Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Structural Calculations - Building H
Mc McClendon Engineering Inc TAHOMA TERRA BUILDING H STORAGE Yelm, Washington FINAL STRUCTURAL CALCULATIONS June 30, 2023 Prepared for; Keimig Associates 307 D Street SE Auburn, Washington 98002 Prepared bL. is McClendon Engineering Inc 1412 West Idaho Street, Suite 240 Boise, ID 83702 Project No.: 1028.23 DE McClendon Engineering Inc TAHOMA TERRA BUILDING H STORAGE YELM WASHINGTON 1028.23 TABLE OF CONTENTS Page Number GENERAL: Tableof Contents........................................................................................................................ DesignLoads............................................................................................................................... Z Materialsand References............................................................................................................ 3 DeferredSubmittals..................................................................................................................... Special Inspection............................................................................................................. .......... ProjectDescription...................................................................................................................... GRAVITY DESIGN: RoofFraming............................................................... Roof Panel Purlins LintelDesign .............................................................. ey WallDesign............................................................... /8 Foundation Design.......................................................... 2-/ Wall Footings LATERAL DESIGN: Lateral Analysis ....... ..................................................... Z19 Wind Base Shear Seismic Base Shear Diaphragm/Chord Analysis ................................................... '3.5' Shear Wall Design.......................................................... t-1 X -Braced Walls MC McClendon Engineering Inc GRAVITY DESIGN LOADS: Roof Dead Loads Roofing: - Decking: 2 psf Framing: 2 psf Insulation: 2 psf Ceiling: - M & E Collateral: 3 psf Miscellaneous: I psf Z Roof DL: 10 psf Roof Live Loads Snow Load: 25sof _ Roof LL: 20 psf Floor Dead Loads Flooring: SOG Framing:_ Insulation: M & E Collate Miscellaneous: E Floor DL-.— Floor L: Floor Live Loads Occupancy/Use: Light Storage Floor LL: 125 psf Occupancy/Use: - Floor LL: - Wall Loads Interior Stud Wali DL: 7 1sf Exterior Stud Wall DL: 7 psf CMU Wall DL: 55 psf LATERAL DESIGN LOADS: Wind Loads Seismic Loads Wind: 115 mph Site Class: D - Default Exposure: C Seismic Design Category: D MWFRS: Simple Risk Category: II Diaphragm Importance Factor: 1.0 LOAD COMBINATIONS: Design Method Strength Design: Basic Load Combinations ❑ Allowable Stress Design: Basic Load Combinations ❑ Alternative Basic Load Combinations ,K TAHOMA TERRA BUILDING H STORAGE YELM WASHINGTON 1028.23 R: 4 Q: 2 p: 1 SDs: 1.03 SDI: - MSFRS: X Braced CFS Walls MC McClendon Engineering Inc MATERIALS: Steel Shapes FY= 50 ksi Plates/Angles/Channel: FY 36 ksi Hollow Structural Shapes: Fy = 42 ksi Pipe: Fy — - Bolts: A325 Anchor Bolts: A307 REFERENCES: Soils Bearing Pressure = 1500 psf Source of Information: assumed Frost Depth = 18" DEFERRED SUBMITTALS: Steel: Steel member layout Joist/Joist Girders Layout ❑ Meta] deck layout Wood: Engineered Truss Layout ❑ Cold Formed Steel: Steel member layout SPECIAL INSPECTIONS: Fabricators ❑ Steel Construction Concrete Construction ❑ Masonry- Level 1 9 Masonry- Level 2 54 Wood Construction ❑ Soils ❑ Deep Foundations ❑ Special Cases z Seismic Resistance ❑ Other: ❑ Wood Sawn Lumber: G]uLam: Eng. Product: - Light Gauee Steel Fy: 55 ksi Codes Used 2018 IBC TAHOMA TERRA BUILDING H STORAGE YELM WASHINGTON Concrete f,= = 2500 psi fy = 60 ksi Masonry T.- m — 1500 psi fy = 60 ksi Software Used USGS Enercalc Concrete: Mix Design Reinforcement Layout Masonry; Mix Design Reinforcement Layout Other: ❑ 1025.23 MC McClendon Engineering enc PROJECT DESCRIPTION: TAHOMA TERRA BUILDING H STORAGE YELM WASHINGTON 1028.23 The Structural scope of work for this project consists of. • The design of a single story light -gauge steel framed storage building. • The gravity system for the building consists of a light gauge steel framed roof supported by steel frames, light -gauge steel framed walls. • The lateral system for the building consists of a simple diaphragm, light framed shear walls reinforced with flat strap cross bracing. o The loads are transferred from the diaphragm to the framed shear walls, to the foundation. Mc McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLANK o- Sl— W :) E mc Project:5�- ma :E-2No: Page: b McClendon IcOPI: "D7V�uo-r7 Date: Checked y: Engineering Inc Item.- By: gnoF 4wA INC, . . . . . . .. .. . V zlk, MCELROY METAL Medallion -Lok 1619 f r 134" i .- ......._. .. _...- 1.6" COVERAGE . ... • i IP IN COMPRESSION BOTTOM IN COMPRESSION GAUGE FY WEIGHT Va P11end Pa 1nl 1x SeMa -A. Ix Se Ma (KSI) (Ps>) klpfft. lbslfE, fbslt (in `1{t.} (in.3/it kip -in {in'it.) (in.lift.) kip -hot 24 50.0 1.30 0.7800 218.40 351.60 0.0860 0.0561 1.6800 0.0400 0,0479 1 1.2480 f. Section pmper0es are calculated in accordance with the 2004 NSI Wath American Specification for the Design of Cold -Formed Steel Structural Members. 2. Va is the allowable shear. 4.50 c 6G 3. Pa is the allowable load for web crippling on end & interior supports. 6OQ 5 S' 4. Ix is for deflection determination. 7 5r _ & Se is Tar bending. positive Wmd 6. Ma is the allowable bending moment. 497 280 7. Alt values are for one foot of panel width. 124 91 Allowable Uniform Loads (PSF) Notes: 1, Allowable unifolln loads are based upon aqua[ span lengths. 2, Positive Nhnd is wind pressure and isNOT increased by 33 113 %, 3 Live is the alliraabfe live or snow load. 4. Deflection (CUBO) is the apowable load that [units the panel's deflecilon io U180 while under positive or Ilya load. 5. Deflection (,01240) is the allowable load that limits gre panel's deffectlon to 0240 while antler positive or live load. 6. The weight of The panel hasNOT been deducted from the allowable foads. 7. Positive wind and Live load values are limited to combined shear & bantling using Eq. 03.3.1.1 of the AiSI Specification. S. Values orASTM El 592 Wind Uplift Testing include a factor of safety of 1.67. Shaded areas are outside of lest range. Contact McElroy Metal for more information. 9. Positive Wind and Litre Load values are limited by web crippling using a bearing length of 2". 10. Web crippling values are determined using a ratio of the uniform loadactually supported by the top flanges of the section, 11. Load Tables are 6mtted to a maximum aiicwabie load of 500 psi, S ani e# Span Type 'Load Type 1.00 1.50 2.0G 2.50 3.00 3.50 4.00 4.50 c 6G 5 J1 6OQ 5 S' 7 5r _ v positive Wmd 500 497 280 179 124 91 70 55 44 37 31 28 22 19 17 15 Single Live 500 497 280 179 124 91 70 55 44 37 31 26 22 19 17 15 Deifection(LJ180) 500 500 Sao 481 278 175 117 82 60 45 34 27 21 17 14 12 6eifection (IJ240) Soo 500 500 360 208 131 88 61 45 33 26 20 16 13 11 9 Positive Wrad 500 337 197 f28 90 66 51 40 32 27 22 19 16 14 12 11 2 Span Live 500 337 197 128 9066 51 40 32 27 22 14 l6 14 12 11 Deflection (L;180) 500 500 500 500 491 309 1 247 145 105 79 61 48 38 j -311- 21 Deflection(L1240) 500 500 500 Soo 308 232 155 109 79 59 46 36 29 1 23 19 16 Posltive Wind 500 407 241 158 111 82 63 5o 41 34 26 24 21 18 16 14 -L'= `:D 5CB 47 - 241 5C. 198 5%0 1 1 394 x 242 .- .-_ Rz .'.d 41 B7 34 1 62 2: 48 i; 37 I 11 37 18 24 !'S 20 1.1 i3 Oeflec6on (1!240) 580 1 500 500 498 266 181 121 1 8552---F 46 35 28 1 22 18 15 12 Positive Wnd Soo 385 227 148 104 77 59 47 38 31 26 22 19 17 15 1 4 Span Live 500 385 227 149 104 77 59 47 38 31 26 22 19 17 15 13 Deflection (1-1180) 500 500 500 500 408 257 172 121 1 83 66 51 11 40 32 26 21 17 Oeflection(LJ240) Sop 500 500 500 346 192 129 90 1 66 49 38 30 24 19 16 13 ASTM E1592 Wind L1pGR Testing 1 69.5 1 51.1 52.9 49.1 1 45.2 1 41.3 1 37,7 33.8 30.1 NO TEST DATA AVAILABLE Notes: 1, Allowable unifolln loads are based upon aqua[ span lengths. 2, Positive Nhnd is wind pressure and isNOT increased by 33 113 %, 3 Live is the alliraabfe live or snow load. 4. Deflection (CUBO) is the apowable load that [units the panel's deflecilon io U180 while under positive or Ilya load. 5. Deflection (,01240) is the allowable load that limits gre panel's deffectlon to 0240 while antler positive or live load. 6. The weight of The panel hasNOT been deducted from the allowable foads. 7. Positive wind and Live load values are limited to combined shear & bantling using Eq. 03.3.1.1 of the AiSI Specification. S. Values orASTM El 592 Wind Uplift Testing include a factor of safety of 1.67. Shaded areas are outside of lest range. Contact McElroy Metal for more information. 9. Positive Wind and Litre Load values are limited by web crippling using a bearing length of 2". 10. Web crippling values are determined using a ratio of the uniform loadactually supported by the top flanges of the section, 11. Load Tables are 6mtted to a maximum aiicwabie load of 500 psi, DE MC Projecf:—:TTn,1--VOYv-LeK No: IOZRIL3 Page:—S D McClendon scOP"-" ate. Checked by: Engineering Inc Item-, By: 0 -,O P -S T, 7— gov oe7 1: wipt- /0pp L71 FLA -r, O _ r N • rn n o of m oo ro n v .n r� w r o '�• X Q Q Q Q O O D Q Q O O � p O a O I y r m 6Y O N r P C'J 61 r r r DJ d � N t? CI P r N N i'J •- '- N n t'T � R.` r `� n ai n n vi n n n n en ai �'i sr; vi e j t'i I- n o rr 0 vJ r N r N m t7 n r C7 m In N m n n W n m N n P r� m o N �- CV eq M N NJ M N P z lo mC W S7 m m W N Ql n� N r CJ Q m [!S N N n .- N N M .- [V (V n NI N P M Y 6] u P W m m m m In P sn w vJ n d ^ n N n N m a N N m a] m r Q N C O vi r M m m 4 LV N n V C2 v CO (`I O r r r r r - r ry O LO m� P O C) V' Q Fl Q Q t7 an P r � � m ro'' Q 00 cS Y wi m n o z m n of ori n ai N n �n N E �3 .�,_. •- G 4 C OJ m m M Obi Y@ W t vJ p�� T O - Q fJ� o Q a N �n n a m in v� m A M va m ur m m M m x m m 0 0 s 0 0 rn C ai 0 m 0 m 0 vo 0 Cr Q C+ 0 0 CJ 0 C� 0101 � Z In 3 vi ti '� N m o � P� N n m P r W ♦� m m� n 4 4 O O tu OJ r en T P C1 T ul r] m N n di th W v In o CL 0 9 y 0. U m P ttJ tC� m 4 u5 ch d of uy CJ bN N J C u] r m P m n 4 V1 r W O lA n m P O 4 O W P 9 P b P O 6 0 o O o o o wvcJNavnNrnv NWQr'N r 1 11 ` Q m n CJ ori m r r CS 17 In r vJ n a� n ui n m N vJ n m N us n OR N +n r ri N vJ r cJ N nm r ci N r rJ � n � u� n n �n n �n n X X X X X X X K X �x % x X Iq N r r n w N N cli% q x X X X o o x x r a o O Q aX P p Q O Q O O O a N N o N Q J 4�1, Pic, o m rn O MC rroject:- �aom—A 1�� Scope: - r+) No: ) (07 R. SA Page: 10 Date: Checked by: McClendon Engineering Inc Item: By: fzoor- t N, C4 DCJ IJL-`i�mn (PuVzur? y` ?A-imaS /0'-0" Psi (/61st �5v* { I I , > 1 l z 'WA- q( ! E E ` � 1 a 9 i i , F Y ' 4 } i S 3 MJ Project: JA—yk6MA ��p_A No: 1d .Z3 Page: McClendon Scape: 5T'i�' u.e� T G)Cz � Date: S 2 Checked by: Engineering Inc Item: By: .a ��>� �t-cwt, - (��� Ca� E�#��2u►� s��o�-�) C�I�QCa �) s 1_o'� m Zs� ,1,6 ` E ? f � i ` s F 2 � t } ��.. } i F fi ) C Lp� �) tO u, v v LO Ln to to - CD to v o a a o 0 v rn� rn rn 45 o 0 o c°1i � ocio dr +f. r r co M M h IO lh V h m r N CA fD W N O m V 07 CA C v m 0 CO ID r m 4 M m M O ai u5 tIl r0 M V M In O p OR O 616 O O O r r p O 0 0 0 0 C1 O d C O O p iD V N CO r v O] h p Q? tob h O O h IO O m M 'ct C71 O N m O r 7 r O M th to E co O O N ao 4 O 7 O 0 V O] O O m N to V m p N N . C m � m m F.- hO O r M N r_: Ir+ m m 0 7 _4 N N N N N N N N M C�s C7 (*j m m m M tir• M N W m ib M rD m 07 O N m to to Q C? N p Ib V N (O r h 3� r n m (� #M— &NIMIN b O I¢vClC1N� M h M 4 CV til r%i O h til O I r m M to m O g 0 m q 0 LU i6 !x m h rn aO h Of u? V p cq v o M " rti N N V h N U r• } t6 '6 0 m h O mhO m m. Ih o m vv N i N O Mo vh m o W'.'rcl c O Q v iri ao v ui co ;D v tri r CD v tri r C Ln a In m h co O ID of co Cl ID 0m g m tii M O m LO D p Ia. b _a C r h g m M tD m m r r b m m m m m h 1� 0 m m ap co m h M1 b m is m m m G C O N O R Ch V C LO �v N N m r t[7 m M CO O V' m r m tf7 m h N CO m KS m O m QJ C y C m O r� [A r M m N m r CR W r W 7 m m v O r N m u] Q O O r r O r O q O a TlO m b c f!1 c 6] .2 u c ¢ ui Ip i. m CO r M CO o m h m to i+ to h m tt5 g7 3" N C7t g r M N o r OY O� 1� b p p rN r sn M to C) Q 4} 'D Ja a "' N M V til Q .^ M M IQ v m 0 h N . . G? v p m N U( M (i V M tri p a a 0 o O z y m VJ N Cn C N r Y (n N 32 .� Lo O d N _ tT O to u) al O to tD 0 O m to Ot q in u) O -O tD r Y C 0 co 0 [JJ a C if II ._ . iq O q p O p p q g 0 0- 0 0 p q q Qt N L q O o 0 0 0 d p O p p z U) x W LL LL 0 H Z C} m VM N p V m N ID �Y M N g V M N UJ tts r r r r r r r r r- 3 0 0q 0q 0 0q m til tis u7 O p 0 0 X� X X X X X K ❑ L� 0 0 0 4 0 0 0 0 0 0 6 b t0 o p n h r r r h � h co a5 0; co co co co co Y N m M N_ �2 7 M m C Z U _V U U U U U U _N U r Y U C3 U U U O O O O O K O X g K 0 O X (toy tt7 til O t7 C! O b X O X O K O X O O O O O �( O Q p O O 4 O x m ,t r n h h h r r m ad w w co xi of MJProject: No: Page: IL( M cClen®n Scope: Date: Checked by: Engineering Inc Item: By: (Nap.% - 3 6 15 PAArTM ti e05 TC Z 13Q Fr X A LL tl ILE 4 C. I� G A- Mj " !9 Project:-77Aior No: I QZJ-5s ZZ Page: McClendon Scope, Date: Checked by: Engineering Inc Item: By: .. . ... .... bsx Ca s 5pow jo'-8" ez, L PLA,l r F, 01 113 ZSz, FT-, is/ 0 Z-5 IN DE MC Project:-�1+oyvk -FTbZY2-A No: IMBIL5 Page: 1(0 McClendon Scope: Date: ...... Checked by: Engineering Inc Item: By: PSP'` ?761,- M1011 VC-0 [ff). 41, fln, '16 GA- law Bsv�m, 757 6s s- (B75 vg C. 1 -4 J O Q N. N .n C 2 CL (D cn C 0 .N a) af 17 N b m SD M N O QO Cp u'] N 4 CS N f u r M1 O cD � 'r� d' n i` M1 Cr rn 01 rn m m m 0 rn 0 Cn 0 m o m Ci rn 0 Ili 0 rn 0 h Y o m m rA Y'y VI �C N 0 Com) e'1 M O m t C, n MQ_ .yam C) CS O C) 0 0 0 0 4 a O 01,21 ,2 Mm o M o M QJ d0 7 O1 P o b d m PC n co fD c*) M1 m N N N m co .y M M q 47 06 i� T D W O to W O CD CJ G m Ci 0 Q p O o o O O C r v VW N m LD W O m -4' x c0 m N 47 co N O 0 o 0 I>a I, O w l d' u to to � 1n c0 IQ m O O O 07 T q (`� m M � x ` iC.-. m N IA W O) M O LR m 'cf r LO N 1 M1 Q1 C7 n ti V r i {:i L7 C7 C7 T ,i M -R t� O r] c 7 G m r r 7 7 M _ 4 N ri :3--o: Q LO In ti N (`'� P f�O b o 0a P.tm SA N In Lq W N C- In 0 P m tD c.4 mM G7 co N r N N N ['� M V M 4 L6 cS J w N N co M .� In c0 07 N V' M In m Q) N �Y O� O Q c0 Q1 m b In M1 N > 2- co d d M aO C O ¢'] m 4 co 47 m fl] {� C7 f0 F, m m 6 h h7 6 6 M 6 1� r C r m CD Q r W O i+ V n If) N I -W v M1 N 0 N I- d W b r •-% sn IID M1 CO N O I') 6 Sn 13 W l! ) C] W to RJ o (p to M [] cG Y1 M O fD I!F 'o o f2 O M W f" O o w M1 O m m M1 Um= C7 �°- ti m es W I� W m m r- W eo m r co co m E N C P Q 4 P Q P 0 o C3 0 0 0 CJ CJ 4 C7 O C U O p D u — _ m Ivj E �n W -W In co o m v m In a*s m� �' c 0� n oMi IIa_ m o ro n CC' Q W o N MCL Q_ 0 0 0 o 0 6 0 o c o a o - 'oU s? � a y m v m c s 'o`a � a> of c, r. cv b Mro i` I-cn o � v n � a _" ui p 7 •-Lq ti V i i y¢ CL 7 7 n1 N m n o4 ^J V Z5 0 p z@ � w ,N ui c Cl) o e Lo r m o �a o °' e o oQ �,�� Lo Nm o ao�d�do�r�o�ro�� co ro u u P ri o a o c� o ca o a o 0 a o o0 z W C C7 N O M N ID �f C] N (D G' N �J s r n C.; I� o o in Un In In In In In In In Un in In 'E Q] [V V CN N" N N N N" N N N N N N X C X X X X X X X X X X X X X X X X O 0 0 0 0 0 0 o g O 0 0 0 a d t v Q v tt v a v m ui LO co n m r i i m U U U UU U U U U U U U U U U O co �Q O i[2�'1 X to X I{� N IA k7 49 V7 h In X 4A CN .0 o o C] o o Q C7 Q O 0 O O o x 0 C 7 <f +S K 'C I6 +i) di W it co 1 -4 J O Q N. N .n C 2 CL (D cn C 0 .N a) af 17 Project-, No: Z Page: i McClendon Scope: I _ Date: Checked by: Engineering Inc Item- cy .J kA -J LIQ 141 ; YIZ 1-7 t,i lc - Zc],Zpsx �lizY - ZS.C3p&F ZS.O }psi= t • Q 0 = fS'< p F_ .... i 2 Y TnY CI`c t` S Z -1r0„ C3 " K Z l X I& 4t4 5 rvo `s 4-0 ., C3 . C:., __.. Na:_ _% 23 Page: _ �.-- McClendon ScOPe:k-L��� _-_� Date: _.. 9 5 Checked by: Engineering Inc Item- I> tem: f ��a = 7 pt iJ,y = 3(�• pLr= r3+2(A t �E McClendon, scope;. D - tFG r,I Date, ' 2 . Chec€ ed by:..._.._. Engineering inc Ifem: &M, e _ SOK /47 I 1 � �14 Project: os t+4 Ifo: Page: 7-3 McClendon. Scale:Date" Chaciced by: Eng.inee,ring Inc Item- By., Yv) 1,3 S. 4- /go z-3 OF TTI� L L psi Eli OF 7-7-(,/SLAP. Sll(e C-Fs,, Wftj- Nz. 4-4 Checked by: Scope;_ :- MQClendon 11:1)0 Date. Engineering Inc item: By E McClendon Engineering, Inc. MC Boise, W. Idaho Street, Suite 240 Boise, Idaho 83702 (208) 342-2919 McClendon Engineering Inc Beam on Elastic Foundation DESCRIPTION: Grade Beam Project Title: 7-A ft m Or TS T,,,9 A - Engineer: Project ID: OZT-,,V$ Project Descr: Sdwn wonioN ENERCAIC. t- WdJO.119.1.30 . CODE REFERENCES Load for Span Number 1 Calculations per ACl 318-14, IBC 201% Load Combinations Used: ASCE 7 -ICD Material Properties - Fc 112 = 2.50 ksi Phi Values Flexure: 0.90 k= f c " 7.50 = 375.0 psi Shear: 0.750 ftr Density = 145.0 pcf 01 = 0.850 X U Wt Factor = 1.0 Elastic Modulus - 3,122.Oksi Soil Subgrade Modulus = 250.0 psi Kinch deflection) Load Combination ASCE= 7-10 fy - Main Rebar = 60.0 k3i Fy - Stirrups = 40.0 ksi E • Main Rebar = 29,000.0 ksi E - Stirrups = 29,000.0 ksi SUrrup Sar Size # = # 3 Number of Resisting Legs Per Stirrup 1.0 Beam is supaorted on an elastic foundation. D(a_sss s(o.se ats.3n1sto.se�) ot�.ee)wto.2ed) +(11.66) 5(`0.264) rxa.361sro.s6�) .,.► _Cross Section 6 Reinforcing Details Rectangular Section, Width =12.0 in, Height = 24.0 in Span 41 Reinforcing.... 245 at 3.0 in from Bottom, from 0.0 to 48.0 ft in this span Applied Loads Service loads entered. Load Factors will be applied for calculations. Load for Span Number 1 T, Uniform Load : D =1.680, S = 0.2840 Wit, Ex{ent = 0.0 ->> 0.6670 ft, Tributary Width =1.0 ft Shear Stirrup Requirememb Uniform Load: D = 3.361, S = 0.5670 klft, Extort =11.333 ->> 12,667 ft, Tributary Width =1.0 ft Entire Beam Span Length: Vu < Phi*J2, Req'd Vs = Nat Uniform Load : D = 3.361, S = 0.5670 klft, Extent = 23.333 --» 24.667 ft, Tributary Width =1.0 ft ' [1mum Force? & S1re3ses for Load Combir zbons Uniform Load: D = 3.361, S = 0.5670 k1ft, Extent = 35.333 -» 36.667 ft, Tributary Width =1.0 It Bending Stress Results (k -ft) Uniform Load : D = (.680, S = 0.2840 k1ft, Extent = 47,333 --» 48.0 fl, Tributary Width =1.0 ft Mu: Max Phi`Mnx Stress Ratio DESlGH SOMMARY + Maximum Bending Stress €iabc = 4).632: 1 Maximum Deflection -0.34 6.33 0.05 Section used for this span Typical Section Max Downward L+Lr+S Deflection 0.000 in Mu: Applied -3.369 k -ft Max Upward L+Lr+S Deflection 0.040 in Mn ` Phi: Allowable 6.335 k -ft Max Downward Total Deflection 0.013 in Load Combination +1.20D+0.WL+-1.60S+1.80H Max Upward Total Deffection 0.000 in Location of maximum on span 4.518 €f Span # where maximum occurs Span # 1 Maximum Soil Pressure = 0.468 ksf at 24.00 ft LdComb: +D+S+H- Allowabie Soil Pressure =� 1.50 ksf Cil Shear Stirrup Requirememb Entire Beam Span Length: Vu < Phi*J2, Req'd Vs = Nat Reqd, use stinups spaced at O.DOO fn ' [1mum Force? & S1re3ses for Load Combir zbons Laad Combination Lacaticn ffti Bending Stress Results (k -ft) Segment Length Span # in Span Mu: Max Phi`Mnx Stress Ratio MAXimum Bending Envelope Span # 11 1 47,435 -0.34 6.33 0.05 Z'� McClendon Engineering, Inc. CRE 1412 W. Idaho Street, Suite 240 Boise, Idaho 83702 1208) 342-2919 Project Ti le: I-M�omv r T1,-)Za i Engineer: Project ID: ((',' Project Descr, Load Combination Location (p) Bending Stress Results (%-ft) Segment Length Span # in Scan Mu; Max ph -,Max Stress RaSo *i.auu.+�,Qun 47.435 -0.28 6.33 0.04 Sparc # 3 1 47.435 -0.32 6.33 0.05 +1,200+0,50Lr+1,60L+1.60H 0.00 0.00 +1.20D+1.60S+D.50W+1.60H 1 Spar # 1 1 47,435 -0.28 6.33 0.04 +1.200+1.60L+6.50S+1:60H 19-12 Vu <PhNc/2 NotRegd +1.20D+0.50L+0.20S�E+1.60H Span # 1 t 47.435 -0.30 6.33 0.05 +t.20D+t,60Lr+0,E0L+1,60H 1.16 Span:4'1 1 47,435 -0.28 Span.$1 1 47.435 428 6.33 0.04 +1.209+t,60Lr+0.50W+1.60H 1.69 21.00 -0.97 0,97 Spa n# 1 1 47,435 -0.28 6,33 0.04 +1.200460L+1.60S+1,60H 6.33 0.03 1 2.26 Span # 1 1 47.435 -0.34 6.33 0.05 +1.200+1.608+0.50WA60H Vu<PhVc/2 Not Reqd 0.00 Span ## 1 1 Span # 1 1 47.435 -0.34 6.33 0.05 +1.20D+0,50Lr+0.501.+W+1,60H 2,73 Oyetaft Maximum Ddecffrans i Unfadared Loads 19.12 Vu < PhVc2 Span ;# 1 1 47.435 -0.28 6.33 0.04 0.10 0.00 1.00 +1.20 Di -0, 50L+0, 50 S+W+1, 60 H Vu <PhVd2 NotRegd 0.00 0.00 +1.20D+1.60S+D.50W+1.60H 1 0.56 4ai;# 1 1 47.435 -0.30 6.33 0.05 19-12 Vu <PhNc/2 NotRegd +1.20D+0.50L+0.20S�E+1.60H 0.00 +1.20D+1.60S+0.50W+1,63H 1 IA3 21,00 -1.16 1.16 Span:4'1 1 47,435 -0.28 6.33 094 090 0.00 +1.20D+1.60S+0:50W+1.60H 49094+0.90H 1.69 21.00 -0.97 0,97 1.75 1.00 19.12 Span ;*1 1 47:435 -0.21 6.33 0.03 1 2.26 21.00 +0,900+1 +4901-1 0.77 2.30 1.00 19.12 Vu<PhVc/2 Not Reqd 0.00 Span ## 1 1 47,435 •0.21 6.33 0.03 458 0.58 2,73 Oyetaft Maximum Ddecffrans i Unfadared Loads 19.12 Vu < PhVc2 Not Reqd 0.00 0.00 Load Camhination Span Max. "pep Location in Span Load Combination 21.00 May, '-t' Dell Location in Span Span 1 1 0,0130 24.000 NotRegd 0:00 0.0000 0.000 Maximum DeffeWons for Load Combinations = Wdictored Leads. 3.95 21.00 417 0-17 Load Combintion Span Mak Downward Deft Lacation;in Span Not Reqd Max. Up% and Deo Loca6oh in Span +1.200+1.80845OW+1.60H +D+H 1 0.0111 24,000 0,03 0.0000 0.000 18:21 +D+L+H 1 0.0111 24.000 4200+1.60S+0:50W+1.60H 0.0000 0.000 21.00 +D+Lr+H 1 6.0111 24:000 19.12 0.0000 0.000 0.00 +D+S+H 1 0.0130 24.006 0.0000 0.000 «D+0.750Lr+0.750L+H 1 0,611 24.000 0.0000 0.000 +D+Q.750L+0.750S+H 1 0.0125 24.000 0,0000 0.000 +D+4.6.04V+H 1 0.0ii1 24.000 10000 0.000 +p+q.70E+H 1 0.0111 24.000 0.0000 0.000 +D+0.750Lr+0.750L+0.450W-4i 1 0.0111 24.000 0.0000 0.000 +D+O.750L+0,750S+0.450W+H 1 0.0125 24.000 0.0000 0.000 +D+0.750L-0U50S+0,5250E+H 1 0.0125 24.000 0.0000 0.000 +160D+0.60W+0,60H 1 0.0067 24.000 0.0000 0.000 40.60D+0.70E+0.60H 1 0.0667 24,000 0.0000 0.000 D Only 1 0.0111 24.000 0.0000 0.000 Lr Only 1 0.0600 0.000 0.0000 0.000 LOnly 1 U000 0.000 0.0000 0.000 S Only 1 0.0019 24.000 0.0000 0.000 WOnly 1 0.0000 0.000 0.0400 0.000 E Oniy 1 0.0000 0.000 0.0000 0.000 H Only 1 0.0000 0.000 0.0000 0.000 Detailed Shear informafiorii Span Dislance V Vu (kj Mu d'Vu/Niu Phivc Comment Phi'Vs Spacing (in) Load Combination Number tit) tin) Actual Design (k -ft) Oki W Redd Sucaesi +1.20D+1.60Si0.50W+1.60H 1 O,DO 21.00 0.10 0.10 0.00 1.00 19.12 Vu <PhVd2 NotRegd 0.00 0.00 +1.20D+1.60S+D.50W+1.60H 1 0.56 21.00 -1.10 t.10 0.34 1.00 19-12 Vu <PhNc/2 NotRegd 0.00 0.00 +1.20D+1.60S+0.50W+1,63H 1 IA3 21,00 -1.16 1.16 1.09 1A0 19.12 Vu 1:Ph1W2 Not Reqd 090 0.00 +1.20D+1.60S+0:50W+1.60H 1 1.69 21.00 -0.97 0,97 1.75 1.00 19.12 Vu<Phivc,2 Not Reqd 090 0,00 4200+1.60S+0.50W+1.60H 1 2.26 21.00 -0.77 0.77 2.30 1.00 19.12 Vu<PhVc/2 Not Reqd 0.00 0.00 +1,20D+i.60S+0.50W+1.60H 1 2.82 21.00 458 0.58 2,73 1,00 19.12 Vu < PhVc2 Not Reqd 0.00 0.00 +1.20D+1.60S+0:50W+1.6GH 1 3.39 21.00 -0.38 0.38 3.06 1.00 19.12 Vu < PHV62 NotRegd 0:00 0.00 +1.20D+1.64S+0.50W460H 1 3.95 21.00 417 0-17 3.27 1.00 19.12 Vu<PNW2 Not Reqd 0.00 0.00 +1.200+1.80845OW+1.60H 1 4.52 21.00 0.03 0,03 3.37 0.22 18:21 Vu <PhVG2 NotRegd 0.00 0.00 4200+1.60S+0:50W+1.60H 1 5.08 21.00 0.24 124 3.35 1.00 19.12 Vu <PhV62 Not Reqd 0.00 6.00 '2-7 McClendon Engineering, Inc. Project Titte: -rA H-eyvi A T& E 1412 W. Idaho Street, Suite 240 Engineer. Boise. Idaho 83702 projectD scC�.75 (208) 342-2919 *0E�I1don Engineeidng Inc Detailed Shear Information Span Distance 'd' Vu (k) Mu d'VvXfu PH* Comment Phi'Vs Spacing (in) LoadCombineGon Number (ft) (fn) Actual Design (k -ft) (k) (k) Req'd Suggest +1.20D+1,00S+0.50W+1.60H 1 5.65 21.00 0.46 0.46 3.21 1.00 19.12 Vu <PhVd2 Not Reqd 0.00 0,00 +1,2GD+f_60S+0.50W+1.60H 1 6.21 21,00 0.68 D.68 2.96 1.00 19.12 Vu <Phyd2 NotRegd 0.00 0.00 +1.20D+1.60S-�0,50W+1.6011 1 6.78 21.00 0,91 0.91 2.57 100 19.12 Vu <POyrJ2 NotRegd 0.00 0.00 +1,20D+1.60S+0,50WA. 60H 1 7.34 21.00 1.15 1,15 2.06 1.00 19.12 Vu<PhVd2 NotRegd 0.00 0.00 +1.20D+1.60S+0.50W+1A0H 1 7.91 21.00 1.39 1.39 1.41 1.00 1912 Vu <PhVe12 Not Reqd 0.00 0,00 +f.20f)+1.60S+0.OW+1.60H 1 8,47 21.00 1.65 1.65 0,63 1.00 1912 Vu<Phyc12 NotRegd 0.00 0,00 +1.20D+1.60S+0.50W+1.6011 1 9,04 21.00 1.91 1.91 0.30 1.00 19.12 Vu<PhiVd2 NatRegd 040 0.00 +1,2GD+f.60S+4.50W+1,60H 1 9,60 21.00 2.18 2,18 1.38 1.00 19.12 Vu <PhiVd2 NatRegd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 10.16 21.00 2,46 2.46 2.61 1.00 19.12 Vu <PhiVd2 NotRegd. 0.00 0,00 +1.200+1,6DS+0.50W+1,60H 1 10.73 21.00 2.75 2.75 4.00 1.0D 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.200+1.60S+0.50WAMH 1 11,29 21,00 3.04 3.04 5.55 1.00 19,12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.6OS+0.50W+1,60H 1 11.86 21,00 0,74 0.74 6.59 1,00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.200+1.60S+0.50W+1,60H 1 12.42 21.00 -1.74 1,74 6.22 1.00 19,12 Vu<Ph71c12 Not Reqd 0.00 0.00 +1.20D+1,60S+0.50W+1.60H 1 12.99 21.00 -2.64 2.64 4,70 1,00 19,12 Vu <PhiVd2 Net Reqd 0,00 0,00 +1,20D+1.60S+0.50W+1.60H 1 13,55 21,00 -2,33 2.33 3.21 1.00 19.12 Vu <Ph,>/d2 Not Reqd 0.00 0.00 +1.20D+1.60S4,50W+1,6011 1 14,12 21.00 -2.03 2.03 1.89 1.00 19.12 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+O.50W+1,60H 1 14.68 21.00 -1.72 1.72 0.75 1,00 19.12 Vu <PhiVc12 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 15,25 21.00 -1.42 1.42 0.23 1.0D 19.12 Vu <PhiVr12 Nal Reqd 0,00 0.00 +f,20D+1.60S+0,50W+1.60H 1 15,81 21.00 -1.12 1,12 1,03 1.00 19.12 W <PhiVd2 Not Reqd 0.00 0,00 +1200460S40.50W+1,6011 1 16.38 21.00 -0.81 0.81 1:86 1,00 19.12 Vu<Ph01d2 Not Reqd 0100 0.00 +1.20D+f.60S+0.50W+1.60H 1 16,94 21.00 -0.51 0.51 2.12 1,00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1,60H 1 17.51 21.00 -0.21 0.21 2.41 1,00 19.12 Vu <PhiVc12 NotRegd 0.00 0.00 +1,20D+1.6OS+O.50W+1,60H 1 18.07 21,00 k.1a 0.10 2.53 D.91 19.01 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20()+1.60S+0.30W+1,60H 1 18,64 21.00 0.40 0.40 247 1.00 19.12 Vu < PNW2 Not Reqd 0.00 0.00 +1.20D+1.60S40,56W+1,60H 1 19.20 21.00 0.71 0.71 2.24 1.00 19.12 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.200+1.60S+0,50W+1.6011 1 19.76 21.00 1,02 1.02 1.64 1,00 1912 Vu <Ph$,vrl2 Not Reqd 0.00 0,00 +120D+f.60S40.50W+1.60H 1 20,33 21,00 1.34 1.34 1.27 1.00 19,12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.5OWA60H i 20,89 21.00 1.65 1.85 0.51 1.00 19.12 Vu<Phi Q Not Reqd OAO 0.00 +1.20D+1,60S+0,50W+1.60H 1 21.46 21.00 1,98 1,98 0.42 1;00 19.12 Vu <PhiVd2 NotRegd 0.00 0.00 +1,20D+1.60S+0.50W+1.UH 1 22.02 21.00 2.30 2.30 1.54 1.00 19.12 Vu < PhiVd2 Nat Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 22.59 21.00 2.63 2.63 2.84 1.00 19,12 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.2011+1.603-F0,50W+1.60H 1 23.15 211.00 2,96 2.96 4.32 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+i.608+0.60W+1.6011 1 23.72 21.00 1.39 1.39 5.63 1,00 WW2 Vu <PhiVd2 Not Reqd 0.00 0,00 +1.200+1.608460W+1.60H 1 24,28 21,00 -1.06 1,06 5.63 1.00 19,12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1,608+0,50W+1.60H f 24.85 21.00 -2.63 2.63 4.32 1.00 19.12 Vu <PhiVd2 Nat Reqd 0.00 0.00 +1,20D+1.60S+0.56W+1.60H 1 25.41 21.00 -130 2.30 2.84 1.00 19.12 Vu<PhiVd2 Not Reqd 13.00 0.00 +1.20D+1.60S+0,50W+1.60H 1 25.98 21.00 -1.98 1.98 1.54 1.00 19,12 Vu <Phkc/2 Not Reqd 0.00 0,00 +1,20D+1.60S+0.50W+1,6011 1 26.54 21,00 •1.65 1,65 0,42 1,00 19.12 Vu <PhiVd2 Not Reqd 000 0.00 +1.200+1.60S+0.50W+1,60H 1 27.11 21.00 -1.34 1.34 0,51 1.00 19,12 Vu<PhiVc12 Not Reqd 0.00 0.00 +1.20D+1.60W.50W+1.60H 1 27.67 21,00 -1.02 1,02 1.27 1,00 19.12 Vu < PhiVd2 Net Reqd 0.00 0,00 +1.200+1.605+0.50W+1.60H 1 28,24 21,00 -0.71 0.71 1.04 1,00 19.12 Vu <PhiVd2 Not Reqd 0.00 0,00 +1.20D+1,60S+0,50W+1.60H 1 28.80 21.00 -0,40 0,40 2.24 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0,00 +1.200+1.60S+0.50W+f.60H 1 29,36 21.00 -0.10 0.10 2.47 0.93 19.04 Vu <PKW2 Not Reqd 0.00 0.00 +1.20D+160S+0.50W+f.60H 1 29.93 21,00 0.21 0.21 2.53 1.00 19.12 Vu<PhiVd2 Net Reqd 0.00 0.00 +1.20D+1,60S+0.50W+1,60H 1 30.49 21.00 0,51 0.51 2.41 1.00 19.12 Vu <PhiVrl2 Not Reqd 0.00 0.00 +1.20D+1.60S+O.50W+1.60#1 1 31.06 21,00 0.81 0.81 2.12 1.00 19,12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1,60S+0.50W+1.60H 1 31.62 21.00 1.12 1.12 1.66 1,00 19.12 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 32.19 21.00 1.42 1.42 1.03 1.00 19.12 Vu < PhiVd2 Nat Reqd 0.00 0.00 +1.201)+1,60S+0.50W+1.60H 1 32.75 21.00 1.72 1.72 0.23 1.00 19A2 Vu <PhiVr12 Not Reqd 0.00 0.00 +1,20D+1.60S+0.50W+1,60H 1 33.32 21.00 2.03 2.03 0.75 1.00 19.12 Vu<PhiVc12 NotRegd 0.00 0,00 +1.200+1.6OS4,50W+1.60H 1 33.88 21.00 2.33 2,333 1,89 1.00 19.12 Vu <Phi,11d2 Nat Reqd 0.00 OAO }1.200+1.60S+0.50W+1.60H 1 34.45 21.00 2.64 2:64 3.21 1.00 19.12 Vu <PhiVd2 Not Reqd 0.40 0.00 +1.29D+1.60S+0.50W+1.60H 1 35.01 21.00 2.95 2.95 4,70 1.00 19.12 Vu<PhiVd2 Not Reqd 4.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 35.58 21,00 2.05 2.05 6.22 1.00 19.12 Vu<PhiVd2 Not Reqd 0.00 0.00 M D(McClendon Engineering, Inc. 1412 W. Idaho Street, Suite 240 q� Seise, Idaho 83702 (208)342-2919 McClendon Engineering 'Inc DESCRIPTION, Grade Bealn Detailed Shear Information Project Title: T Hom4,Tt-- Engineer; Project ID. JOS. Z3 Project Descr. Load Com6ina5on Span Number Distance (ft) V ('m) Vu (k) Actual Design Mu (k -ft) d'VulMu Phi'Vc (k) Comment Pht`Vs (k) Spacing (in) Req'd Suggest +1200+i-WS+0.50W+1.60H 1 36.14 21.00 -0.44 0.44 6.59 1.00 19.12 Vu < PhiVr/2 Not Reqd 0.00 4.00 +1,200+1.60S+4.50W+1.6014 1 36.71 21.00 -2.75 2.75 5.55 1.00 19.12 Vu <PhiVcl2 Not Reqd 0.90 0.00 +1.29D+1.60S+0.50W+1;60H 1 37.27 21.00 -2.46 2.46 4.00 i.00 19.12 Vu<PhjVc(2 Not Reqd 0.00 0.00 +120D+i.6034.50W+1.60H 1 .37.84 21,00 -2.18 2.18 2.61 1.00 19,12 Vu <PhiVet NotRegd 4.00 0.00 +120D+1.60S+0.50W+1.60H 1 38.44 21.00 •1.91 i,9t 1.38 1.00 19.12 Vu<PhiVe/2 Not Reqd 0.00 0.00 +1.24D+1:60S+G.50W+1,60H 1 38.96 21.00 -1.65 1.65 0130 1.00 19.12 Vu <PMV62 Not Reqd 4.40 0.00 +1.2013+i.60SA.50W+1.60H 1 39.53 21.00 -1,39 1.39 0.63 1.00 19.12 Vu<PhiVrl2 Not Reqd 0.00 0.00 +1.2013+1.60S+0.50W+1.60H 1 40.09 21.00 -1.15 1.15 1.41 1.00 19.12 Vu<Phi*12 NotRegd 0.00 0.00 +1.20D+1.60S40.50W+1.60H 1 40.66 21.00 -0.91 0.91 2.06 1.00 19.12 Vu < PhiVr12 Plot Reqd 4.00 0,00 +1.20D+1.6DS+0.50W+1.60H 1 41.22 21.00 -0.68 0.68 2,57 1.00 19.12 Vu<PhWc12 Not Reqd 0.00 0.00 +1.200+1.60530.50W+1.60H 1 41.79 21.00 -0.46 0.46 2.96 1.00 19.12 Vu < PhUr12 Not Reqd 0.00 0.00 +1.20]+1.60S+0.50W+1.60H 1 42.35 21.00 -024 0,24 1.21 1.00 19.12 Vu < PhtVr12 Nat Reqd 0A0 0.00 +1.20D+1.60S+4.50WA60H 1 42.92 21.00 -0.03 0.03 3.35 0.22 18.21 Vu < PhiVd2 Not Reqd 0.00. 0.00 +1.20D+1.60S+0.50Wt1,60H 1 43.48 21.00 0.17 0,17 3.37 1.00 19.12 Vu<PhiVd2 Not Reqd 0.00 Ho +1.200+1.6tlS+0.50W+1.6014 1 44.05 21,00 0,38 0.38 3.27 1.00 19.12 Vu<PhiVcd2 Not Reqd 0-00 0.00 +1.200+i.60S+4.50W+1.60H 1 44,61 21.00 0.58 0.56 3.06 1.00 19.12 Vu < PhVG2 Not Reqd 0.00 0.00 +1.200+1.605+0:50W+1.60H 1 45.18 21.00 0,77 4.77 2.73 1.00 19.12 Vu < PhlVd2 Not Reqd 0.00 0.00 +1.2013+1.60S450W+1.6014 1 45.74 21.00 0,97 4.97 2.30 1.00 1912 Vu<PbWcf2 Not Reqd 0100 0.00 +1.200+1.60540.50W+1.60H 1 46.31 21,00 1.16 1.16 1.75 1.00 1912 Vu<Ph€Vd2 Not Reqd 0.00 0.00 +120+1.603.450W+1.6014 1 46.67 21.00 1.36 1.36 1.09 1.00 19.12 Vu<PhiVd2 Not Rod 4100 0.00 +1.20Q+1.60S+0,50W+1.60H 1 47.44 21.00 1.30 1-30 0.34 1.00 19.12 Vu <PhVrl2 Not Reqd 0.00 0.00 Mc McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLANK )CE J Project: No: ' 0.249, ?--"6 Page: 5n4&4-r�r2-9 McClendon scOPO. - 12(55160 Date: Z>/41 Checked by: Engineering Inc Item: LATvz-jt; Aopvwst� - LJ1 06 . (15-mpo ....,.._.r__..._..___-____ Oas G Ce CE) 44 )1qTW'OLA-1'L-'O S9.5&) 6 7 0. 00 OZ S-�O lip 17.7p-sF (0,,�q :!brxr R-0,,4z�: Ills :e-/ t k) :7 Psi 16/Z) a 15-t) I 6122123, 3:46 AM U.S. Seismic Design Maps aT �P r Tahoma Terra Yelm, WA, USA Latitude, Longitude: 46.9420431, -122.6059582 \ 1 st Street Nail Bar Ma and Pa's Family Diner Tahoma Valle Golf Course Goggle k Yelm-Tenino Trail 510 Date Design Code Reference Document Risk Category Site Class r' * in Shiplap Shop 5a7 & Coffee House QSouth Puget C `- Sound Habitat for... ca 612212023, 3:47:15 AM ASCE7-16 11 D - Default (See Section 11.4.3) OSHPD Type Value Description Ss 1.288 MCER ground motion. (for 0.2 second period) Si 0.465 MCER ground motion. (for 1.0s period) SMS 1.545 Site -modified spectral acceleration value SM1 null See Section 11.4.8 Site -modified spectral acceleration value SDS 1.03 Numeric seismic design value at 0.2 second SA SD1 null -See Section 11.4,8 Numeric seismic design value at 1.0 second SA Type Value Description SDC null -See Section 11.4.8 Seismic design category Fa 1.2 Site amplification factor at 0.2 second Fv null -See Section 11.4.8 Site amplification factor at 1.0 second PGA 0.509 MCEG peak ground acceleration FPGA 1.2 Site amplification factor at PGA PGA, 0.611 Site modified peak ground acceleration TIL 16 Long -period transition period in seconds SsRT 1.288 Probabilistic risk -targeted ground motion. (0.2 second) SsUH 1.418 Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration SsD 1.5 Factored deterministic acceleration value. (0.2 second) S1RT 0.465 Probabilistic risk -targeted ground motion. (1.0 second) S1UH 0.522 Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration. S1D 0.625 Factored deterministic acceleration value. (1.0 second) PGAd 0.509 Factored deterministic acceleration value. (Peak Ground Acceleration) PGAUH 0.552 Uniform -hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration Map data CO2023 3a httnc-llw m saicmirmnns nrn 113 6122123, 3:46 AM Type Value CRS 6.908 CRI 0,891 CV 1.358 U,S. Seismic Design Maps Description Mapped value of the risk coefficient at short periods Mapped value of the risk coefficient at a period of 1 s Vertical coefficient 3s 213 OE. MC Project:. -a�innp,I No: h!27_ Z5 Page: 73 Z_ McClendon Scope.. 5ML4= �Pah:LINI —Date: 5-43 Checked by: Engineering Inc Item: By: CS 0). Or ZT71,�//,,4 1.84 '18 q- rz:� t,9,. 4 _ .f._ W-3 ... _.__. .....,..� 3 ,__._..... , . topzf= 75') 750 ?Lr-' tAJ fr� c-Aw 125F virvw,/,P51- t, I I (C�I- 4f-JNC0XS Z O § H 33 b 2 Ll Project:- —14C*448- Ido. 'b2zC + -Z--3 Page: McClendon Scope:r Dale: �/Z'3 Checked by: Engineering Inc Item:— _7Sart 327r>�,. [yB ID '(Z = 37,7,0c-r- 3-?-704/ Z7Pc- 3704/ ItOc3 Koo r= �5/w `C> 2L:G'd—iOO 17-- 1 13 PL Project:i ,rte—QYv-1 ' _. T�_ ►4. No:_I teaPage: 3 _ McClendon Scope:=JT.._.._�Gf.G�_ Dufe:/�:/ii::!Checked ChecEceci by: Engineering Inc item: UIJ Ikn U. A Z�i7 pc.r� Iraa' 7-t 1t7 ftisr< nn"Vx� E�i<) I��pir�rcyv� Gv �.. X28 lo-.F ( s&-,c; ()rj , T--o Ltt LOA r.�, 77 � P GF r-7 ' �i2r6, W�cSr�{ 'PUM..1-1 `gpAcir%- � 5r pry D. Zo # (?-j 5-7U ICC-/o (ZA B 1z' S Cl2 L-c-i (:.� 1�"E, fr`�C7 �r.)!i. f. r � S r. i (Q r' i7 • C ,� '-�-t� f� . M t1xo. TN, r 1:-,,1 Fgewl 4 t S. I CF-, 1 LArj ja cxgt Project:��.�_�., .�.1 � No ;-/O ,: G3 Page: 17 L � CCi£9Cal Checked by:Scope: tem:._ Engineering inc Item:.--- Ls 7— { k i YLi1 S Ls PC F ._e ZSpsP g, i - � Gam. (�S p G F �. t v' .l � l � o 1� r ` - �"ZSD lL� Fr s �x x Z- QrbY4OI yy JACT7 t/ � IU.ri fes.-E..I I✓�IN U��. .. ,.�.�i.,.l�.3y-++f�-�-'ly�/��C�..., .;G„' l' .�. ..,> _... .. FY M t1xo. TN, r 1:-,,1 Fgewl 4 t S. I CF-, 1 LArj ja cxgt L_ to. P. .D 41SO ✓�-+ "' �i l/ � / � �r �2, 1- �U Ems+=xi �� Qe i�G �E� � f 4' '�?(T v+ Q..�� r`.� r ]ra. fZ act0 S-70 Elan ex t • Qxmy Crvt J 0 (C t}. i has..r3 of 7 Frojeci.- Z—',Z447 No.-Inze -2—Page: McClendon lc'P':, PZ55L6�. Date: �/Z :5 Checked by: Engineering inc Item: By 6 r - R-ra"i C t -j f�i.L PIL---a-p- q 1-/p 0, vIl L 7PsF; A" C4-fvz-VA(, c:: of-- C^ij ei Ac.c l Pf c ,2 Fp 0, q b,% zo SO, 5 psw ZO 'Fp Z-1. spsi Zr, Be.5,' �{o �... .. te Prajec', I,1 ._ _-r]�az Na:_ /0M, Z5 Page.A_L___ McClendon Scope;__5174 t✓ C� _ Dafe: Z7� Checked by: Engineering Inc Item: dvr.- OF 'I`�' - tet: oop �c=sc 0j) 4 . .. ,..... .. ,_i -_... .. .-.,- - _.. .. ..._..-- ., .., - -..,. .... .. ,.. -_ a .-.... Zo'/z,s 's i3 SO e,a y : 61Z 10' 347# l0�_p" 0, C, ��s {c,,,., 0A0 J r W l it.'!-,�L `C.n o 5n'):> u7 f.Z o' -rite, L SnACN X f2Y, 0A0 J r W l it.'!-,�L `C.n o 5n'):> u7 f.Z o' -rite, L SnACN �140 Mj Project:. I - to D MA- 2�-AA No. 10 Page: 3 , t��r~ TD ©ate: Checked by: McClendon Scope: Engineering Inc Item: By: r t X , 4s� 275 Pyr E x - 20 +- +- z 1'2-) 12, S' 3 V= Z78�G�� i 1 vi p y j { Project:_] 1 SL+ow o, 7F No: SS Page: Scope: 5TAUCT. Date: 5-193 Checked by: McClendon f Engineering Inc Item: By: ............. T3 gol''t, 4 /0 ... _._w . .. .......... Z7 r.11 1/1 Z, 6- MJ jt A Project: T No: Page: 6-Oputc-T- JDV�ieir,� Date. -Checked by: McClendon 111P': Engineering Inc Item: By: I-V mprx -MI a Z6 R -A 0 e-. TYPt 'I rZo V k 09 /L 5r �z, ` } �F 1f''�Lr . ...... fw Mc Project: No:_ �`F'z Page: McClendon Scope:TT'��C* QESItrA Date: Checked by: Engineering Inc Item: By: '+�'► mAX T"mAxAL TY? I �i `' x J �� STAA? wl d w 16 GPS 5TAA P -T—mm( 14, 6A 5'V. LAJ) Connectors for Cold -Formed Construction 0.250 10,470 S/HDU Holdowns 9,690 0.250 Nominal The S/HOU series of holdowns combines performance Tension 2ya^ with ease of installation. The pre -deflected geometry Rei. Load LRFD Lead' virtually eliminates material stretch, resulting in low 15,485 0.250 ° 0.149 5,685 deflection under load. Installation using self -drilling 6,105 e 9,365 31,455_ screws into the studs reduces installation time and 0156 ° 13,165 7,165 saves labor cost. 12,120 ° S/HDU Material: 118 mil (10 ga.) Pilot heli for ° ® US alent 5,979,130 and Finish: Galvanized (G90) manufacturing purposes ° ° 0.243 6,112,495 Installation: (lasterner required) ° 31,715 H • Use all specified fasteners; see General Notes not ° • Use standard # 14 self -drilling screws to fasten to studs • Anchor bolt washer is not required • See SB, SSTB and PAB anchor bolts on PP. 163-164 �o for cast -in-place anchorage options CE • See Sl and AT -XP" adhesive products at h b It ekrofit o tions M strongtie.com far anc or o r R 0/0„ 1 1i� Codes: See p. 11 for Code Reference Key Chart Typical S/HDU Installation -- -�� Fastenen3 I — ' H Stud Member IAnchor BoltStud Thickness' Madel (1a,) Diameter' , Faste ere i mil (ga.) (in.) i � 2-43 2-18 S1HDU4 7Th ( 1 (6) #14 -54 -15 �� Steel fixture 2-33(2-20) SIHDU6 1035 36 (12) #14 - -2-434 2 �s 51HDU9 I 121h -I 'h (18) 014 " �?2Z_4 -54 _ ASD (lb.) Tension7Deflection at Load ASD Load' 2,320 0.093 3,825 415 0.093.093 3 4.470 6663 125 - 0.119 125 0.108 995_ I 0.060 965 0.103 255 0.125 steel fixture 1 715 0.125 2-33(2-20) 1 6,965 -6-103-- (27)#14 103 (27)#14 2-43(2-181 9. V!) u.u_mo 9,675 0.110 2-54 S/HDU11 1646 (2-16} �h 2-43 (2-18 " 11,100 0.] 25 with heavy (27) #14 2-54 J2 -16)c 12,175 0.125 — hex nut Steel fixture, 12,945 0.111 . These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong Tie for details. 1. The designer shalt specify the foundation anchor material type, embedment and configuration. Some of Shearwall the tabulated holdown tension loads exceed the tension chord studs strength of typical ASTM A36 or A307 anchor bolts. 2. Stud design by specifier. Tabulated loads are based Holdown on a minimum stud thickness for fastener connection. bearing t 3.1/4' self -drilling screws may be substituted for Holdown plate #14 self -Capping screws, 4. A heavy hex nut for the anchor bolt is required to achieve the table loads for S/HDU11. Rod 5. Defection at ASD or LRFD includes fastener siiip, h Id d f tion and anchor rod elongation for 18" max 8,495 0.250 10,470 Heldowns may be installed raised, up to 18° above 9,690 0.250 Nominal Code Tension Deflection at Tension Load Rei. Load LRFD Lead' ° Ilh•) 15,485 0.250 _ 3,705 0.149 5,685 24,480 6,105 0194 9,365 31,455_ 6,345 0156 9,730 13,165 7,165 P.103 12,120 23,515 8,495 0.250 10,470 Heldowns may be installed raised, up to 18° above 9,690 0.250 15,460_ - 9,785 0.234 15,005 9,580 0.136 14 695 IBC, FL, LA 11,125 0.169 13,165_ __ 15,485 0.250 21,810 1.5' max. .7am. 0:225 24,480 _15,960 20,510 0.177 31,455_ 0.189 13,165 _11,125 0.162 23,515 _15,330 15,480 0.158 23,710 CFS Bottorn Track 17,500 0.250 24,955 0.243 29,825 _19,445 20,680 0163 31,715 0 own a orma holdowns installed up to 4' above top of concrete. 5° Slope max. r12 L1 `1 1 Heldowns may be installed raised, up to 18° above Coupler top of concrete, with no load reduction provided that additional elongation of the anchor rod is accounted for. Botto 6. The Nominal Tension Load is based on the tested Tap of 1.5' max. .7am. average ultimate (peak) load and is provided for Concrete 4 design in accordance with section C5 of All 5213 that requires a holdown to have a nominal strength to resist the lesser of the amplified seismic load or the maximum force the system can deliver. 7. See Fastening Systems catalog (C -F,2019) on Holdown Raised Off strongtie.com for more information on CFS Bottorn Track Simpson Strong -Tie fasteners. Typical S/HDU Floor -to -Floor Installation 1 me ��+ �L C�28 1, Project:' l�s�-f + ?r' i� No. 1 . , Q Page: `k 5 -- CC t'� 4� 5co�e;_ Date: -f2 Checked by: Engineering Inc item, -- _--- By:..— fJk G7 A ( C i� i -a1 57-u S E f'zr Full OLG kr , a � i � nrz f j 10, Pua 4 .;S TIN, 4 3 � ' 3 f � � f f f S 1 l 7 ti 0 N 49 r r (.p in Co tp (P W) m m m N r d O r mOI Oi ni A A h 1- N N N ._ N N N N V 7 O Ui CJ O v r r O O O O } to O M N A N co 0 r to W 41 h c Irt(j (WO W Lupi lt1 (co O (O co w O m Cm7 v u07 Iq m o 0 o N rn rn� r as m rn (. h o Ip C O C] tD m ffl � v dl N h m h rn i ti O N N N M 0 0 0 r U3 x N N 00 W h� O O W W CO N O aty v N CV CV N N N N [V N N N tY N N N CV ti X ~ ti K h co r V (D 7 co N tD 00 OmLo m h h M 0 U7 Cn UC N 11"i r Cp tl' N m N r N N N N u� a LO N % v C W [Y 4 M 01 m N CO O O m r m h M In m W m W Q (o Oi tp N_ h M Cf (A 0 h to (n A 06 tii t'fl h m tf) (O CO Oi N O m (ti A rn rn to r m_ rn «s r rn h In o � y M O1 N A m 7 O N n M Os N h W T Y M til ti m 6 h m to h r N V r N U G r• lE 0 m M W In O W v W r W v LO o tp h m o O 47 m ai m r r Di m U Q .J O m v N m d Q M ttS N tb h N h A O O a `- m v� to M� t(7 h m 7 til h Cl) a 4D h C ^ LC) d LL) RJ A m O (p W) M o tp yr c� 0 to Ln m m tp to a o CL 0 a J ;,,, h h a W m W w co h h O al m m w W h Ih d W m W m W h h a W m W 00 W E N O t7 0 0 0 0 0 G O G O C3 0 0 b C (] C O Q O I Nm CG l !] M O O W N (p to M r W O (t7 O O CO I� t (� C_ {p r O W O ICS m N W r-- m CD (p st m W C O (, N (p til CO h O C 1 O to m U Q Q O O r q O O O O +o @ o c f!) V V Q � to h W W A - - m If'f vi Oi O ICy N � d t" Qiru 6i � Oi (n h O M h [p O h m N O r m 41 O In U7 m M m Oi LQ r O m ti W A aRR`-' L N t7 P'7 7 N m 7 V N m •t O N m M V pC w fA N O [ cr) M O °i M O N 0 O Oh O tCl 0 t0.- N IOD 40'i col W $ Q 'p Q) tD A a U .� O O O r O 0 0 r O 0 0 r O 0 0 r c0 m ro ro t[ I� Z s 0 0 0 0 0 0 o o o o o o 0 0 0 0 4)_ z m t 0 2LL_LL. OH CD (D r It r M r N r ED r Q r M r N r r OLLI r r r r r r r 5�.. L ea o o a U+ to to to O o a c sn 0 to +n f m m m m m m m 6 m v v v v N N CV N % c x % % x X % % % % X X % % x X X O O d d d d O O d 0 0 to to CD tp 0 0 0 0 0 to 0 N r �i E(2 M_ F m Z U _7 U U _N U U U U U U U No U U U OM G C7 % O Mcli x C x 41) m 0 c'i x u7 Ci x n Ci O V�t O O x O x X EL'1 X u] In N K v x O O O O O W O tp X O (D O (p O (D X O co X O to x O (p O CO O ,tp r O r X O x O h ti 0 N 49 Mc McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLANK