Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Structural Calculations - Building J
Mc McClendon Engineering Inc TAHOMA TERRA BUILDING J STORAGE Yelm, Washington FINAL STRUCTURAL CALCULATIONS June 30, 2023 Prepared for: Keimig Associates 307 D Street SE Auburn, Washington 98002 Prepared by McClendon Engineering Inc 1412 West Idaho Street, Suite 240 Boise, ID 83702 Project No.: 1028.23 MDE TAH MA TERRA RRA McClendon BUILDING J STORAGE Engineering Inc YELM WASHINGTON 1028.23 TABLE OF CONTENTS GENERAL: Tableof Contents..................................................................... DesignLoads............................................................................ Materials and References......................................................... Deferred Submittals.................................................................. Special Inspection.................................................................... Project Description................................................................... GRAVITY DESIGN: Page Number ............................................ ............................................ .............................................� t .............•............................... ....................................... _ ............................................. —� 3 �! RoofFraming.............................................................. 5 Roof Panel Purlins LintelDesign.............................................................. �L WallDesign ................................................................ Foundation Design.......................................................... 2i Wall Footings LATERAL DESIGN: LateralAnaIysis....... ..................................................... O Wind Base Shear Seismic Base Shear Diaphragm/Chord Analysis ................................................... Shear Wall Design........................................................... X -Braced Walls Mc McClendon Engineering Inc GRAVITY DESIGN LOADS: Roof Dead Loads Roofing: - Decking: 2 psf Framing: 2 psf Insulation: 2 psf Ceiling: - M & E Collateral: 3 psf Miscellaneous: 1 psf Y Roof DL: 10 psf Roof Live Loads Snow Load: 25 psf Roof LL: 20 nsf Floor Dead Loads Flooring: SOG Decking: Framing: Insulation: Ceiling: M & E Collateral: Miscellaneous: T, Floor DL: IV Floor Live Loads Occupancy/Use: Light Storage Floor LL: 125 psf Occupancy/Use: Floor LL: - Wall Loads Interior Stud Wall DL: 7 psf Exterior Stud Wall DL: 7 psf T� CMU Wall DL: 55 psf LATERAL DESIGN LOADS: Wind Loads Seismic Loads Wind: 115 mph Site Class: D - Default Exposure: C Seismic Design Category: D MWFRS: Simple Risk Category: II Diaphragm Importance Factor: 1.0 LOAD COMBINATIONS: Design Method Strength Design: Basic Load Combinations ❑ Allowable Stress Design: Basic Load Combinations ❑ Alternative Basic Load Combinations TAROMA TERRA BUILDING J STORAGE YELM WASHINGTON 1028.23 R: 4 Q 2 p: I SDs: 1.03 SDI: - MSFRS: X Braced CFS Walls MC McClendon Engineering Inc MATERIALS: Steel Shapes Fy= 50 ksi Plates/Angles/Channel: Fy= 36 ksi Hollow Structural Shapes: F,, =-12 ksi Pipe: Fy — - Bolts: A325 Anchor Bolts: A307 REFERENCES: Soils Bearing Pressure = 1500 psf Source of Information: assumed Frost Depth = 18" 1110191DItl69DIMISVIull10w1M Steel: Steel member layout Joist/Joist Girders Layout ❑ Metal deck layout Wood: Engineered Truss Layout ❑ Cold Formed Steel: Steel member layout 09x40 IF.1 aWKy 900111.0.111.N11 Fabricators ❑ Steel Construction 9 Concrete Construction ❑ Masonry- Level 1 ❑ Masonry- Level 2 Wood Construction ❑ Soils ❑ Deep Foundations ❑ Special Cases 2. Seismic Resistance ❑ Other: n Wood Sawn Lumber: G1uLam: - Eng. Product: - Licht Gauee Steel Fy: 55 ksi Codes Used 2018 IBC TAHOMA TERRA BUILDING J STORAGE YELM WASHINGTON Concrete f e = 2500 psi fy = 60 ksi Masonry I°,,, — 1500 psi f,, = 60 ksi Software Used USGS Enercalc Concrete- Mix Design Reinforcement Layout Masonry: Mix Design P9 Reinforcement Layout K Other: ❑ 1028.23 MC McClendon Engineering Inc PROJECT DESCRIPTION: TAHOMA TERRA BUILDING J STORAGE YELM WASHINGTON 1028.23 The Structural scope of work for this project consists of: • The design of a single story light -gauge steel framed storage building. • The gravity system for the building consists of a light gauge steel framed roof supported by steel frames, light -gauge steel framed walls. • The lateral system for the building consists of a simple diaphragm, light framed shear walls reinforced with flat strap cross bracing. o The loads are transferred from the diaphragm to the framed shear walls, to the foundation. 4 DE McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLANK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 S- 12 McELROMedallion-Lok 16 METAL 134" �I i LLL--- _._..... 16" COVERAGE 1. Section properties are ralculaled in accordance with the 2004 A)SI NWh American Spedfication for the Design of Cold -Formed Steel Structural Memtrers. 2. Va is the allowable shear. 3. Pais the allowable load for web crippling an end 8 interior supports. 4. Ix is for deftecdon determination. 5, Se isfor bending. 6. Ma is the allowable bending moment. 7 All values are for ane foot of panel width. Allowable Uniform Loads (PSF) "Spanypa load Type 1.00 1.50 2.00 2.50 3.00 3.50 Span 4.00 in 4.30 , : 3C eet 5 5J 6 _ � ' . ' ,; � goo a+,0 Positive Wind 500 497 280 179 124 91 70 55 44 37 31 26� 22 19 17 15 Single Live 500 497 280 179 124 91 70 55 44 37 31 26 22 19 17 15 Deflecdan(U180) 500 500 540 401 278 175 117 82 60 45 34 27 21 17 14 12 Deflection(L240) 500 50C 500 360 208 131 86 61 45 33 26 20 16 13 11 9 Posl€Ite WA 500 337 197 128 90 66 51 40 32 27 22 19 16 14 12 11 2 Span live 500 337 197 128 90 66 51 40 32 27 22 19 16 1 14 12 11 Deflection(LII80) 500 500 500 500 491 309 207 145 1 106 79 1 67 1 48 38 1 31 25 21 Deflection(LI240) 500 600 500 500 366 232 155 109 79 59 46 1 36 29 1 23 19 16 Poslt)ve Wind Soo 407 241 158 111 82 63 50 41 34 28 1 24 21 18 1 16 14 a Spee tun 570 407 241 Ise 11+ 6: 63 30 4t 34 2° N 91 16 15 14 Def'aalotl Me 5C0 5W boo ; ,' _. 242 162 114 63 82 48 37 30 24 20 'r6 Deflection (W40) 500 500 500 498 288 PBI 121 85 62 46 36 26 22 16 15 12 positive Wind 500 385 227 148 104 77 59 47 38 31 26 22 19 17 15 13 4 Span Live 500 385 227 145 104 77 59 47 38 31 26 22 19 17 15 13 Deflection (L1160) 500 500 500 500 408 257 172 121 68 66 51 40 32 25 21 17 raflecfion (L7240) 500 1 500 500 500 306 192 129 90 66 49 36 30 24 19 16 1 13 ASTME1552WindUpliftiesdng 69.5 61,1 52.9 49.1 45.2 41.3 37.7 33.8 30,1 110TMDATAAVAILABLE71 Notes: 1. Allowable uniform loadsare based upon equal span lesigMs. 2, Positive Wind is Yard pressure and is NOT increased by 33 113 %- 3- Live is the allowable live or snort load. 4. Deflection (0180) is the allowable load that limits the panel's deflection to 3!180 w h?4 under positive or life load. 5. Deflection (!7240) is the allowable load that limits the panel's deflection to U240 while under positive or live load. C. The weight of the panel hasNOT been deducted from the allowable loads. 7. Positive wind and Live lead values are limited to combined shear & bending using eq. C3.3. 1-1 of the AIS! Specification, 8. Values of ASTM E1592 Wind Uplift Testing include a factor of safety of 1.67. Shaded areas are outside of test range. Contact McElroy Me(al for more information. 9. Positive Wind and Live Load values are limited by web crippling using a bearing length of 2". I0. Web nippling values are determined using a ratio of the uniform loadactually supported by the top 1lange5 of the secfion, 11. Load Tables are Iinsted to a maximum allowable load of 500 psf. 7 MJ Project:- ►o YN�:73 Page: C I��d®�1 scope. DTZ t,(CT F7 , �lG1.�� 1 Date: 3_ Checked by: Engineering Inc Item: By: E � !0 `-O !r t = 0-1198 s � 6 I p I 6 rf, 16 r 1 �1L WC -AV- PW5 SeNt � �� T 5i7L,4 t 0 O r m N m n r n m o O r r m N y�- .V m IO m W M Q V' Y? N N m m m 10 fD v - X v v o Iss d r 0 m 0 0 .r tD Ol M V N tp P N sv O? �2 W O N m r N m Q1 m N o O 1� m O�j (•j rj p r Nj, N M r r N r7 M a L v Q• Q n m O N rD Dl N h a r it) d m U] y �X v Qt W CO lti Q 0'f N` O O O O uNi � vii N r +Y R" us u •„` f(J ? O O N h M O r r T ul h N r N Pl a m c P m M M rn f+ n M m N N w n n r- m N r rPi f0 a ti N P a y� �C N • N M r m r N N Oi h 1` N r W O W O r N N M r N N M r N N M N N Q� M Y C 47 _ O 14 m m f0 N P N Qi N c 6 x'C N M r m 1-1 N N 0 QMi G N V C O W Ma 4 m O N �2 n a PS N p W N N tl C ' U)w r w r- r w r r r N N m 0 0 N m O O N m 0 @ P o n P o rl Y D In � 7 y N Y h N Q h N Q n S`1 m Q m N E C ° O � r o Ul ID l9 C in �"� .� Oi d Ol r Q N N f0 Of m CT O N N 09 � P 6• Ol M P RT M Cl CI O n 'V, W ill Q m r m W O vi 17 (o W >` o O ori c� n V p Q O w h of O m Q ti M a r o v v Q Z E N � L - N Z o v m � NW � 0 0 m• m M N m� m m m a+ a m n ri a� f0 N m x z ISl o q v C i=1 d C m m� m m m m rn m rn m m rt m 'J m M Gam+ m 0 y T D O C Q O G 4 0 Q P a o a a a 0 Z R O (0 N M m 4 N m N M W m 6 m tt Q o a c o 0 F n n ern' rnx m rn o as � h M m N n m m o (�i of v iri �i ri Q +n lei �i a v ri p v if} N O Q/ 0 N N (n O ill N Ol O N N O O m N J o a o 0 0 o a o 0 0 0 o d1 P m o Q L V O O O O O 6 d O O a o r O O q o d O O i � Z q i➢ P t? N t0 P l'i N rp P M N i13 C M N { 11 Lu Q N m n tri n fi] r, M n Iry w N N eo N N m N N W CJ N .ter fV M N M N M N ip m (rj N � en gi N m l7 m n n M —.—_-. - _ � i11 i0 N N fit N N iq ii! i0l N N n T ! / x t x ri t X ri r o f N fx c+i ci ri O x % X X h' X 1( X K % K 1< % x ]C x x x % O O O O O O O O o o O O p P O p K m m m m W Iri W W au fa rm a o m di rn z N ul N m N m N N N oq N N N 0 ^1 +� N �n 1 N N lr 0 c 'p x of ni M M n epi ei �i ryry r7 +� ri m o xo o m (e oo m m rm ea ee e e m vi a �e rn t 0 O MJ Project: : F-A►IdIMA 17MP—A No: 1028,2-S Page:.._..._....... cClen®n Scope: 5ng,�- -- G51 -G I Date: Checked by: Engineering [nc Item: �F �"�c T 1 t i r• i � g ., 6, - 1 - 5` 3 �3 , �.. _ f k I ?T- = y3g # Tl't,g-D pry E t MJ -1— -i � -21 , D Project: A H-0 W1 ft- I No: Page: McClendon Scope: ---ST7zLAnC;T-------1-D Date Checked by: Engineering Inc Item: By: 7. llj� Titif"D 'P75 =-�O 0A 175-0 -r___.,. -J 17-3 JCOA 0 Psi) z4k)R $o 1) pf, 16 0 M O 0 N >W M N Qi E (D a ID co ui F. m d 0 Q� [i !3 (i) Lo v aLr> N - K] 10 O rn - -I- O O O cp 0 T co O a o Q m 0)m <D m C7 171 Q d O d 0 0 iu � f m m 0 V /h h C, W Cn N O m V m V DC7 C VS c0 W W W C M m 7 47 rD SLS (0 W y[ C7 O O Q O O 7-4 Y O Q 0) V M rt O M M 6 m O h omf V 7 d cND r i� m MJ cp m m Q N 4} 00 w N M O O d r e'er Y �r tl m 7 0 r- in (D d co co n O h O 0 D7 n N ►�m LO V' rfl !D V' C Q N m� N i a C n h h n m W W m C O 0 O r- r N N N N N N N N m m m C* M M co m X X T mC 0, W C N m 0) n W (ry m, CD _ W, r O In r .N-! F N Q CO (D u7 c(3 ((Z N v c0 N d � N g r n r� ^ h cD () N M r r N M e- N N 0 N M to IN c1] 4] cn (D h m r h m h 171 mco cp Q N cq J h o a rn n n m' w m o d to m o Q a 0 m m m� r m (4 v o M r v o m m> 'Y N ]-Z 04 CM V rti N C n Cq N v T� U r ay C T T S CIS p 0m r J (a co m O In m n a 0 tl 07 (c I(] m v (D (D ii cD m a w Ra Q - v v m cd v ui ca ai v Ln r ai v m - 4 o f c .= aV cs% n M a 'Q uO M o (D u, ro o m n m o co u> Q a a c h n a W m W m W h h o W m m W W n n o W m W m W r© h ao m w W W E N co O O O O O O G O O O O O O 0 O O 0 I U C P Q roU co CD p N M r0 M co O M 0 m N co m Q i C COW r 6 m Q'-ao.-.-o r m 00 co m m.0 m - o ds oY a CO F m a a c iIJ C Q W n m (0 n' M c0 o Q h m (o h (SS n_ m @ w y rn m M m N n rn rn d (D m (n N h m (n m yj E W 41 9 h 0 O1 r h cD f� m O g m rn C) m Q u7 N m v v N m V cit 0 O Z N 6i c N y o a GQ o o m a M ah m o 0 o m c W a s rn u� J d o o r +¢'o d d o r o 0 0 a n a Q _ 0 0 0 0 0 0 0 a 0 o o 0 O 0 d 0 o 0 .- 0 O c m Z z (n L�. LL 0 F Z CA (D mN (D M N (p '' m N i0 d' m N Y CD o c`) tl M o Co 0 M o qq Ca V o v Q v u, N Iq N rn N W? N o c7 C� co o m 0 m X g X x x x x x x X x x x X X x x X tl tl 4 0 0 O 0 0 0 tl tl h 1� h n n h h h o0 sb m cp Pj (p op qj r m Y� M N c0 +� i'] N a z tom.. LO c� a c� o Q o o . o 0 o u� La a rn o o d a D C6 X m X pi X c i x v x v x v X v` N N co M M Cl) .0 o o C a 4 C 4 K o O x g x O x 0 x o X tl X p co m m co co w m 16 0 M O 0 N >W M N Qi E (D a ID co ui F. m d 0 Q� [i !3 MCDE Project: No: 1QZ-1-3 Page: McClendon Scope: Virnl6tS Date: Checked by: Engineering Inc Item: br1YF6U MJ Project: No: Page: McClendon Scope: Date: Checked by: Engineering Inc Item: By: 5yvi Z52 F* -,6 Project:_7[7AH-QYAA- 7—inWNo: L5 page., ( (0 M cClendon Scope: —Date: Checked by: Engineering Inc: Item: By: L.1 r.,va_ Oast ew4 G FAO il T b76- .L 89 64) G c, CqAr., V)C7 2 3 r- 0 l� N Q m rD M N O W IO V N In M N n M1 al m +n it En It v q' +t M cv M co L-' Ix m tT m M m m m m T Ol QI 0 Cl Q 0 0 0 0 0 0 0 0 f.7 0 P Ci o 1 Y ?' 4 I[y [`! P7 47 c0 h f14 toPc"nO 110 n M Ir +r N ti >fl C7 Q 0 4 ej o O �1 p Q V' m r 6 Vl I`? m O mWWNNmC7 MU156 v W C] 7 Irl Ic) c0 C9WOWp O O Q C? O V m m N M r 11'j r4 4 d0 J+' X v co Lq uo M1 u) V t2 M m N m m O <0 O 0 O o m m CO CD h 0 C4 r) Stl r) w N N N N N N K Y r m Yl N W m co m fi i7P M1 M Aa n !7 7 O w u7 N Q V) y] M1 w MCD V) h Oi w W O co m � eA r � � CO (� 6 6 0 6 C5 >n • '� 7 m W o Ifl Q C !A M n m m X C C] D h h W Pl O P O m m O h /Yl V' O (} [7 Iil m N In m N Q tD O W to Cb m to W � N <-• .-� N N N m i*7 +p C7 �t' u7 cD fJ) � N eco 11 D N h m N m O t77 j z 0 Co m m o 0 m10 w c! 't m 4 C> li7 cD A t) 47 w n M m n m M Vl r Z ,r 3 T a e� a r V W n v to h W N N Q D V b 4w eVD 0 (j Lc P] e— crl Y CO N f17 cD Q O O? m r 00 O N c`7 O O Q v r N N M r N N C7 N C7 m y N k) to G LO ro 0 LO N n_ M O [O I[1 ih Q 10 Kt M O (G l!] M Q m 5 CD n n cn w n nm W n Q M co M1 o M W N C n O ¢3 O to O m O n O m O OO O IA O h O W O Q3 Q W O n Q W Q fl] Q llp p O _ 1 co Lo cfl 4 4 co c0 In C� m O m 7 ic? f'l G u3 �f? M1 0 01 ) V7 X. X. a0 O ID M1 mm m �-• n W O U 3 a o o N a N ° i— m U M n m t0 N V M r V) M a LV NG N C N I N E dl g `a m n N am lO O> m= 7l h m •f ,, n m E m s m r cn n cO m 0' co cr y¢ O CL O` z c}Ll /l C!) N Y N O N C O 10 C O to U.) h � C V7 W O "3 h W O�� 07 O to IJ,J Q C ay .Y — Q O O O D CO r• O O O r 0 C) 0 r - R n II 11 .LQ' O C) 6 Cl 6 6 Cl O O O p p O O 6 6 z 0 x li ti p N z Oy Q� r C7 r N r tD r V r r7 r N � D g M N SO V D N CD 1O O Q Q In Iq Irl In Q U� In Irl Ifl Irl 4i Irl m NN N N N N X C XX X x X X X X X X X X X X S( y, i ❑ `� 0 0 o a o o C7 O O O O Cl C P Q O I v v c v v v v v ri r c ri ri w to 61 b V !7 N cn 7 M N b Q rs N ib 7 C7 N Z U U C) U U L) U cQ[ X x Q X Q x In fNc us X ul x tLq IR Wn Iq x Iq N Qn m z U, ul x 4 Q O O Q O �fX O O K C O Q a O O 7 V' 7 C st : 3 r- 0 l� �NpczJr C=ry tc��rz rte ��_?: ; Af-},,vi �LIk �rsec#: - y. # No : Z Page: i C1 C leCtC#t}f1 scope:�u�. Date:. Checked try: Engineering Inc 11em. r G C. 7-0, s ` X 1.2 - O L-)rai.L, Iwr. o ps,= 7'2 y Grs sTvos � �r��� a.c• G,7� �c.,aE,a►�_ - ]5 , o psi- (r��.�� �1�10�� �'�� �NpczJr C=ry tc��rz rte ��_?: ; Project:,`� _ _ No:- -/0 Z� Page: G iGilC C3 1 Scope: _ pate:.,. Checked b Engineering Inc Item: _By:-6 r C� Cl Llew ) �s . Project+,,, l� f to►�r �- �. �.. hn:_. =%�Z _Faget. McClendon 5c'OP'-: Date: Checked by: WAV, vows t: q rJ l geC' L 5: f =1 ;7 R. 41c I l(.o )' z- R. 41c I 2 m � 1D pd� A'A4 .trSZ $.it 81 RIJ� d5L 2 m � 1D md Project% Ko , !J m -- No: J0?-#q.ZMz. Fage:- McClendon Scope,QX--' Date: F 3 Checked by: Engineering Inc Ite.m.- By: --5mn S. L F tic, 4 L,)T7- pl-F &,A 64 L' (AA 1"4, L � -P9 F 'Eooyp tF 7psy� OF 77-05LAfl ir -F F, c c0r- '111� 11 n9 Project-. _No: Iff 13 page McClendon Qgal(mtQ Date: 5 /2-3 Checked by: Engineering Inc Item: By ............. Tr if (OS f ........... I, eol r ZS McClendon Engineering, inc. E 1412 W. Idaho Street, Suite 240 MC Boise, Idaho 83702 (208) 342-2919 McClendon Engineering Inc Project Title: -T-A may^ Ar- T 4 .►� Engineer: Project ID: 102 T -i Z3 Project Descr. Beam on Elastic Foundation Fife=M:k!McEProjeclslZQt8 ProjeclsU474.18@U*IeyStomp Buildinps4Ca4 Max Downward L+Lr+S Deflection $dWjm ooprrW EWXALC,1W-1sea2a19, Bu DESCRIPTION: Grade Beam Max Upward L+Lr+S Deflection CODE REFERENCES 6.335 k -ft Calculations per ACi 318-141 IBC 201% 0.013 in Load Combinations Used: ASCE 7-14a Max Upward Total Deflection Materia! properties 4.518 ft Fc 112 = 2.50 ksi Phi Values Flexure: 0.90 k= fc 7.50 = 375.0 psi Shear: 0.750 W Density = 145.0 pct 01 = 0.850 X Lt Wt Factor 1.0 Elastic Modulus = 3,122.Oksi Soil Subgrade Modulus - 250.0 psi Kinch deflection) Load Combination ASCE 7-10 s fy - Main Rebar = 60.0 ksi Fy - Stirrups = 40.0 ksi E - Main Rebar = 29.W0.0 ksi E - Stirrups = 29,000.0 ksi Stirrup Bar Size # _ # 3 Number of Resisting Legs Per Stirrup 1.0 Beam is supported on an.eiastjc founda 'on. 13D 0(1.1545) 5(0.244) D(3-361;0.567) D(3-36i5(b.567) D(3.361 S(C3.5BT) (](1.88) (0.284) a _Cross Sedan & Reinforcing details Rectangular Section, Width = 12.0 in, Height = 24.0 in Span 41 Reinforcing.... 245 at 3.0 in from Bottom, from 0.0 to 48.0 ft in this span Applied Loads Service loads entered. Load Factors will be applied for ca€culaUons Load for Span Number 1 Uniform Load : D =1.6130, S = 0.2840 ktft, Extent = 0.0 -» 0,6670 ft, Tributary Width =1,0 ft Uniform Load : D = 3,361, S = 0.5670 kilt, Exient = 11.333 -» 12.667 ft, Tributary Width =1.0 fi Uniform Load : D=3,361, S = 0.5670 ktft, Extent = 23.333 ->> 24.667 ft, Tributary Width =1.0 ft Uniform Load : D=3.361, S =0,5670 kilt, Extent= 35.333 ->> 36.667 ft, Tributary'Nidth =1.0 ft uniform Load : 0=1,680, S = 0.2840 klft, Extent= 47.333 ->> 48.0 ft, TributaryWidth = 1.0 ft DE'SION SUMMARY Maximum bending Stress Kati Section used for this span Mu: Applied Mn' Phi : Aflowable Load Combination Location of maximum on span Span # where maximum occurs o- = 0.632:1 Maximum Deflection Aliowable Soil Pressure = Typical Section Max Downward L+Lr+S Deflection o-wo in -3.369 k -ft Max Upward L+Lr+S Deflection 0.000 in 6.335 k -ft Max Downward Total DeFlectton 0.013 in +1.20D+0.50L+1.60S+1.60H Max Upward Total Deflection 0.000 in 4.518 ft a34 6.33 0.05 Spen P 1 Maximum Soil Pressure = 0,468 ksf at 24.00 ft LdComb: +p+S+H Aliowable Soil Pressure = ksf Citi ---1.50 Shear Stimrp Requirements - -- --- -- Y - -- Entire Beam Span Length : Vu c PhiVcf2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in tlaatimclrn Farces S Sire3ses for Load C.mbim-dions Load Combination Location (R) Send#ng Stress Results (k -ft) Segment Length Span # in Span Mu: Max Phi'Mnx Stress Ratio MAXimorn Bending Envelope Span # 1 1 47.435 a34 6.33 0.05 ?'(0 E McClendon Enj ineerin.g hic McClendon Engineering, Inc. 1412 W. Idaho Street, Suite 240 Boise, Idaho 83702 (208) 342-2919 Project Title-, 'T- I.tom> T T�-m A Engineer Project 1D: + ", Project Descr. Load Combination Lccation (ft) gentling Stress Results (k -ti ) ftmer t Length Span 4 in. Span mu: Max Phi'mm Stress Wo 47.435 -0.32 6.33 0.05 47.435 -0.28 6.33 0.04 Span 91 1 47.435 •0,30 6.33 0.05 +1.20R+1,60Lr+0.50L+1.60H +ti+ll i 0.0111 24,000 Spant#1 1 41.435 -0.28 6.33 0.04 +1.20Df1.60Lr+0.50W+1.60H 0,0000 0.000 +D+€.r+H i Spa0#1 1 47.435 -0.28 6.33 0.04 +1,2fl0i0.50L+1.60S+1,60H 0.0130 24.0(}0 0.0000 0.000 span # 1 1 47.435 -0.34 6.33 0.05 +1100+i,605+0, 50 W+1.601 +D-t4.750L+0.75OS+H 1 0.0125 24.000 Span ;#1 1 47,435 434 6.33 0.05 +1.200+0:50Lr+0.50L+W+1.60H 0:0900 0,000 +D+0,70E+H 1 Span 4 1 1 47,435 -0.26 6.33 0.04 +1.20D+0,50L+0.50S+W+1.60H 0,01€1 24.000 0.0000 0.000 Span 91 1 47.435 •0.30 6.33 0.05 +1.20D+0.50L-420$+E+1,60H +D;0.750L+0.750840.5250E+H 1 0.0125 24.000 5pari: 1 1 47.435 -0.28 6133 0,04 +0.90b+W+0.90H 0.0000 0.000 40.600+0,70E+0.60H 1 Span 4 1 1 47.435 -0.21 6.33 0.03 40,9003E+4.90H 0.0€11 24.000 0.0000 D.000 Span #1 1 47.435 •0.21 6.33 0.03 overall Maximum P1tfleWorle - Unfadomd Loads LOnly 1 Load Combination Span Max, %' Deft Location in Span Load Combination Max '+' Dell Location in Span maxlmurn 1]ePlectlans for Load Com binagans = IJitifactored Leads Load Coftination Span Max. Do0Wdrd ,DelI Location in Span Max. Upward Dell Localm in Span +ti+ll i 0.0111 24,000 0.0000 0,000 +D+LFH 1 0:0111 24.000 0,0000 0.000 +D+€.r+H i 0.011'1 24.000 0.0000 0:000 +D+S+H 1 0.0130 24.0(}0 0.0000 0.000 +D+0.760tri0.75a1+ii 1 0.11111 24,000 0.0000 0.000 +D-t4.750L+0.75OS+H 1 0.0125 24.000 0.0000 0.000 +D+.GAW+H 1 0.0111 24,000 0:0900 0,000 +D+0,70E+H 1 0.011i 24.000 0.0000 0.000 +D+0.750Lr+0.750L+0.450W+H 1 0,01€1 24.000 0.0000 0.000 +D+0.750L+0.750S40.45Q*H 1 0.0125 24.000 0.0000 0.000 +D;0.750L+0.750840.5250E+H 1 0.0125 24.000 0.0000 0.000 +0,600+0.60W+0.60H , 1 0.0067 24.000 0.0000 0.000 40.600+0,70E+0.60H 1 0.0067 24.000 0.0000 0,000 D Only 1 0.0€11 24.000 0.0000 D.000 LrOnly 1 0.0000 0.000 0.0000 0.000 LOnly 1 0.0006 0,000 0.0000 0.000 S Only 1 0,0019 24.000 0.0000 0.000 WOnly 1 0,0000 0.000 0.0000 0.000 EOaly 1 0.0000 0.000 0.0000 0.000 H Only 1 0.0000 0.000 0.0000 0,000 Detailed Sheat Information +1.200+1.60S+0,50W+1.60H 1 4.52 21.00 0.03 Span Distance 'd Vu (k) W d`Vu1Mu Phi"Vc Comment Phi'Vs Spacing (n) Load Combination Humber (R) (in) Rctual Design (k -R) (k) (k) Req'd Suggest +1.20D+1.60S+0.50W+1.60H 1 0.00 21.00 0.10 0.10 0.00 1.00 19,12 Vu <PhiVc12 Not Reqd 0.00 0.00 +1.20D+1.60S44.50W+1,601-1 1 0,56 21,00 -1.10 1110 0.34 1,00 19.12 Vu<PhiVcl2 Not Reqd 0.00 0.00 +1.20D+1.60S+0,50W+1.60H 1 1:13 21.00 -1.16 1.16 1.09 1,00 19.12 Vu 4 PhiVd2 Not Reqd 0.00 0.00 +1.20D+i.50S+0.50W+1.60H 1 1,69 21.00 -0.97 0.97 1.75 1.00 19.12 Vu<PhiVd2 Not Reqd 0.00 0,00 +1.200+1.60S+0.50W+1.6013 1 2.25 21.00 -0.77 D.77 2.30 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.200+1.60S+0:50W+1.60H 1 2,82 21,00 -0.58 0.58 2.73 1.00 19.12 Vu < PhiVd2 Not Reqd 0100 000 +1.24D+i.60S+0.60W+1.60H 1 3,39 21.00 438 0.38 3.06 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.200+1.60S+U0W+1.60H 1 3.95 21.00 -0.17 0.17 3.27 1.00 19.€2 Vu <Ph1vd2 Not Reqd 0.00 0,00 +1.200+1.60S+0,50W+1.60H 1 4.52 21.00 0.03 0.03 3.37 0.22 18.21 Vu<PhUd2 Flat Reqd 0.00 0.00 +1.200+1.60S+0.50W+1.60H 1 5.08 21.00 0.24 0.24 3.35 1.00 19.12 Vu <PhiVU2 Not Reqd 0.04 OAO Z -7 McClendon Engineering, Inc. 1412 W. Idaho Street, Suite 240 Boise, Idaho 83702 �uE 2 (208)342-2919 McOandon Engineering Inc Project Tile: rA FPOY"A T&V-t2A Engineer: Project lD: 10M? -5 Project Descr. DESCRIPTION: Grade Beam Detailed Shear Information Span Distance 'd' Vu (k) MU d'Vu1N1u Phi'Vc Comment PhPVs Spacing (in) Load Combination Number (ft) (in) Actual Design (k -ft) (k) (k) Re 9'd Suggest +1,200+1A0S40,50W+1,60H 1 5.65 21.00 0.46 0.46 3121 1.00 19.12 Vu<PhVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.50H 1 6.21 21.00 0.68 0,68 2.96 1.00 19.12 Vu <PhiVd2 NotRegd 0.00 0.00 +1.20D+1.60S+0,50W+1.60H 1 6.78 21,00 0.91 0.91 2.57 1.00 19.12 Vu<PhVd2 NotRegd 0.00 0.00 +1.20D+1.60$+0.50W+1,60H 1 7.34 21.00 1.15 1,15 2.06 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.608+0.50W+1.60H 1 7.91 21.00 t.39 1.39 1.41 1.00 19.12 Vu < phiVd2 Not Reqd 0.00 0,00 +1.20D+1.6(1S+0.50W+1.60H 1 8.47 21.00 f.65 1,65 0.63 1.00 19,12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.290+1.605+0.50W+1.60H 1 9.04 21.00 1.91 1.91 0.30 1,00 19.12 Vu<PhiVd2 Not Reqd 0.00 0,00 +1,201)+1.60S+0,50W+1.60H 1 9.60 21.00 2.18 2,18 1.38 1.00 19,12 Vu<PhiVcl2 Not Reqd 0,00 0.00 +1,200+1.60S+0,50W+1,60H 1 10.16 21,00 2106 2.46 2.61 1.00 19,12 Vv <PhiVr12 Not Reqd 0.00 0,00 +1.20D+1.60S+0.50W+1,60H 1 10.73 21.00 2.75 .2.75 4.00 1.00 19.12 Vu c PhiVd2 Not Reqd 0.00 0.00 +1,20D+1.60S+0.50W+1.60H 1 11.29 21.00 3.04 3,04 5.55 1.00 19.12 Vu cFhVd2 Not Reqd 0,00 0.00 +1,200+1.60S+0.50VM.60H 1 11.86 21,00 0.74 0.74 6.59 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0,00 +1.20D+1.60S+0.50W+1.60H 1 12.42 21.Ofl 434 1.74 6.22 1.00 19.12 Vu<PhMJ2 Not Reqd 0.00 0.00 +1.20D+1,605+0.50W+1,60H 1 12.99 21,00 -2.64 2.64 4.70 1.00 19.12 Vu<PMW Not Reqd 0.00 0.00 +1.20Q+1.fi05+0.50W+1.60H 1 1155 21.00 -2.33 2.33 3.21 1.00 19.12 Vu<PhiVd2 Not Reqd 0.00 0.04 +1.200+1.605+0.56W+1.60H 1 14,12 21.00 -2103 2.03 1.89 1.00 19.12 Vu<PhVd2 Not Reqd 0.00 0.00 +1390+1.605+0.50W+1.60H 1 14.68 21.00 -1.72 1,72 0,75 1,00 19.12 Vu 4 PM*12 Not Reqd 0.00 0.00 +1.20€7+t60S+0.50W+t60H 1 15.25 21,00 -1.42 1.42 0.23 1.00 19.12 Vu <MW2 Not Reqd 0.00 0.00 +1.209+t605+0.50W+1.60H 1 15,81 21.00 -1,12 1,12 1.03 1,00 19,12 Vu<PNW2 Not Reqd 0.00 0.00 +1.200+1,6pS+0.50W+1.60H 1 16:38 21.00 -0.81 0.81 1.66 1,00 19.12 Vu <PhVd2 Not Reqd 0.00 0,00 +1.200+1.60S40.50W+1.60H 1 16.94 21.00 -0.51 0.51 2.12 1.00 19.12 Vu<ph1w Nat Reqd 0.00 0.00 +1.20D+1,60Sy0.50W+1.60H 1 17.51 21.00 -0.21 0.21 2.41 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+D,50W+1.60H 1 18.07 21.00 0.10 0.10 2.53 0.91 19.01 Vu <PhUd2 Not Reqd 0100 0.00 +1.20D+1.60S+0.50W+1.60H 1 18.64 21.00 0.40 0.40 2.47 toe 19.12 Vu <PhVd2 Not Reqd 0.00 0.00 +1.20D+1.50S+0.50W+1.60H 1 19.20 21.00 0.71 0.71 2.24 1.00 19.12 Vu <PhVr12 Not Reqd 0.00 0.00 +1.20D+1,605+0.50wA6tlH 1 19,76 21.00 1.02 1.02 1,84 1,00 19.12 Vo<PhiVr12 Not Reqd 100 0.00 +1.200+1.60S40.50W+1.60H 1 20.33 21.00 1.34 1.34 1,27 1,00 19,12 Vu <PhiVd2 Not Reqd. 0.00 0.00. t-1.20D+1.6QS+0.50W,1.60H 1 20.89 21.00 1.65 1,65 0.51 1.00 19.12 Vu<phVd2 Not Reqd 0,00 0.00 +1.200+1.603-fOZOW+1.601-1 1 21.46 21.00 1.98 1.98 0,42 1.00 19.12 Vu <PhfVd2 NotRegd 0.00 0.00 +1.200+1.60S+0.50W+1A601-1 1 22.02 21.00 2.30 2.30 1,54 1,00 19,12 Vu<PhiVr12 Not Reqd 0,00 0.00 +1.200+1,60S+0.50W460H 1 22.59 21.00 2.63 2.63 2.84 1.00 19.12 Vu<PhiVd2 Not Reqd 0.00 0.00 +1,20D+1.605+0.50W+1.60H 1 23.15 21.00 2,96 2.96 4.32 1.00 19.12 Vu<PNVd2 Not Reqd 0.00 0.00 +1.200+t80S+0.50W+1.60H 1 23.72 21.00 1,39 1.39 5.63 1.00 19.12 Vu < PhiVd2 Not Reqd 0,00 0.00 +1,200+1.505-i4.50W+1.60H 1 24,28 21,00 -1.06 1.06 5.63 1.00 19.12 Vu<PhVcl2 Nat Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 24.85 21.00 -2.63 2.63 4.32 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.665+0.50W+1,60H 1 25.41 21.00 -2.30 2,30 2.84 1.00 19.12 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.200+1.60S+0.50W+1.60H 1 25.98 21,00 -1.98 1.98 1.54 1.00 19,12 Vu<PhVd2 Nat Reqd 0100 0.00 +1.20D+1.60S+0,50VV+1.601-1 1 26,54 21,00 -1.65 1,65 0,42 1,00 19.12 Vu < PhiVd2 Nat Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 27.11 21.00 -1.34 1.34 0.51 1A0 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1,605+0.50W+1.60H 1 27.67 21,04 -1.02 1,02 1.27 1.00 1912 Vu <PhiVd2 Not Reqd 0.00 0.00 +i.20D+1.60S+0.50W+1,60H 1 28,24 21.00 -0.71 0.71 1.84 1.00 19.12 Vu <PhiVd2 Not Reqd Ho 0,00 +1.29D+1-60SQ.3aW+1.60H 1 28.80 21.00 -0.40 0.40 2.24 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.201)+1.60S+0,60W+1.60H 1 29.36 21.00 -0.10 0.10 2.47 0.93 19,04 Vu <PhiVd2 Not Reqd 0.00 0.00 +t.200+1.605+0.50W+1.60H 1 29,93 21.00 0.21 0.21 2.53 1.00 19.12 Vu<PhW2 Not Reqd 0.00 0,00 +1.20D+1,605-450W+1.60H 1 30.49 21.00 0.51 0.51 2.41 1.00 19.12 Vu < PhiVd2 Not Reqd 0,00 0.00 +1.20D+1,60S+0,50W+1,60H 1 31.06 21.00 0.81 0.81 2.12 1.00 t9.12 Vu<PhVd2 Nat Reqd 0100 0.00 +1.20D+1.60S+0.50W+1.60H 1 31.62 21.00 1.12 1.12 1.66 1,00 19,12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.6GH 1 32.19 21.00 1.42 1.42 1.03 1.00 19.12 Vu<PhVd2 Nat Reqd 0.00 0.00 +1.20D+1.60S+0.50W+t.60H 1 32,75 21.00 1,72 1.72 0.23 1.00 19.12 Vu < PhiVd2 Not Reqd 0,00 0.00 +1.20D+1.6OS+0.50W+1.60H 1 33,32 21.00 2.03 2.03 0,75 1.00 19.12 Vu <PhVd2 Nat Reqd 0.00 0,00 +1.20D+1.605+0.50W+1.60H 1 33.88 21.00 2.33 2.33 1,89 1.90 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.605-M0W+1.60H 1 34.45 21.00 2.64 2.64 3.21 1.00 19.12 Vu<PhiVd2 Notftegd 0.00 0.00 +1,20D+1.605+0.50W+1.60H 1 35.01 21.00 2.95 2.95 4.70 1.00 19,12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.200+1.60S+0.50W+160H 1 3558 21,00 2.05 2.05 6,22 1A0 19.12 Vu<PhiVd2 Not Reqd 0.00 0A0 2e McClendon Engineering, Inc. Project Title: T A qcm4,'�L�A Ow 1412 W, Idaho Street, Suite 240 Engineer: Boise, Idaho 83702 Project ID: Jp�. Z3 (208) 342-2919 Project Descr. McClendon Erfblrtedrinb tnc File M:LLMCE Projecls1Y018 PrbjectA1074.18 Budtley Storage BuErdEngstCartsUaotinq-ec6 . e; on Efasfic FoundationSO*M MERGAC. INC, ls 200 Ud,,11111M. DESCRIPTIOW Grade Seam Detailed Shear Infoilnation +1.20D+1.60S+O.56W+1.60H Span Distance V Vu (k) Nim d`Vu1Mu Phi'Vc Comment Phi'Vs Spacing (in) Coad Combination Numbee (ft) (in) Actual Design (k -ft) 1.39 (k) 1.00 (k) Req'd Suggest +1.201)+ _6pS+0.50W+1.6RH 1 36.14 21.00 -6.44 0.44 6.59 1.00 19.12 Vu 4PhiVd2 Not Regd 0.00 0.00 +1.20D+1.605+0,50W+1.66H 1 36.71 21.00 -2.75 2.75 5.55 1.00 19.12 Vu<PhiVd2 NotRegd 0.00 0.00 +t.20D r1.605;0.504V+1.60H 1 37.27 21.00 2.46 2.46 4.00 1,00 19.12 Vu < PhiVd2 Not Regd 0.00 0.00 +1.261)+1.695�0.50W+1,60H 1 37.84 21.00 -2.18 2.13 2.61 1.00 19.12 Vu <PhiVd2 NotRegd 0-00 0.00 +1.2004608450W+1.60H 1 38.40 21.00 -1.91 1.91 1.38 1.00 19.12 Vu < Ph UO2 NaRegd 0.00 0.00 +1.20D+1.60S+O.56W+1.60H 1 38.96 21.00 -1.65 1.65 0.30 1.00 19.12 Vu < PhiVt12 Not Regd 0.00 0.00 +1.2AQ+1.60S+0.50W+1.60H 1 39.53 21.00 -1.39 1.39 0.63 1.00 19.12 Vu <PhiVc12 Not Regd 0.00 0.00 +1.20D+f-60S+0.504V+1.601-1 1 40,09 21.00 -1.15 1 15 1.41 1.00 19.12 Vu < PhiVd2 Nat Regd 0.00 0.00 +1.200+1.60S4.561+V+1.64H 1 40.56 21.00 -0.91 0.91 2.06 1.00 19.12 Vu <PhiVcl2 Not Regd 0.00 0.00 +1.20D+1.66S+0.50W+1.60H 1 41.22 21.00 -OR 0.68 2.57 1.00 19.12 Vu < PhfVd2 Not Regd 0.00 0.00 +1,20D+1.60S-+0.50W+1.60H 1 41.79 21.00 -0.46 OAS 2.96 1.00 19.12 Vu<PhiVd2 NotRegd 0100 0.00 +1.20D+1.6OS-t0.50W+1.60H 1 42.35 21.00 -0.24 0.24 3.21 1.00 19:12 Vu<PhfVc12 NotRegd 0.00 0.00 +1.201)+1.60S+0.50W+1.60H 1 42.92 21.00 -0.03 0.03 3.35 0.22 18.21 Vu<PhfVci2 NotRegd 0.00 0.00 01,2GD+1.60S+0.50W+1.60H 1 43.48 21.00 0.17 0.17 3.37 1,00 19.12 Vu <PhiVd2 Nat Regd 0.00 0.00 {1.201)+1.605+0.50W+1.60H 1 44.05 21.00 0.38 0.38 3.27 1A0 19.12 Vu<PhiVd2 Nat Regd OA0 0.00 +i20t7+i.60S+0.50W+1.60H 1 44.61 21.00 0.56 0.58 3.06 1.00 19.12 Vu <PhfVd2 NotRegd 0.00 0.00 +1.201)+iA0S+0:50W+i.60H 1 45.18 21.00 0.77 0.77 2.73 1.00 19.12 Vu 4PhiVr12 NotRegd 0.00 0.00 +1.20D+1.60a+0.50W+1.6OH 1 45.74 21.00 0.97 0.97 2-30 1.00 19.12 Vu<PhfVc12 NotRegd 0.00 0.00 +1.200+1.605+0-50W+1.60H 1 46.31 21.00 1.16 1.16 1.75 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.26D+1,60S-F1.50W*1.60H 1 46.87 21.00 1.36 1.36 1.09 1.00 19.12 Vu <PhiVd2 Not Regd 0A0 0.00 +1.20D+1.66S+0.5OWa1.60H 1 47.44 21.00 1.30 1.30 0.34 1.00 19.12 Vu<PhiVd2 NotRegd 0.00 0.00 Mc McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLANK MCDE Project: -rA ftyIA- TJW*44t No, 10M,21, Page: 30 McClendon Scope: 5n+ -Cr. Date: 5 -/ZS- Checked by: Engineering Inc Item: By:— LATW-A-, AOPM.yr, 14r I I r A YC-) GLVS = f3l V, Oj F, H I K, L o ;r a) = 0, Lfq )PATeapoLs.'Tev q,!r) 0. 60 z 6z, f. Lr I pYr A e\ 6122123, 3:46 AM U.S. Seismic Design Maps Tahoma Terra Yelm, WA, USA Latitude, Longitude: 46.9420431, -122.6059582 1 st Street Nail Bar Ma and Pa's Family Diner \Z5100 Yelm-Tenino Trail Tahoma Valle Golf Course Go gle t Date Design Code Reference Document Risk Category Site Class OSHPD %4 ` AThe Shiplap Shop 50� T & Coffee House South Puget Sound Habitat for... �a 6122!2023, 3:47:15 AM ASCE7-16 I I D - Defauit (See Section 11.4.3) Type Value Description Ss 1.288 MCER ground motion. (for 0.2 second period) S1 0.465 MCER ground motion. (for 1.Os period) SMS 1.545 Site -modified spectral acceleration value SMI null -See Section 11.4.8 Site -modified spectral acceleration value SIDS 1.03 Numeric seismic design value at 0.2 second SA Sp1 null -See Section 11.4.8 Numeric seismic design value at 1.0 second SA Type Value Description SDC null -See Section 11.4.8 Seismic design category Fa 1.2 Site amplification factor at 0.2 second Fv null -See Section 11.4.8 Site amplification factor at 1.0 second PGA 0.509 MCEG peak ground acceleration FPGA 1.2 Site amplification factor at PGA PGA, 0.611 Site modified peak ground acceleration T, 16 Long -period transition period in seconds SsRT 1.288 Probabilistic risk -targeted ground motion. (0.2 second) SsUH 1.418 Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration SsD 1.5 Factored deterministic acceleration value. (0.2 second) SiRT 0.465 Probabilistic risk -targeted ground motion. (1.0 second) S1UH 0.522 Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration. S1D 0.625 Factored deterministic acceleration value. (1.0 second) PGAd 0.509 Factored deterministic acceleration value. (Peak Ground Acceleration) PGAUH 0.552 Uniform -hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration 3f Map data ©2023 hHnc•1hanAnu �o«n,���,��� �.� 11� 6/22123, 3:46 AM Type Value CRS 0.908 CRI 0.891 Cu 1.358 U.S. Seismic Design Maps Description Mapped value of the risk coefficient at short periods Mapped value of the risk coefficient at a period of I s Vertical coefficient hftnc•fAMAAm QnkMiPManC nrn 919 J T Project: 5H -o cPr -7ma-A No kt)Z, 12-) Page: -33 McClendon Scope:—.5m�i Date: I Checked by: Engineering Inc Item: By: [Zcor- /OpsF �i i 5) - 750 /57 = Zr8,0,!-F F(119z) � -T-Or6I_1 0, ���� F) O O 0 0 Q O 0 0 0 0 0 0 0 0 0 0 0 WN N(D M O O 0 0 0 0 0 0 O O O `e 0 0 J =1 �a Project:% I-(�9y'Vtl�L�2� No: , I Q . � � Page: 36 McClendon Scope ` Date: �� Checked by: Engineering Inc Item:BY:-,- Too r - q7!?` /330' r 13 t= `PIZCV. C--� y Gfq. PA-J6:L .� Piz f F c Projecf:ai_ !'(i! L_. 121A _— No: 1028- Z Pager McClendon scope: Date: cnecl<� by: Engineering Inc Item: toy* � Z 7 £ rosy E�cJ �rrpMr2rc�, Lc r�...?ZSo�I' (s., TO(O=,, 'Yvrz.�.+.s 'gpy;c-tNc S' o" o -c Tye Za Z IOey o Project: Mt���2iZi r No: -W - $,;Z3 Page: McClendon Scope:��- __.Luer PtC-t1V Date:_.J / — Checked by: Engineering Inc Item:_ _ — __ By.__ a T7( rCit2Ulr.3 /47 f5 PtF Sroc rix, � 7.SpL F M X75 17Sd t6 FT' �Jre2 Ac -n cbi vv Cs-t,�zr -3L t-.i� kc.y K 7�tBce�c� Project, No. Page: McClendon scope.,�_ngLtar j?L---5f Date. 4�--17-; checked by Engineering Inc Item: Vto C io ��r.e. �� i s, �- Vz, V, VAX), iq 7, Tv, —�.^ s 7� Ca-c.4.S� C� � Fr4jec;:AHQb4j ! _No:_ 104;—�'B, Z3 cClendQn Scope: T12G C ` f-£ I67'PJ Date: _ � Checked by: Engineering Inc Item:__Cf y, _ s SO& ff-eq C =: 397 In �a o.c, C�r✓�s.j Tz S�7 b r G,+n ti3 r e -um t) � ick 4 AOL k�R ,ryL k2 k/lL k.OL k5! MAL =1901 traject: �r 1.............. o n+�-► Na: / 02-K. ZZ Page: qH McClendon $cope:'iRQ . Date: Z-5— Checked by: Engineering Inc Item: __ By: Project: mtc� !9 No:IQZ9g- 2?,�_- Pager? Scope: 552 - 1G CCI211COi1 - Date: Z Checked by: Engineering Inc Item: - By: - OIBV C 13n MAX f eA US 1% 7,78?i-r (1S')1 * J= )O LIZ H b4L-,c>'DE)OO MJ _FA hLOMk 7ag:A No- Page:_Q__ Project: S-5 Checked by: Scope: 6_T _ 1 Date: McClendon 6_T& Engineering Inc Item: By: dt .€ .»' - 'r'•1�9ii�Z'�f" � ::1""'-n" ;.i61�i#+�[�?� � �"' ., :� . �wi1 � a'. p•ea- f�re�r.,:-s+aa . '.r—. - Connectors for Cold- Formed Steel Construction S/HDU Holdowns The of series of holdowns combines per#ormance with ease of insta4ation. The pre -deflected geometry virtually eliminates material stretch, resulting in low ° deflection under load. Installation using self -drilling ° screws into the studs reduces )nstaiiation time and ° saves labor cost. ° S/HDU Material: 118 mil (10 ga,)° US Patents mapufacturing 6,112,495 Picot holes for ° 5,979,130 and Finish: Galvanized (G90) purpeses m Installation: pastener ° N notrequired) • Use all specified fasteners; see General Notes ° • Use standard #14 self -drilling screws to fasten to studs o • Anchor bolt washer is not required • See Sia, SSTS and PAB anchor bolts on pp. 163-164 for cast -in-place anchorage options • See SET-XPe and AT-XR" adhesive products at a strongtie.com for anchor bolt retrofit options Codes: See p. 11 for Code Reference Key Chart 3s�8ry )t Z4 I 7/r (27) #14 11 2-43(2-18) 9,595 0.996 SMDU11 16% 2-54(2-16) 9,675 0.110 7� 2-43 (2-1@L_ 11,100 0.125 with heavy (27) #14 2-5422-16)° 12,175 0.125 hex nut Steel fixture' 12,945 0.111 - These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong -Tie for details. 1. The designer shall specify the foundation anchor material type, embedment and configuration. Some of I- 4. Shearwallthe tabulated holdown tension loads exceed the tension chord studsstrength of typical ASTM A36 or A307 anchor bolts. 2. Stud design by specifier. Tabulated loads are basedHOIdOWon a minimum stud thickness for fastener connection. 3, VV self -drilling screws may be substituted for bearinglipldown #14 self -tapping screws, plate A heavy hex nut for the anchor bolt is required to achieve the table loads for S/HDU11. Rod 5. Deflection at ASD or LRFD includes fastener slip, holdown deformation and anchor rad elongation for 18" max holdawns installed up to 4" above top of concrete. Holdowns may be installed raised, up to 18' above top of concrete, with no load reduction provided that additional elongation of the anchor rod is accounted for 6. The Nominal Tension Load is based on the tested average ultimate (peak) load and is provided for Typical S/HDU Installation LRFD (lb.) - — ! . - - - Nominal Tension 1! Deflection at Tension Load Cade Load LRFD Load' a (lb.) Ref. 3,705 0.149 5,685 6,1050.190 9,365 6,345 0.156 9,730 165 a.103 �_ 12,120 9,690 9,580 Madel - S/HDU4 H (in.) Fasteners Anchor Bolt Stud Diameter' Fasteners' I {in.) ASD Stud Member _ s Thickness Tension mil {ga.} Load (lb.) Deflection at ASD Load s 13,165 77/0 (6)#14 f-/ 2-33(2-20) 2,320 0.093 2-43(2-14 3�821 2-54 12-1611 j3 Steel fixture 4,470 2-33(2-20) 4,895 2-43_ f2-118 6,125 2-54(2-16) 6,125 Steel fixture 5,995 0.115_ 0.093 0,063 S/HOU6 10% 127A - I % (12) #14 - 0.125 0.119 0.108_ 0.060 0.103 S/HDU9 '/e (18) #14 2-33 {2-20) 6,965 2`43 2-18) 9,255 0.125 2-54 (2-16) 9,990 0.106 _ Steel fixture 12,715 0.125 0.103 9-7i r7 -9i11 6.9%5 I 7/r (27) #14 11 2-43(2-18) 9,595 0.996 SMDU11 16% 2-54(2-16) 9,675 0.110 7� 2-43 (2-1@L_ 11,100 0.125 with heavy (27) #14 2-5422-16)° 12,175 0.125 hex nut Steel fixture' 12,945 0.111 - These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong -Tie for details. 1. The designer shall specify the foundation anchor material type, embedment and configuration. Some of I- 4. Shearwallthe tabulated holdown tension loads exceed the tension chord studsstrength of typical ASTM A36 or A307 anchor bolts. 2. Stud design by specifier. Tabulated loads are basedHOIdOWon a minimum stud thickness for fastener connection. 3, VV self -drilling screws may be substituted for bearinglipldown #14 self -tapping screws, plate A heavy hex nut for the anchor bolt is required to achieve the table loads for S/HDU11. Rod 5. Deflection at ASD or LRFD includes fastener slip, holdown deformation and anchor rad elongation for 18" max holdawns installed up to 4" above top of concrete. Holdowns may be installed raised, up to 18' above top of concrete, with no load reduction provided that additional elongation of the anchor rod is accounted for 6. The Nominal Tension Load is based on the tested average ultimate (peak) load and is provided for Typical S/HDU Installation LRFD (lb.) - — ! . - - - Nominal Tension 1! Deflection at Tension Load Cade Load LRFD Load' a (lb.) Ref. 3,705 0.149 5,685 6,1050.190 9,365 6,345 0.156 9,730 165 a.103 �_ 12,120 9,690 9,580 _ 0.136 1_4&95 11,125 0.189 13,165 IBC, 15 ,485 0.250 21,810 FL, LA 15,960 0225 24,48_0 20,510 0.177 31,455 11,125 0.189 13,165_ 15,330 0.162 23,515 -. 15,460 - . 0.158 23,710 17,500_ 0.254 24,955 19,445 0.243 225 9,8 20,680_ 0.163 31,715 5* slope max. (2L� 1 Coupler Top of Botto! concrete A �' 1.5' max. ! trace design in accordance with section C5 of AISI 5213 that requires a holdown to have a nominal strength to resist the lesser of the amplified seismic load or the maximum force the system can deliver. 7. See Fastening Systems catalog (C -F-2019) on Holdown Raised Off strongtie.com for more information on CFS Bottom Track Simpson Strong Tie fasteners. Typi Flo( �I 11 '[ b 1 Project. �� � � tiLf� — No: ��LB, page: 41 McClendon Scope:, Date:�z2' Checked by: Engineering Inc Item: Y W_ By:— Ic71i'1 C�7 � L- ► Savo v {� r :Fi�� gtr. @.a to o`c,cmu � 'F"OL(. kr F ; 10 ... X. E 5-s-uta F 3 � 1.L`7 % 7 ! b Zt i 3 S i _ �'�L�a Vic,=! ; LcGx � x � Z rf t� ��� t.:. �i i` ����v''�•i" s s j , n 0 N O ol n n (v m m c0 (D in M m m N o rn > w C' rn rn n n n n N cr N ti J, f 1' In O m N VyI� n 7 co [CI [n co m n N �C Co Co 4¢0 a0QD m �Np O IDN CA aO O C7 M m M d V O c0 v O ti 0 0 0 0¢ O O O O CD 0 w Q .41 M o d o N rn rn 0 .- m M rn n n o m y >< C u� O M rr M m CD m M M (D m q 0to V Qi N [n n rn M v 10 m n m (n v r .� Z 4 O - r- 'r- N N N M [7 0 0 r- o r d to m V co m o s o d v m cn Wr X C N N N O m to V) V 0 C T m M N ti O v v, m� v s r` n n JV N N N N N N N N N N N N N N N N w K n m v m v cp N (p m 0 to n n M 6 w r �: x n O n n W v M v u7 [p Cp r - N N f0 v +► r C N Q m et N -1 C(7 N 9 m IQ' n N m N r N N N N N LOQ _ Lf) ` N M N n m M C :C.l M M m 4 m i` 0mM M [(i M Vi CO m d' (fl rn (0 N0 J` m � VY (D n V7 N n ce 0 O h 0 C(1 (0 m rn O r- 0 m to rn 0 2 w lyN > s O v, n a, N n r> V 0 N n m O i, v r- N O O O m C6 6 r` C i ui I� M us r N c ti N U O � @ O r O J M 0 m CO m r (0 Vl CD m to Lo tor d' o J R rC Y M w Oto v V N v M o O n- v m �n - cv r d CD C)U C L co a 0 Q C'> It V) CO C") a 6 r- 6 V 6 h C7 4 6 t` C � � n y � 2 M o m en M a cn .n m o c0 cn M a m n m R a v n n o m M m m co n r~ o m m m m n n o m m m m m n n o m m m m m E N C _ O 0 45 0 0 C5 C> q 0 C' C3 0 a 0 0 0 O - [ Co U CO M tP (0 d O O a0 V) N t6 V7 M ( P o m O O co G w Q 47 C_ n CA r M N m n Ch m r (0 W ep a O n N f0 47 (DM n@ C3 O V7 m .0 L6 L n C ¢ O O O O r O r O O m m o C C%3 U U U Q C y C ` ftl l�ti f- L O[ .a V7 ¢ lJ7 (5I n d O M (• O co m m n n c- m m N O 4 n O n Cl Cn h N � n m m M M 4-1 O1 0 V7 n N C] a� (, d N E (U 0 Q 9 i-: < a W t7 N c; M 7 N M V Q N M V V> N M M O Q EL m 0 C zCL Vl G r V7 O = O O m O LO On O N� O !l1 Q Q 'p u7 R Y C lafj O rO.. O OND O r [QIl O d¢ r 0 0 OND 0 r O 0 LSV 0 r C (G ii II Z `� O O O O O O p 0 0 0 0 0 0 0 0 0 z Cn x U (L LL Q ZCD LU t� m N (0 v m N (D vM, M N (O V M N CD TIT TFIT 4 0 0 o m 0 0 O o d o O in m m 0 m m M M M M N7 M M 7 Y 7 a N N N N �- x C x x x O x d x O x d x 4 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x O m�CD `I CD ¢ m m �➢ (D (D CD [0 m CD n � h h m N_ (0 7 m N (fl V' M c U U U U U U U U U U U U U U U _N U d d Cl o u') [n Un U� 0 0 o a en in 9 C -i &i m m m 0" m v v c v N N N x o x a x o x o x a X o x c x d¢ x x o x a x o x x a o x 0 " CD c0 (D to 0 CD to (D 0 (D (p to t` ti (N n 0 N O ol Mc McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLANK