 10 15 17,080 25,560 O10'12 PABBH 10112 16 17,150 28,5BD 10 15 17,460 29,100 161/2 25 35,345 53,015 151/2 231/2 35,345 53,015 11/8 PAB91 q 9 131/2 13,610 22,680 8 12 12,495 20,820 121h 19 21,620 32,430 12 18 21,620 32,430 11/4 PAS10, 14 21 26,690 44,035 13% 201h 26,690 40,035 200 1h PAB4 5 71h 4,270 6,405 41/2 7 4,270 6,405 5/8 PAB5 6112 10 6,675 10,010 5 9 6,675 10,010 3/4PA66 71h 11'12 9,060 12,940 7 10% 8,945 12,780 8 12 9,610 14,415 7'h lith 9,610 14,415 PAB7 9 131/2 11,905 17,010 81/2 13 11,970 17,100 10 15 13,0B0 19,620 9112 14'1/2 13,080 19,620 PABZH 141h 22 25,350 36,215 13% 201/2 24,65D 35,215 151h 23112 27,060 40,590 141/2 22 27,060 40,590 Seismic 1 � PABB'� 11 16112 15,996 22,850 101h 16 16,435 23,480 11th 17th 17,080 25,625 11 161h 17,080 25,625 PA88H 17 2516 33,045 47,205 16 24 32,720 46,740 18 27 35,345 53,015 17 251h 35,345 53,015 11/8 PAB9 121/2 19 19,795 28,275 12 18 20,255 28,940 131h 201h 21,620 32,430 12112 19 21,620 32,430 1'/a PAB10 141h 22 25,350 36,215 14 21 26,190 37,415 15 221/2 26,690 40,035 141h 22 26,690 40,035 1. Anchorage designs coArm to ACI 318-14 and assume cracked concrete with no supplementary reinforcement. 2. Seismic indicates Seismic Design Category C through F and designs comply with ACI 318-14 Section 17.2.3.4. Per Section 1613 of the.IBC, detached one- and two-family dwellings in SDC C may use wind values. 3. Wind includes Sesmic Design Category A and B. 4• Foundation dimensions are for anchorage only. Foundation design (size and reinforcement) by Designer. The registered design professional may specify alternate embedment, footing size, and anchor bolt. 5. Where tension loads are governed by anchor steel, the design provisions from RISC 360-10 are used to determine the tensile steel limit. LRFD values are calculated by multiplying the nominal AISC steel capacity by a 0.75 phi factor and allowable values are calculated by dividing the AISC nominal capacity by a 2.0 omega factor. 6. Where tension loads are governed by an Appendix D concrete limit, the allowable Stress Design (ASD) values are obtained by multiplying Load Factor Resistance Design (LRFD) capacities by 0.7 for Seismic and 0.6 for Wind. 11. SIMPSON Strong -Tie V 9. 2F min.► Design loads are calculated using a full shear cone. Coverage on each side of the bolt shall be a minimum of F or reductions must be taken. wei EL 0 V C 241 Mc Project: A H - C MA i Ci22Ar No: 1©ZT , ZB Page: G-7 McClendon Scope: J?AuCTtG- 4 Date: 2 Checked by: Engineering Inc Item: By: �LF —wrc.+� 53 ALF 14 z�* rgAX 'C)2NG FZV-eE = 26aZD + 7 SSL = _5D yO V + RL C MS i 1�l r j COIL- 5Ti2NP tj/ N M E 4+ U) M t/7 i= U L- 0 Q V W C it D U t0 i 280 Conne'ctars.for Cold-Fbmted Sfeef Canstruction Coiled Straps CMSTC provides countersunk fastener slots that provide a lower screw head profile. CS, T CMST and CMSTC are continuous utility >t { straps which can be cut to length on the I job site. Packaged in lightweight cartons , CS16 Hole Pattern Fasteners (a be (about 40 Ib.). (a8 other CS straps similar) symmetrically placed Finish: Galvanized. Some products available in ZMAX" coating; see Corrosion Information, pp. 18-21. InstalfaVon: • Use all speciffed fasteners; see General Notes. • Refer to the applicable code for minimum edge and end distances. • The table shows the maximum allowable bads and the screws required to obtain them. See footnote #1. Fewer screws may be used; reduce the allowable load by the code lateral load for each fastener subtracted from each and, Codes: See p, 11 for Code Reference Key Chart A t�gri uc.uce 77 CMST14 Hole Pattern (CMST12 similar) 6 R 4 i u rt rll5ttra .t6 r3V7[iE < �*" � � h f^3 bF--a CMSTCI6 Hale Pattern Gauge stamped on part for easy identification. SIMPSON Strozlb Tie Screws not C required +'n Width (in,] clear span Allowable Tension Load (lb.) Cade Ref d Provide minimum 3xjer'd m(f (20 ga.) ie g1h diameter end distanper CMST12z 40'-3" code for CS and 3 (104) 210 Equal num/ (40) #10 specElied s in ea 52°=fi Typical CS installation as a Floor -to -Floor Tie Model ffa. Total Length Connector hicks al Thickness mil (4a.)33 Width (in,] Fastpnersa{Total) Allowable Tension Load (lb.) Cade Ref Rafler/StodiJofst Thickness 33 mil 20 ga. 43 mil (18 ga.) 54 mil (16 ga.) m(f (20 ga.) 43 out(i8 ga.) 54 mill(1S ga.) CMST12z 40'-3" 97 (12) 3 (104) 210 (70) #10 (40) #10 9,080 Ch ST 42 52°=fi &8(f�fJ 3 (74f10 (�ioilfto CMSTC 54' 54 (16) 3 (54) #10 (36) co (30) ou 4,600 CS14 100' 68(94) 1% (28)#10 OB)IF10 (14f10 2,305 CS16 150' S4 (16) 1 y4 (18) #10 (12) #10 (8) #10 1,550 IP1, L2, FL CS1a5 1.00' 43 (ill) 1114 (14) #10 (to) #i0 (6) #10 1,235 CS18 200 1 y4 (14) #10 (10) #10 (6) #10 1,235 CS20 250' 33(20) 1'/4 (12) #10 (8) g10 (6) #10 945 GS22 304' 27 (22) 1 h (10) #10 (6) #10 (6) #10 775 10 These products are available w th additional corrosion protection. Additional products on Vs page may also be available with this option. Check with Simpson Strong Tre for cl tails. 1. Use half of the fasteners in each member being connected to achieve the fisted loads. 2. For CMST straps: End Length (Inches) ='h total fasteners x rW + 1' when all holes filled. Double length if only round holes filled. 3. For CMSTC16 straps: End Length (iitches) - rh total fasteners x -W + i' when all holes filled. Doude length if only round holes filled. 4. For CS straps: End Length (Inches) ='/z total fasteners r 1'. 5. Total Cut Length = End Length + Clear Span + End Length. No. of Screws Used 6. Calculate the connector value for a reduced number of screvvs as follows: Allowable Load = x Table Load Example: CMSTCI6 on 54 mil with 24 screws: 24 Screws (Used} x 4,600 Ib. = 3.680 ib. No. of Screws in Table 30 Screws (rable) 7. Loads are based on lesser of steel strap capacity and A1SI S100 fastener calculation. 8. See pp, t38 through 171 for more information on Simpson Strang -Tie fasteners. z 0< d E U F c5 0 z 0 a in 0 A 0 w ti U 5� Project: t?r�+bl�+'c►4 fit No:McClendon Scope;_ HJT � T iC !� _� Dote: �/�� Checked by: Engineering Inc Item: -- By.-,— ��4. _ o�paz r c , _ Fu -L. Fi T 14 A' a TYPO. r., ait .. 'r' r, �,�::-► CvGx f:X ar ra . fir k k t F z -t O cV I} V r r W in rD UD W u) m m m N d m E D O D O } In Lrr co r ... G m v m Ur] W [fl v W tY] l0 M UO W W 4 co UD W N d p m m m O 'a O v [p x d o 0 0 0 d 0 b Ci O O d 0 v Q 1 m P O O N O r M m M1 r O U.0 1 w � v — C � m >` fA wm M W LO UA � Wm r QY r O N N N M O O O y w o a : o M m v m o a o o v cfl n x C N CII o 0 N >n v d O eT m co N O F N N N N N N N N u" N LO N v N v N M1 N n N n N r N x r W v o v W N D W o rn r r M a v = N a o n v m Uo a N N v UD v W v N sn M 10 N N d W 'Ur r N CO is U X N N N N N N a Lo M b Un Ncn m m m m UA v O) N_ m m m m O rn r LO Lo to co to nm U? �z in o r Uri Lo r co ui c, r of LO co co w J M y Oni m V r`- M v m M1 c0 r- 0) .� m yr 7- M ct Y n m ui r N <7 f� N r Q 0 U C 3 O a r J@ M O (D Uz) CD Un cD M UD U{7 c0 v .- v o V Q [h w O v m v d r o m a Ca o d J Y Q r v to cD v m N M tr Lo O r v ri m v W! Lo N n' V7 r r v N n C n 771 rh F- m O co sr) m O 'o L" m O W "I M O Lo Lo n" U (Y Y r r--: O W m W W W r h O [*) a0 Uz7 co W r 3� O m m W r O .Ti co O E N 0 0 0 6 0 0 0 0 6 0 W CU W o r 0 e0 p W 4 W 0 C U C U d @ @ U C_ E LO CO rp m cD O co N W Lo m CO O W m co O W m w m "c rn d m a"'a or v m o C'i LWr> cro aoi o m 3 a m a" o 0 0 0 0 o a o w a H m m o c V) w v U a Q C L LO 0)--- r oa o n U-) r E (D "� M r. o CO r r W W h N m 0 r 0 rn LO to c- m Cl) M rn Uj) n m N G) < a) "� -0�. y L ..- N m m v N M v v N m IT Uri N O M n m rD v O N tE O Z In C @ } r%J N N C%1 � > rrJ O (U _ 0) Lo O u) Lo OLO m O LC) Lr) O O Un Ln 0 O LO U ) W O a 'o C Q! h r Q .A' .0 O O O d a O OLO O O 00 d 6 4 r- 10 O O L_ @ II id Z p p O p 0 0 C) p O 0 C) 0 0 0 o O CO L�L LL z F CO v m N (rs v M N (D v m N W v M N U 1 O O O C) Ln Uri to X' O O 6 p Iq 4i Un Ln m f6 m m m m m m M v v v v N N N N X C_ X x x x X x x X X X X x x x X X Q d O 0 o p a 0 0 0 0 0 a p 0 0 0 — r UD UD rD co <o rC Up co w cc cD w r r [� r F1 r0 v m c0 v m_ N rD y m W P m N Z U U U _N U UU U U U U U _N U C7 U U U C O CI mm O o m 4 m 'o m tf Y UA f7 M Lo [+} O v v Q v N N N N U X CO X a X p X 0 X 0 X ]( 0 0 )[ C) X p X 4 X 0 X 0 X X 0 X 0 X 0 x N W cD co Un to UD O Cc p ro p 40r r r r I -t O cV I} V Mc McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT