Loading...
Structural Calculations - Building MMc McClendon Engineering Inc TAHOMA TERRA BUILDING M STORAGE Yelm, Washington FINAL STRUCTURAL CALCULATIONS June 30, 2023 Prepared for: Keimig Associates 307 D Street SE Auburn, Washington 98002 43327 4 ��O RFGtSTER�O r� "I'ONALE0� 04�3r+ Z3 E..Pl�iES: a'�i 23 t3 i Prepared by: McClendon Engineering Inc 1412 West Idaho Street, Suite 240 Boise, ID 83702 Project No.: 1028.23 Dc M TAHOMA TERRA McClendon BUILDING M STORAGE Engineering Inc YELM WASHINGTON 1028.23 TABLE OF CONTENTS GENERAL: Table of Contents....................................................... DesignLoads.............................................................. Materials and References ........................................... Deferred Submittals.................................................... Special Inspection...................................................... Project Description..................................................... GRAVITY DESIGN: Page Number RoofFraming.............................................................. Roof Panel Purlins LintelDesign.............................................................. WallDesign............................................................... Foundation Design.......................................................... Wall Footings LATERAL DESIGN: Lateral Analysis ....... ..................................................... 333 Wind Base Shear Seismic Base Shear Diaphragm/Chord Analysis ................................................... 7 ShearWall Design.......................................................... X -Braced Walls 11 3 RoofFraming.............................................................. Roof Panel Purlins LintelDesign.............................................................. WallDesign............................................................... Foundation Design.......................................................... Wall Footings LATERAL DESIGN: Lateral Analysis ....... ..................................................... 333 Wind Base Shear Seismic Base Shear Diaphragm/Chord Analysis ................................................... 7 ShearWall Design.......................................................... X -Braced Walls 11 MC McClendon Engineering Inc GRAVITY DESIGN LOADS: Roof Dead Loads Roofing: - Decking: 2 psf Framing: 2 psf Insulation: 2 psf Ceiling: - M & E Collateral: 3 psf Miscellaneous: 1 psf X Roof DL: 10 nsf Roof Live Loads Snow Load: 25 psf Roof LL: 20 psf Floor Dead Loads Flooring: SOG Decking: Framing: Insulation: Ceiling: M & E Collateral: Miscellaneous: 1: Floor DL: IV Floor Live Loads Occupancy/Use: Light Storage Floor LL: 125 psf Occupancy/Use: Floor LL: - Wall Loads Interior Stud Wall DL: _ 7 psf Exterior Stud Wall DL: 7 psf CMU Wall DL: 55 psf LATERAL DESIGN LOADS: Wind Loads Seismic Loads Wind: 115 mph Site Class: D - Default Exposure: C Seismic Design Category: D MWFRS: Simple Risk Category: 1I Diaphragm Importance Factor: 1.0 LOAD COMBINATIONS: Desisn Method Strength Design: Basic Load Combinations ❑ Allowable Stress Design: Basic Load Combinations ❑ Alternative Basic Load Combinations TAHOMA TERRA BUILDING M STORAGE YELM WASHINGTON 1028.23 R. 4 0: 2 p: I SDs: 1.03 SDI: MSFRS: X Braced CFS Walls DE McClendon Engineering Inc MATERIALS: Steel Shapes Fy= 50 ksi Plates/Angles/Channel: FY 36 ksi Hollow Structural Shapes: Fy =—A2 ksi Pipe: Fy = - Bolts: A325 Anchor Bolts: A307 REFERENCES: Soils Bearing Pressure = 1500 psf Source of Information: assumed Frost Depth = 18" DEFERRED SUBMITTALS Steel: Steel member layout 4V9 Joist/Joist Girders Layout ❑ Metal deck layout Wood: Engineered Truss Layout ❑ Cold Formed Steel: Steel member layout SPECIAL INSPECTIONS: Fabricators ❑ Steel Construction Concrete Construction ❑ Masonry- Level i Masonry- Level 2 Wood Construction ❑ Soils ❑ Deep Foundations ❑ Special Cases Seismic Resistance ❑ Other: 7 Wood Sawn Lumber: GluLam: Eng. Product: - Licht Gauge Steel Fy: 55 ksi Codes Used 2018 IBC TAHOMA TERRA BUILDING M STORAGE YELM WASHINGTON Concrete f c = 2500 psi fy = 60 ksi Masonry fm= 1500 psi fy — 60 ksi Software Used USGS Enercalc Concrete: Mix Design TX Reinforcement Layout Masonry: Mix Design s� Reinforcement Layout Other: ❑ 1028.23 MC McClendon Engineering Inc PROJECT DESCRIPTION: TAHOMA TERRA BUILDING M STORAGE YELM WASHINGTON 1028.23 The Structural scope of work for this project consists of: • The design of a single story light -gauge steel framed storage building. • The gravity system for the building consists of a light gauge steel framed roof supported by steel frames, light -gauge steel framed walls. • The lateral system for the building consists of a simple diaphragm, light framed shear walls reinforced with flat strap cross bracing. o The loads are transferred from the diaphragm to the framed shear walls, to the foundation. Mc McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLANK 0 0 O 0 0 0 O 0 0 0 0 a tA a a V Ll N u u pu u f� 2 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I � a a lz U- 1 I I ' I I ' I I I I I I I 0 0 0 I 0 J m z 0 Z Q LL LL 0 0 HIMON 0 co J Q U J IN me Project: --.T;�H-OMA No: 107-8. Z3 Page - McClendon IcOPI: Date: Checked by: Engineering Inc Item: By: (MA -X 'L MISCO 7)-j p6F le QALLL 00' - L-04 I v I v ;?,Y- 6A AC�f 6PYJ SIV Z�� MCELROY Medallion -Lok fido METAL 13 �.- _......._. .......-.. 16" COVERAGE 1. Section properties are calculated in accordance with the 2004 AiSI North American Specification for the Desfgn of Cefd•Formeci Steel Structural Members. 2. Va fs the allowable shear. 3. Pa is tite allowable load for web crippfing on end & interior supports. 4. bcisfor deflection determinalion. 5 Se is for bending. 6- Ma is the aHowabfe bending moment. 7 A11 values are for one foot of panel width. Allowable Uniform Loads (PSF) Noles: 1. Allowable uniform loads are based upon equal span lengths. 2. Positive Wind is Wed pressure and Is NOT increased by 33 113 3. Live is the allowable live or snow load. 4. Defleotlon (Ul80) Is the affowabie load that limits the panel's deflection to U1a0 while under positive of lire load. 5. Deflection (U240) is the allowable load that limits the panel's deftecdcn no L1240 while under positive or live load. 6, The weight of the panel h3sNOT been deducted from the allowable loads. 7- Positive wind and Live load values are limited to oombined shear & bending using Eq. C3 3,1-1 of the AiSI Specification. B. Values of ASTM El 592 Wind LIpItR Testing include a factor of safety of 1.67. Shaded areas are outside of cast range. Contact McElroy Metal for more information. 9. Positive Wind and Live Load values are limited by well crippling using a bearing length of 2-. 10. Web crippling values are determined using a ratio of the uniform Icadactuaily supported by the top flanges of the section, 11. Load Tables are limited to a maximum allowable load at 590 psf. Span i et Span Type Load Type Positive Wmd 1.00 590 1.50 497 2.00 280 2.511 179 3.00 124 3.50 91 4.00 70 4.50 55 - -X 44 5 57 37 a :: 31 ,- '3 6i? 26 Tl1Cr 22 150 19 900 17 850 15 Single Live 500 497 280 179 124 91 70 55 44 37 31 26 22 19 17 15 Deflection (U180) 500 500 500 dill 278 175 117 82 60 45 34 27 21 17 14 12 Deflection "40) 500 500 500 366 208 131 88 61 45 33 26 20 i6 13 11 9 PosNue Wind 500 337 197 128 90 66 51 40 32 27 22 19 tS 14 12 11 2 Span Live 50C 337 187 128 90 66 51 40 32 27 22 19 t6 14 12 11 3eltection (1.1180) 500 500 500 500 491 309 207 145 106 79 61 48 38 31 25 21 DeUction(U240) 500 50D 50q 500 368 232 755 109 79 59 46 36 29 23 19 16 Posillve Wind 500 407 241 158 ill 82 63 50 41 34 28 24 21 F8 16 14 /f�►,� 3 Span Uv= nnrl:tc9) 590 BCD 477 600 W SW 158 500 ill 384 62 242 67 162 50 1 114 Al 83 34 W r 48 2.1 37 z1 30 18 24 16 20 14 1e 10ereotion(1-1240) 500 500 500 495 268 181 121 85 62 46 36 28 22 18 15 12 Positive Wind 500 385 227 145 104 77 59 47 38 31 26 22 i9 17 15 13 4 Span Live 500 385 227 148 104 77 59 47 31 26 22 19 17 15 13 DeBecion(Ui80) 50Q 500 500 500 408 257 172 121 ��381 88 66 51 40 32 26 21 17 DeBecSon(L'240) 500 500 500 500 306 192 129 90 66 49 38 30 24 1 19 16 13 ASTM 11592 Wimd Uprdi Testing 69.5 1 51,1 52,9 49.1 1 45.2 j 41.3 1 37.7 33.8 38.1 Nd TEST DATA AVAnA@LE Noles: 1. Allowable uniform loads are based upon equal span lengths. 2. Positive Wind is Wed pressure and Is NOT increased by 33 113 3. Live is the allowable live or snow load. 4. Defleotlon (Ul80) Is the affowabie load that limits the panel's deflection to U1a0 while under positive of lire load. 5. Deflection (U240) is the allowable load that limits the panel's deftecdcn no L1240 while under positive or live load. 6, The weight of the panel h3sNOT been deducted from the allowable loads. 7- Positive wind and Live load values are limited to oombined shear & bending using Eq. C3 3,1-1 of the AiSI Specification. B. Values of ASTM El 592 Wind LIpItR Testing include a factor of safety of 1.67. Shaded areas are outside of cast range. Contact McElroy Metal for more information. 9. Positive Wind and Live Load values are limited by well crippling using a bearing length of 2-. 10. Web crippling values are determined using a ratio of the uniform Icadactuaily supported by the top flanges of the section, 11. Load Tables are limited to a maximum allowable load at 590 psf. Project: :rA- 1A0vkA8: rYLYL No: I Z f 3 Page: McClendon Scope.J7721.tCT�IC-N Date: Checked by: Engineering Inc Item: By: 5.p4ts 10 1 p E n_ a 0 m n +- co N m n n 1 W Q Q a h r m N � N� m r m o P r�_ ,n m❑ r r N } r �2 S K Q o d d d d o d a o p o 0 o 0 0 0 ti `r �C m m ca v, r Q co m n h r m P r N O r t6 O N O N u) P n CI N M [+i Q r N N M r I 1 m Q M1 W O N S 6� N M1 O r SLI a R} N r -w U ' n e nC m er Y1 d0 M1 ca m in N m r m r m N n Q m n X r N ry r ry ry t� I N N n N N M� X • N �f N m o r m r N N r - A m m m m N a N OI N h M lN0 fND S O N U =O 0 N Qy w l`i r Y m 0 CV r r r Oi t'3 r tV r Q r [0 r N N C^ LD C a ° w acc `m tf) J w a m v vn N fC 05 ep a, a N Q .t a o N ti N ri a ctf �+ of +ri n of ry i n u a Q J Q lo � � Y 13!m C S v� r a? M m9! m IF! O? M C� n m m m m n ae N m m m 0 W N r CO c0 0'i M1 Q o 0 0 0 t r FJ i4 O n �tl M1 M m r m ep m m M1 Q� 'y d r d1 h 6 SD u) m O1 N M PI r M P Q� t7 P W O uj M 7 Q N N M Q N M a V M Q P D a O cc n m O C Y N 0 r 0 c� a O N P h a m o 0 N O to m o u] r W O ...f r O O O r O O O O r O O P O O o o q 4 a O Z r is m a M N m a ri N m Q rr N fp Q to N is - m M � eM1i v1 r tea n tai m Sri m N m N m N M CY n� N N � N ti Cj ti f'i r [7 h M i r r r N N N Cx (X n 0 x X X X X % X X X X X x X x x x x o a p P o P o 0 0 o p p a o 0 0 d E mP N N W' is N Y Yry� 1 :2 ;2 z N b M O O 4 fNf MNi _N NW h 1N2� uN9 p Gf7 n_ a 0 m E MC Project: :TA- 4 6 m L4 T1)zg-3, No: I .2-S Page: Date: .5 --/SB Checked by: McClendon IcIPI: 5T�L"-T- na!s'c-'r"s t Engineering Inc Item: BY: V'CO F- s�'kFpc'e-T) Z5p5F.0 j. 175-D 160- vX10 Fri (b ( C A/(=, 6/k Q -f ?TL- �30 7 -f -ha -D 1 PTS 410, PA:: X56 7 Y, (p rzo F �,g /Z) PL -F M pl-F 00 V�s przov I L--, Y E MC Project: htO PAA- No: Io7 23 Page: M rl� Date: Checked by: cClendon Scope: 6T?zLkcl Engineering Inc Item: By: ----- -- . .. ........ . --------- Z'-O fffYd FLU 1.76D _ntle.-O PT5 =-7 V�, M 11' 75 0 2- Y �3 LD u) v v LOof u) ca tD LO v o 0 o c r G O o o C> m to cp fp o O O O r31 CA Clt O O C] O O r r r Y �. � hm m m M1 co O) r fr O h Cil m m N O W v D7 Uj c v co v co to m N o m m m O v iri [D •f' v1 to co th w O O O C 0 4 C7 0 a O to N (+ rt h cn O O m m m 61 N C Q O m CA O Q7 M1 b h CA V' O O d h O m LB cD m O) r G N �n D7 M1 r r N N N m 6 O O r r 'V `fat O co c0 v m O O w N LO v cD b N N x= CA M1 co CO r- 0 0 0 b A U) CD L0 N v co m Ln ti r• x C In _ W O N CA 0r m (£1 m O O N 9D 10 N (O r N m N N C1 Y N N� Lo dn r 7 b C7 X O v CNO LO N O `� N co Vm' N W O M1 N p N h C 7 ' v a�0 cv co O cV u W C)h LO o m h L L m b v 2 rn Q r .! j a coQ r obo C9 "to rmi r v o C (p 'X N v M1 r N v n F N It h N N v t- M C m e-' 0 r Q V J m - 0] m N of O O eo r` v1 O o m. cp o 0) v c0 cD u) w m N "n 0 a v w O m tOj 01 m m r m M1 O h v M ti O 1f] O o v 6 c9 4 6 6 of v u i � of v m t: o TV U-) :,> r• m b 0 cfi m b rD u7 O co kn r) o m u) _ ti m m m ti m o4 1rs M1 OR0� C� rl% m m cC N O O O O O O O O 0 0 0 0 0 0 0 0 OO C C1 to Q O � N �O m "I O cD cc7 m N m cf1 m O O m NQ a C CNO Ghi O v 4�) r m thD llD m O N In Q b b r o r r O O r r 0 b a R O G in w Co U C Q r L M1 CD O M1 M m O m r` m cD M1 m m N n rC O1 03 CA M1 m N 6 h O W Q7 N O O M N M1 Qt M r n W y y z v N m V' v r m m fp a} cD 10 h N m M, O v D1 of m N v) m�r m m In C O y •N co (/) t Y C n O d N 0 O Ln ci] O O 0 in W O to 47 0 O in N7 u O Q '0 c d) >n h c^ sc In v h o co v- 0 1ti v rA a m v C? .- Ln a h o co o O r to o h 0 CCl o O r to Fl u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ZK Ui ti LLL 0 F Z � O v m N 0 'C' M N 0 v M N c0 v m N i 0 0 0 0 0 0 0 0 u3 n 1n o o a o fA M m m co 't v:r 'cr N N N N m m m m X C X X X x X X x x X x x x X X X x q` o 0 0 0 0 a o a o o a o o v v o d r� is ti r� r` fi r, ai w 05 w co co ai m N E Cp V m � V m N C� Y N f0 v C7 N U U U _N U U U U U U r U U U U U U C P O X O X O X O X O K Q X O X O X N X u7 u] X cj C6 X 0 X 0 X 0 X X 0 0 0 0 C7 O M1 M1 N M1 M1 M1 M1 h 0 m m McClendon Engineering Project Title: Tahome Terra ■ • 1412 W Idaho Street Engineer: SM Section used for this span MC Suite 240 D Project ID: 1028.23 Ma: Applied Boise, ID 83702 Project Descr: 2.013 k Mn I Omega: Allowable McClendon Vn/Omega : Allowable 37.506 k Load Combination Engineering Inc Load Combination +D+S Steel Beam Location of maximum on span 0.000 ft Project File: Design.ec6 LIC#: KW -06017540, Build:20.22.12.28 McC€endon Engineering, Inc Span # 1 (c) ENERCALC INC 1983-2022 DESCRIPTION: Roof Beam RB2 Max Downward Transient Deflection CODE REFERENCES -360 Max Upward Transient Deflection Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 <360 Span: 1 : S Only Max Downward Total Deflection Load Combination Set: IBC 2021 -240. Span: 1 : +D+S Max Upward Total Deflection Material Properties X240.0 Maximum Forces & Stresses for Load Combinations Analysis Method Allowable Strength Design Fy : Steel Yield : 50.0 ksi Beam Bracing : Beam is Fully Braced against lateral -torsional buckling E: Modulus : 29,000.0 ksi Bending Axis: Major Axis Bending Va Max VnxVnx/Omega D Only A. D(0.250) $(0.6250) D(0.250) S�Q6250) D(0.250) $(0.6250) W10x12 Span = 20.0 ft lied loads Service loads entered. Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Uniform Load : D = 0.070 k/ft, Tributary Width = 1.0 ft, (Wall) Point Load: D = 0.250, S = 0.6250 k @ 5.0 ft, (Purlin) Point Load : D = 0.250; S = 0.6250 k @ 10.0 ft, (Purlin) Point Load : D = 0.250, S = 0.6250 k @ 15.0 ft, (Purlin) IS DESIGN SUMMARY ■ • Maximum Bending Stress Ratio = 0.393: 1 Maximum Shear Stress Ratio = 0.054 : 1 Section used for this span W10x12 Section used for this span W10x12 Ma: Applied 12.250 k -ft Va : Applied 2.013 k Mn I Omega: Allowable 31.207 k -ft Vn/Omega : Allowable 37.506 k Load Combination +D+S Load Combination +D+S Location of maximum on span 0.000 ft Span # where maximum occurs Span # 1 Span # where maximum occurs Span # 1 Maximum Deflection Max Downward Transient Deflection 0.275 in Ratio= 871 -360 Max Upward Transient Deflection 0.000 in Ratio = 0 <360 Span: 1 : S Only Max Downward Total Deflection 0.548 in Ratio = 438 -240. Span: 1 : +D+S Max Upward Total Deflection 0.000 in Ratio = 0 X240.0 Maximum Forces & Stresses for Load Combinations Load Combination ax ress Katios ummary of omen Values Summary of Shear VaFules Segment Length Span # M V Mmax + Mmax - Ma Max Mnx Mnx/0mega Cb Rm Va Max VnxVnx/Omega D Only Dsgn. L = 20.00 ft 1 0.192 0.029 6.00 6.00 52.12 31.21 1.00 1.00 1.08 56.26 37.51 +D+S Dsgn. L = 20.00 ft 1 0.393 0.054 12.25 12.25 52.12 31.21 1.00 1.00 2.01 56.26 37.51 +D+0.750S Dsgn. L = 20.00 ft 1 0.342 0.047 10.69 10.69 52.12 31.21 1.00 1.00 1.78 56.26 37.51 +0.60D Dsgn. L = 20.00 ft 1 0.115 0.017 3.60 3.60 52.12 31.21 1.00 1.00 0.65 56.26 37.51 Overall Maximum Deflections Load Combination Span Max. "-" Defl Location in Span Load Combination Max. "+" Defl Location in Span +D+S 1 0.5476 10.057 0.0000 0.000 McClendon Engineering MC 1412 W Idaho Street Suite 240 Boise, ID 83702 McClendon Engineering Inc Project Title: Tahoma Terra Engineer: SM Project ID: 1028.23 Project Descr: Steel Beam Project Fife: Design.ec6 LIC# : KVV-06017540, Build:20.22.12.28 McCiendon Engineering, Inc (c) ENERCALC INC 1983-2022 DESCRIPTION: Roof Beam RB2 Vertical Reactions Support notation : Far left is #' Values in KIPS Load Combination Support 1 Support 2 Max Upward from all Load Conditions 2.013 2.013 Max Upward from Load Combinations 2.013 2.013 Max Upward from Load Cases 1.075 1.075 D Only 1.075 1.075 +D+S 2.013 2.013 +D+0.750S 1.778 1.778 +0.60D 0.645 0.645 S Only 0.938 0.938 Simpson Strong -Tie Anchoring, Fastening, Restoration and Strengthening Systems for Concrete and Masonry Strong—Bolte 2 Design InformationMasonry Carbon -Steel Strong -Bolt 2 Tension and Shear Loads in 8" Lightweight, Medium -Weight and Normal -Weight Grout -Filled CMU I y IBC 1. The tabulated allowable loads are based on a safety factor of 5.0 for installation under the IBC and IRC. 2. Listed loads may be applied to installations on the face of the CMU wail at least 11/4' away from headjoints. 3. Values for 8" -wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'm, at 28 days is 1,500 psi. 4. Embedment depth is measured from the outside face of the concrete masonry unit. 5 Tension and shear loads may be combined using the parabolic interaction equation (n = %). 6, Refer to allowable load adjustment factors for edge distance and spacing on p. 122. 0i; 4' min. edge distance Ya'• to?•': -dia. anchors) min. edge distance ('/i dila. anchor) rfitiral One diRtanre installations in this area for ll aklowable load capacity Figure 1 Carbon -Steel Strong -Bolt 2 Tension and Shear Loads in 8" Lightweight, Medium -weight and Normal -Weight Grout -Filled CMU Anchor Installed in Cell Opening or Web (Fop of Wall) (See Figure 2) Insfatlaticn in this area for reduced allowabe load capacity 4' min. end distance ('h'- to W -dia. anchors) T min. end distance (Y.' dia. anchor) Critical end distance (see load table) No installation within 1'/n' of head joint IMIMPHI'a'"in Yz 112 3'/x 35 13/i 12 8 2,Q80 415 1,165 235 3,360 670 ($9) {47.5) (45) {305) (203} (9.3) (1.8} (5.2) {1.0} (14.9 (3.0) s/a 4a/s 55 i a/a 12 $ 3,200 640 1,370 275 3,845 770 (111) (74.6) (45) (305) (203) (142) _{2.8} (6 1) (1 2) (17.1) (3 4) 1. The tabulated allowable loads are based on a safety factor of 5.0 for installation under the IBC and IRC. 2. Values for 8" -wide concrete masonry units (CMU) with a minimum 11/; edge distance specified compressive strength of masonry, f`n,, at 28 days is 1,500 psi. 3. Tension and shear toads may be combined using the parabolic interaction equation (n =Sir). o• ° ' o a a � o• ' c ° c � 4. Refer to allowable load adjustment factors for edge distance and o o o, o. End distance spacing on p. 122. p o oa p. O• a� ° oaf'. D;. Figure 2 See p. 12 for an explanation of the load table Icons 121 Project: Page: Checked by: M Date: cClendon Scope:f Engineering Inc Item: BY: Z-3 W5 7-6?Cbz)- Co `F 53 . . . .. . . . . . . . . .. . - N 4 ap m M NO a7 m V) NV) 7 c7 N n n t• h 6( 01 in 0> v v v .r m m" rn 6 ca o a o 0 o C' Q MO o ca o rn a rn o m 0 ai m 0 i vi c 57 IMV N M Ci '� n Qi M 47 CLI N M < h M EM'F CD �t' W a N rn 4 4 4 4 O O v ci 0 0 0 o 4 D CS O O a m m v rn a m rn a m r+ 'R In ro n m C'1 (D 0 M h m N N r N R] W o 0 0 0 0 0 0 rn 0 (ti 4 � 0 w o o M (a 0 !� 0 IR 0 0 X N co e0 n m to r M V N V' co 4 Cb O N n M O) CO i(7 n SO CD D m w V' J+' V uq (n (n In m (D �D o o rn rn m M m �{ N N r N N N N X. ti r^ K Co N to m L7 m CA M M n O M Ji h o7 M V 0 r q; sra N O CO m r h O1 (•f oq m O m � a Ti >n r v w w c n m y o> M lfl h rn rn M ca r n m ro o n o m m a r -m a a (n m o N (D Iq o (D IA DJ tD m O� Cl) T- N r (•i cV tV ri t i v t+i ([i cO � N v m P n Cp ca N 'tm h (n co w c ti IT j co O O (`� 00 CD O P7 n7 Qr CO in M 7 coO m ei ua m r- m ui (p ti M (r; t- '- U r C 72 O © m n •t to h m N (D N 0 0 t m p) m r N m h m m V (!7 O m W 7 Orn m m a O N C7 ° r N N M +� N N6 N c] H� M m (A m C Ln D N LY) n C7 O (D to m O m u� m O m Lo d O ���Rr� _ J � Cq cR n � COM m m r- OMO Om0 E N V ..r D O d O O o O O O 0 0 p o O O O U G D o p LO co m m to D L] Q C � m h c i 47 (D dW It 0 m n = .�- n OD C] N 47 o c � o m GW Cil CS) rn N W aLO C) m N h c0 7 m c m Ln c (O m 'C Q m N 4D m y r 1n '^ O7 m GO m r co � � Q Z T . N } n n O C 10 m Oh O LO 0zn LLIQ 1:1 = v Ln h C x— w a m 0 O r- O rl O m fl O r irnb G p mLO a O x- v, O 4 m C7 O r F u �_ OZ m m u u o 0 o a a o 0 o a a o 0 0 0 0 0 ch x U) LL LL 0 {7r W CO 7 m N CD '7 r m r N fG `(f L7 N CP V n N 1 f o o a o (Ci 4f 9 u) to 47 to (n Li In u! in I Q7 C�i N [V Lam[ N (V CV CY 04 CY N N LV N N N X X X X % X X �r � v �i v v v c ori ui �(i ori �ri m rD m N b ['f m 7 n N C 4 M N SD M N cu U U U U r Ci U V C1 U 00 V U U U moo[ c X o % o X to k Lo X LQ X u� 169 X (n K �n K Amy Ln_ m u5 K (n K .0 o C7 O Q O ]K d O 0 4Ln X O aNc O O 0 to S f ✓�M Ore. E.. x 1& 4,4 ri S e: -f - T-1 &� 3 tri rva Project ' No:— Page:_ —A GCIE'iRC?1 Scope:��_ ..�GG;�fy Bate: Checked by: Engineering Inc Item: W ALL�c C�.J _ Cr- C G c, ( zo, S r ( WAY 10 "f /0: `t SSG %GQ I> e .�-J�1��.E ZD, Za Q (a5r 5 WCatc -2o. `{ = 25, d psF •oI°s�=�0, ls,o 00pj, In, TO L C FS r�,c�taC, s.� S f ✓�M Ore. E.. x 1& 4,4 ri S e: -f - T-1 &� 3 tri rva No:- _1vL Z3 page: McClendon Scope:. �! r2�C�_ __�L-�IG�1� Date:_��. , � � Checked by: Engineering Inc item: If i Loop Gas #7L IP - 35b 042 t, LJc.,1,.�� .. l�''psr• �. �J'� - (aO�ac.,� [nl���e3�c,� Z- l yQ McClendon supe;__ �TE2a�� ����-�� __� Date: c�,e-ked by: Eng�nee(,,hg he Rem: By: �13Lt 16, Fr -Y, L� l Fin., .y PA/A,, ). 6,71 Okf� Col 0 0 O 0 0 0 0 0 0 D 0 a O 6 0 8 z LD Q m J Od LLw zM i FP -3 1 1 1 I I I I 1 1 I � � I 1 's , , } 1 , �3 I 1 I T I I I I , � I I I I I I � 1 � I 1 I I � 1 ; I I 4N I � I � 33 � 6 0 8 z LD Q m J Od LLw zM /--N Project: No.M107-AtTs page:-Z-k— Date: Checked by: cClendon IcOPe:-- Engineeringinc Item- Z)L -FOL)'i Cf rs S. L F - TL OF TT -G, S, 44, 6bi a. j4 z WA L L pt 'A - 'ZOO t, F RLQ Page: 2--7 McClendon Date. Checked by Engineering Inc Ifem: By� "T 'Non; AMC skoe""I ilk FL TWU POP In 9 v• ia a 41 1J. 7 McClendon Engineering, Inc. Mc 1412 W. Idaho Street, Suite 240 Boise, Idaho 83702 McClendon (208) 342-2919 Engineering Inc Beam on Mastic Foundation DESCRIP110N. Grade Beam CODE REFERENCES Calculations per ACI 316-14, IBC 2015, Load Combinations Used : ASCE 7-% Project Title:"j j p 'j-4,9* Engineer. Project ID: lo2.Jr, Z$ Project Descr: INC, M-2019, Bdd:tO.19.1.34 . Material Properties fc U22-50 ksi Phi Values Flexure : 0.90 - ft = fc * 7.50 = 375.0 psi Shear: 0.750 yr Density = 145.0 pcf 131 = 0.850 X Lt Wt Factor - 1.0 Elastic Modulus - 3,122.0 kai Soil Subgrade Modulus = 250.0 psi) (inch deflection) Load Combination ASCE 7-10 fy - Main Rebar = 60.0 ksi Fy - Stirrups = 40.0 ksi E - Main Rebar = 29,000-0 ksi E - Stirrups = 29,000.0 ksi Stirrup Bar Size # = # 3 Nurn*of Resisting Lags Per Stirrup 1-0 Btim is supl2grted gn an elastic foundalJon, N3.3at s;o.56r; ats•3st stu.esr) O{3.3st sta.ssT) DO.68)wS(t3-284) c3{t-ae) s(o.264) , Cross Section & Reinforcing Details Rectangular Section, Width =12.0 in, Height = 24.0 in Span #1 Reinforcing.... 245 at 3.0 in from Bottom, from 0.0 to 48.0 ft in this span Anolied Loads Service loads entered. Load Factors will be appiled for calculations. Load for Span Number 1 Uniform Load: D =1.680, S = 0.2840 klft, Extent = 0.0 -> 0.6670 ft, Tributary Width =1.0 ft Uniform Load: D = 3.361, S = 0.5670 k1t, Extent =11.333 -» 12.667 ft, Tributary Width =1.0 ft Uniform Load: D = 3.361, S = 0.5670 klft, Extent = 23.333 -» 24.667 ft, Tributary Width = t.0 ft Uniform Load: D = 3.361, S = 0.5670 klft, Extent = 35.333 -» 36.667 ft, Tributary Width =1,0 ft Uniform Load: D =1.680, S = 0.2840 klft, Extent = 47.333 » 48.0 ft, Tributary Width =1.0 ft DESIGN SOMARY Section used for this span Mu: Applied Mn * Phi : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Soli Pressure = Ailowabie Soil Pressure = Shear Stirrup Requirernenta Typical Section -3.369 k -ft 6.335 k -ft +1.20i)+t7.50L+1.60S+1.6QH 4.518 ft $pan # 1 0.466 ksf at 1.50 ksf OK Max Downward L+Lr+S Deflection Max Upward L+Lr+S Deflection Max Downward Total Deffection Max Upward Total Deflection 24.04 ft LdComb: +D+S+FI ogre Beam Span Lengtu < PhlVc42, Reg d Vs = Not Reqd, use stirrups spaced at 0.000 in Naximum Force3 & Slwses for LoadCasmblymbons Load Combination Location (ft) Rending Stress Results (k -ft) Segment Length Span # in Span Mu: Max phi•Mnx Stress Ratio MAMmum Rending Envelcpe Span # 1 1 47.435 -0.34 8.33 0.05 0.000 in 0.000 in 0.013 in 0-000 in im McClendon Engineering, Inc. C 1412 W. Idaho Street, Suite 240 Boise, Idaho 83702 (208) 342-2919 h� '51endon Engiriee frig the Project rifle: 7-m-tOYKA T-�-aA Engineer: Project ID: Project Deser. Load Combination Location (ii) Bending Stress Results (k -ft) Segment Length Span # in Span Mu: Max Phi'Mnx Suess Ratio Span # 1 +1.20O4,50Lr+1.60L+1.6QH Span # 1. +1.206+1.601.+0.505+1.60H Span# 1 +1.20041,60Lr+0.50L+1.60H Spam # 1 +1.20D+f.60Lr+0.50 W+t.6DH Spell # 1 +1.20D+4.50L+1.60S+1,60H Span # 1 . 1 41.435 -0.32 6.33 0:05 1 47.435 -0.28 6.33 0,04 1 47.435 -0.30 6.33 0.05 1 47.435 -0.28 6.33 0.04 1 47.435 -0:28 6.33 0.04 1 47.435 -0.34 6.33 0.05 Span # 1 1 47:435 -0.34 +1.20D+0.50Lr+0:50L4W+1.60H 6.33 0.05 Span#1 1 47.435 -0,28 6.33 0.04 +1.20D+G,50L+0.5DS+W+1,60H Span # 1 1 47.435 -0.30 6.33 0.05 +1,20D+0.5nL+0.205+E+1.60H Span ] 1 47,435 •0.28 6.33 0.04 +0.9613+W+U0H Span 3 1 47,435 -0.21 490+E+0.901-1 6.33 0.03 Span 01 1 47.435 -0.21 6.33 0.03 OVemll Maximum De3imfions • L(dat emd Loads 0.0000 Load Cbtnbinaidn Span Max,'-' Deo Location in Span Load Combination Max `+ Dell Location in Span. for Lead Combination Span Max- DoWnward Deg Lonfimin Span Max. Upward Del Location in Span +p+H t 0.0111 24000 0.0000 0.000 +041_+}{ 1 Hill 24.000 0.0000 0.000 +D+Lr+H i 0.0111 24.000 0.0000 0.000 +D+S+H 1 0.0130 24.000 0.0000 0.000 +D+0,75OLr+0.750L+H ] 0.Of11 24,000 0.0000 0.040 +D+0.750L+0.750S+H 1 D.0125 24.000 0.0000 0.000 +D+D.60W+H i 0.01 11 24.000 0.0000 0.000 +0+0,70E+H 1 O.Of f i 24.000 0,0000 0.000 +DA.750Lr+0.760L+0.450W+H 1 0.0111 24.000 D.0000 0.000 +D+0.75oL+0.750S+0.450W+H 1 0.0125 24.000 0.0000 0.000 +D;0.760L+0.750S+0,5250E+H 1 0.0125 24.000 HOW 0.000 +O.60D+0.60UV+0.6QH 1 0.0067 24.000 0.0000 0.000 +0.600+0.70E+0.601-1 1 0.0067 24.000 0.0000 0.000 D Only 1 0.0111 24.000 0.0000 0.000 Lronly 1 0.0000 0.000 0.0000 0.000 LOnly 1 0.0000 0.000 0.0090 0.000 S Only t 0.0019 24.000 0,0000 0.000 WOnly 1 0.0060 0.000 0.0000 0.000 EOnly 1 0.0000 0.000 0.0000 0.000 H Only 1 0.0000 0.000 0,0000 0.000 Detailed Shear Infotm0an Span Oistance 'd' Vu (k) Mu d'VulMu Phi'Vc Comment Phi'Vs Spacing (in) Load Combination Number (ft) (in) Actual Design (k -ft) (k) (k) Req'd Suggest +1.20D+f. S+0.50W+1.60H 1 0.00 21,00 O.fO 0.10 0.00 1.00 19.12 Vu<PhiVr/2 NotRegd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 0.56 21,00 -1.10 1.10 0.34 1.00 19.12 Vu <PhiVc/2 Not Reqd 0.00 0.00 +1,20D+1.60S+0.50W+f.60H 1 1,13 23.00 •1.16 1.16 1.09 1.00 19.12 Vu<PhUcl2 NotRegd 0.00 0.00 +1.20D+1.60S+0.50W+1,60H 1 1.69 21,00 -0.97 0.97 1.75 1,00 19.12 Vu<PhUc12 NotRegd 0.00 D,DD +1.20D+1.60S+0.50W+1,60H 1 2.26 21.00 -0.77 0.77 2.30 1.00 19.12 Vu. <PhUc12 NotRegd 0.00 0.00 +1.200+t.60S+0.50W+1.60H 1 2.82 21.00 -Us 0.58 2.73 1.00 19.12 Vu<PhUc12 NotRegd 0.00 0.00 +1.20D+1.60S40.50W460H 1 3.39 21.00 -0,38 0.38 3.06 ].00 19.12 Vu <PhiVci2 NotRegd 0.00 0.00 +t,20D+1.60S+0.50W+1.60H 1 3.95 21.00 -0.17 0.17 3.27 1.00 19.42 Vu < PhiVd2 Not Regd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 4.52 21.00 0.03 0.03 3.37 0.22 16.21 Vu<PhiVd2 NotRegd 0.00 0.00 +1.200+1.60S+0.50W+1.60H 1 5,08 21.00 0.24 0.24 3,35 1.00 19.12 Vu<PhiVr12 NotRegd 0.00 0.00 -3Q Detailed Shear Information Project Ttle: `rA H-&yv a'k T&121LA Engineer: Project ID: Project Descr. BuCkley StoRge IMAM IK' McClendon Engineering, inc. E 1412 W. Idaho Street, Suite 248 Vu Boise, Walla 83702 Mu (208) 342-2919 McClendon Comment Engineetirtg Inc Spacing (in) Seam OP Ef-astic Frlu004UP111 Di; cwtjok: Qrede Bearrl Detailed Shear Information Project Ttle: `rA H-&yv a'k T&121LA Engineer: Project ID: Project Descr. BuCkley StoRge IMAM IK' Span Distance 'd' Vu (k? Mu d'VuXlu Pbl*Vc Comment Phi'Vs Spacing (in) LoadCambination Number (ft) (in) Actual Design (k -ft) (k) (k) Re 'd q 5 uggest +1.20D+1.6QS40,50W+1,601.1 1 5.85 21.00 0.46 0.46 3,21 1.00 19.12 Vu <PhiVc12 Not Reqd 0.00 0.00 +L20D+1.60S+O.50W+1.60H 1 6.21 21.00 0.68 0.68 2.96 1.00 19.12 Vu <PhVd2 Not Reqd 0.00 0,00 +1.20D+1.6QS+0,5OW+i.60H 1 6.78 21.00 0.91 0,91 2.57 LOO 19.12 Vu<PhiVd2 NotRegd 0.00 OA0 +1.20D+1.60S+0,50W+1.601-1 1 7.34 21.00 1.15 1.15 2.06 1.00 19.12 Vu < PhVd2 Not Reqd 0.00 0,00 +1.201]+i.60S+0.50W+1,601-1 1 7.91 21.00 1.39 1.39 1A1 1.00 19.12 Vu < PhVd2 Not Reqd 0,00 0.00 +1.200+1.60S+0.50W+1,60H 1 8.47 21.00 1.65 1.65 0.63 1.00 19.12 Vu 4 PhiVc12 NotRegd 0.00 0.00 +1.200+1.60S+0,50W+1.60H 1 9.04 21.00 1.91 1.91 0.36 1.00 19.12 Vu <PhiVd2 NotRegd 0.00 0,00 +i,20D+1.60S+p.50W+1.6GH 1 9.60 21.00 2.18 2.18 1.38 1.00 19.12 Vu <PhsVd2 NotRegd 0.00 0.00 +1,20D+1,6QS+0,50W+1.60H 1 10,16 21.00 2.46 2.46 2,61 1.00 19.12 Vu <PhiVd2 Nal Reqd 0.00 0.00 +1.200+1.60S+0.50W+1,60H 1 10,73 21.00 2.75 2.75 4.00 1.00 19,12 Vu <PhiVr12 NotRegd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 11,29 21.00 3,04 3,04 5.55 1.00 19.12 Vu<PhVc12 NotRegd 0.00 0.04 +1.20D+1.608-450W+1.60H 1 11.86 21.00 0.74 0.74 6.59 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+i.60H 1 12.42 21.00 474 1.74 6.22 1.00 19,12 Vu <PhVd2 NotRegd 0.00 0.00 +1.200+1.60S+4.5OW+1.6OH 1 12.99 21,00 -2.64 2.64 4.70 1,00 19.12 Vu < PhiVd2 Piot Reqd 0.00 0.00 +1.200+1.60S+D.50W+1,GGH 1 1155 21.00 -2.33 2.33 3.21 1.00 19.12 Vu < RW2 Not Reqd 0.00 0.00 +1.20D+i.60S+4.50W+1.60H 1 14,12 21.00 -2.03 2.03 1.89 1,00 19.12 Vu<PhiVc12 NotRegd 0.00 0.00 +1:20D+1.605+0.50W+1,60H 1 14.68 21.00 -1.72 1.72 0,75 1,00 19,12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+1,60S+0,50W+1.60H 1 15,25 21.00 4.42 1.42 0,23 1.00 19,12 Vu < PhiVc12 Not Reqd 0.00 0.00 +1.290+1.60S+0.50W+1.60H 1 15.81 21.00 -1.12 1,12 1,03 LOD 19.12 Vu < PhiVc12 Not Reqd 0.00 0.00 +1.20D+1.608+0.5OW+1.60H 1 16.38 21,00 -0.81 0.81 1.66 1.00 19.12 Vu<PhiVd2 Not Reqd 0100 0.00 +1.29D+1.60S+O,50W+1.BQH 1 16,94 21.00 -0.51 0.51 2,12 1.00 19.12 Va <PhiVd2 Not Reqd 0.00 0.00 +1.2QD+1,60S+0.50W+1.60H 1 17,51 21.00 -0.21 0.21 2.41 1100 1912 Vu < PhiW2 Not Reqd 0,00 0.00 +1.200+i.60S+0.50W+1.60 € 1 18.07 21.00 0,10 0.10 2.53 D.91 19.01 Vu<Phitld2 Not Reqd 0.00 0.00 +1,200+1.60S+0.56W+1.60H 1 18.64 21.00 0.40 0.40 2.47 1.00 19.12 Vu <Phftl Not Reqd 0,00 0.00 +1.20D+i,60S+0:50W+1.60H 1 1920 21.00 0.71 0.71 224 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +12QD+1.60S-tO.5OW+1.60H 1 19,76 21.00 1.02 1,02 1,84 1,00 19,12 Vu<PNW2 Not Reqd HO 0.00 +1.20D+1.60S-+0,60W+1.60H 1 20.33 21.00 1.34 1.34 1,27 1.00 19,12 Vu <PhiVc12 Not Reqd 0.00 0.00 +1.20D+1.6OS+0.50W+1.60H 1 20.89 21.00 1.65 1.65 0.51 100 19.12 Vu<PhVd2 Not Reqd 0.00 O.00 +120DAWS+0.50W+1.60H 1 21.45 21.00 1,98 1.98 0.42 1.90 1912 Vu <PhVd2 Not Reqd 0.00 0.00 +1.20D+1I6OS+0.60VV+1.60H 1 22.02 21.00 2.30 2.30 1.54 1,00 19.12 Vu<PhVd2 Not Reqd 0.00 0.00 +i.2OD+i.60SQ,5OW+1.6OH 1 22.59 21.00 2.63 2.63 2.84 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0,00 +1.20D+1.60S+Q.5QW+1.60H 1 23.15 21.00 2.96 2.96 4.32 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +i.20D+1.6OS+0.50W+lAH 1 23.72 21.00 1.39 1,39 5.63 1,00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20DAWS+0.50W+i,601-1 1 24,28 21.00 -1,06 1.06 5.63 1.00 19.12 Vu < PhiVd2 NotRegd 0.00 0,00 +L200+1.6OS+0,50W+1.60H 1 24:85 21.00 -2.63 2.63 4.32 1,00 19.12 Vu < PhiVd2 Not Reqd OR 0.00 +1.20D+1.605+0.50W+1.60H 1 25,41 21.00 -2.30 2.30 2.84 1.00 19.12 Vu < Ph1Vd2 Not Reqd 0.00 0,00 +1.20D+1.60S+0,5OW+1.60H 1 25.98 21.00 -1.98 1.98 1.54 1.00 19.12 Vu < PhVd2 Not Reqd 0.00 0,00 +1,20D+1.60S+0.50W+1.6011 1 26,54 21,00 -1.65 1.65 0.42 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1,20+1.608450W+i.SOH 1 27.11 21.00 -1.34 1.34 0.51 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +120D+1,6OS4.50W+1.60H 1 27,67 21.00 -1.02 1.02 1.27 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +i.20D+1.60S+4.50W+1.60H 1 28.24 21.00 -0.71 0.71 1,84 1.00 19,12 Vu <PhiVc12 Not Reqd 0.00 0.00 +1.200+1,60SQ-50W+i,60H 1 28.80 21.00 -0.40 0.40 2.24 1,00 19,12 Vu <PhiVd2 NotRegd 0.00 0.00 +1.20D+1.608+0.50W+1.60H 1 29,36 21.00 -0.10 0.10 2.47 0.93 19.04 Vu 4 PhiVd2 Not Reqd 0.00 0.00 +120D+1.60S+0.50W+1.60H 1 29.93 21.00 0:21 0.21 2.53 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 DAG +1.20D+1.6O3+O.5OW+1.60H i 30.49 21.00 0.51 0.51 2.41 1.00 19.12 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+1.5OS+0.50W+1,60H 1 31.06 21.00 0.81 0.81 2.12 1.00 19.12 Vu <PhVd2 Not Reqd 0.00 0.00 +1,2QD+1.60S+0.50W+1.60H 1 31.62 21.00 1.12 1.12 1,66 1,00 19.12 Vu <PhtVd2 Not Reqd 0.00 0.00 +1.20D+1,60S+D.50W-F1,60H 1 32.19 21.00 1.42 1.42 1.03 1.00 19.12 Vu < Ph1Vd2 Nct Reqd 0.00 0.00 +1.200+1.6OS+0.50W+1.60H 1 32.75 21.00 1.72 1.72 4.23 1.00 19.12 Vu<PhVd2 Nat Reqd 0.00 GAD +1.200+1.60S+6,50W+i.60H 1 3332 21.00 2.03 2.03 0.75 1.00 19.12 Vu<PhiVc/2 Not Reqd 0.00 0.00 +1,200+1.60S+4.50W+1.60H 1 33.88 21.00 2.33 2.33 1.85 1.00 19..12 Vu <PhVd2 Not Reqd 0.00 0.00 +120D+1.6OS+0.50W+i.60H 4 34.45 21,00 2.64 2.64 3.21 1.00 19.12 Vu <PhiVd2 Not Reqd 0.00 0.00 +1,20D+1.60S+0.5OW+1.60H 1 35.01 21.04 2.95 2.95 4.70 1.00 19.12 Vu <PMVc12 Not Reqd 0.00 0.00 +1.20D+1.6OS+0.50W+i-60H 1 35.58 21.00 2.05 2.05 6.22 1.00 19.12 Vv <PhiVd2 Not Reqd 0.00 0.00 34 McClendon Engineering, Inc. Project Title; A f}pri4rk TUMCA E 1412 W. Idaho Street, Suite 240 Engineer. C" Boise, Idaho 83702 project la : /C>� 23 (208) 342-2919 McClendon Engineering Iric LB PAM Oil E�2ls�iG �[!tliiC���IO.l3 File = KTWcE Projects=8 PSolecLA1074.18 Stuktey ftrage 9e lda9s`Gafcsl(aaGng.ec6 , SoUxeWD3IbNSFRCALC. INC 559320/9.eu4d:1015:130. DESCRIPTION: Grade Beath Detailed Shear Information Span Distance V Vu (k) Mu d'Vu1Mu Phi'Vc Comment Phi'VS Spacing (in) Load Combination Number (ft) (41) Actual Design (k -ft) (k) (k) Reqd Suggest +1.20D+1.60S+0:50W+1,60H 1 36.14 21.00 -0.44 0.44 6.59 1.00 19,12 Vu < PhtVd2 Not Reqd 0.40 0.00 +1.20D+1.60S+0.56W+1.60H 1 36.71 21.00 -2.75 2.75 5.55 1.00 19.12 Vu<PhVd2 Not Reqd 0.00 0.00 +1200+1.60S450W+1.60H 1 37.27 21.00 -2.46 2.46 4.00 1,00 19.12 Vu < PhNd2 Not Reqd 0.00 0.00 +1.20D+i.6GS+9.5aw+1,60H 1 37.64 21.00 -2.18 218 2.61 1.00 19.12 Vu<phiVcl2 Net Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.606 i 38.40 21.00 -1.91 1.91 1.38 1.00 19.12 Vu<PhVd2 NctRegd 0.00 0.00 +1,20D+1.60S450W+1,60H 1 38.96 21.00 -1.65 1,65 0.30 1.00 1912 Vu<PhVd2 Not Reqd 0.00 0.00 +1,200+1.60S+0.50W+1.60H 1 39.53 21.00 -1.39 1.39 0.63 1.00 19.12 Vu c PhiVd2 Not Reqd 0,00 D.00 +1,20D+i.60S+0.5DW+1.60H 1 40.09 21.00 -1.15 1.15 1.41 1.00 19.12 Vu < PNW2 Nat Reqd 0.00 0.00 +1.200+1.60Si0,50W+1.60H 1 40.66 21.00 -0.91 0.91 2.06 L00 19.12 Vu<PhVr12 Piot Reqd 0.00 0.00 +1.20D+1.605+0.50W+1,60H 1 41.22 21.00 -0.68 0.68 2.57 1,00 19.12 Vu<PhIvo Not Reqd 0.00 0.00 +1.20D+1.60S+0.50W+1.60H 1 41,79 21.00 -0.46 0.46 2.96 1.00 19.12 Vu<PNVc/2 Not Reqd 0.00 0.00 +1.20D+1.60SA.50W+1,60H 1 4235 21.00 -D.24 0.24 3,21 tA0 19:12 Vu <PhiVd2 Not Reqd 0,00 0.00 +1.20D+1.605+0.5OW+1,60H 1 42.92 21,00 -D.03 0.03 3.35 0.22 18.21 Vu <PhUc/2 Not Reqd 0.00 0.00 +1.260+1,60S+0.50W+1AH 1 43.48 21.00 0.17 0.17 3.37 1,00 19.12 Vu <Phi a Nal Reqd 0.00 0.00 +1.200+1.66S+0.50W+1.60H 1 44.05 21.00 0.38 0.38 3.27 1.00 19.12 Vu < PhUc/2 Not Reqd 0.00 0.00 +1.200+1fA0S+0.561+160H 1 44.61 21.00 0.58 0.58 3.06 1.09 19.12 Vu < PWO Not Reqd 0.00 0.00 +1.20D+1,60S+o.50W+1.60H 1 45.18 21.00 0.77 D.77 2,73 1.00 19.12 Vu <PhiVra2 Not Reqd 0.00 0,00 +1,20D+1.605+0.50W+1.60H 1 45.74 21.00 0.97 0.97 2.30 1.00 19.12 Vu <PhNr12 Not Reqd 0.00 0.00 +U0D+1.60S+0.50V1+1.60H 1 46.31 2i,00 1,16 1.16 1.75 1.00 19.12 Vu<PhVd2 Nal Reqd 0,00 0.00 +1.26D+1.60S4.50W+1.60H 1 46,87 21.00 1.36 1.36 1.09 1.00 19.12 Vu<PhVd2 Not Reqd 0.00 0.00 +1.200+1.60S+0.50W+1,60H 1 47,44 21.00 1.30 1.30 0.34 1.00 19.12 Vu <PhVd2 Not Reqd 0.00 0.00 Mc McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLANK y Project: � �'t�.- I G''-- -- No: 1028 , 047� Page:�� McClendon Scope: ��R iCStC-gra Date: 43 Checked by: Engineering inc item: By: .t;p, LAS Arlft.ysis - of o6 f Cx? - G µr = 18" M G) 6122123, 3:46 AM U.S. Seismic Design Maps 3 q. Tahoma Terra Yelm, WA, USA Latitude, Longitude: 46.9420431, -122.6059582 Ma and Pa's Family Diner 10 Yelm-Tenino Trai �Tahoma Valley Golf Course Go gle y -,-- Date Design Code Reference Document Risk Category Site Class 1 st Street Nail rljv I 510 'J The Sh)plap Shop 507 & Coffee House OSHPD Jp South Puget `�` Sound Habitat for... �a ti 6/2212023, 3:47:15 AM ASCE7-16 11 D - Default (See Section 11.4.3) Type Value Description Ss 1.288 MCER ground motion. (for 0.2 second period) St 0.465 MCER ground motion. (for 1.Os period) SMS 1.545 Site -modified spectral acceleration value SMi null -See Section 11.4.8 Site -modified spectral acceleration value SDs 1.03 Numeric seismic design value at 0.2 second SA SDt null -See Section 11,4.8 Numeric seismic design value at 1.0 second SA Type Value Description SDC null -See Section 11.4.8 Seismic design category Fa 1.2 Sits amplification factor at 0.2 second F„ null -See Section 11.4.8 Site amplification factor at 1.0 second PGA 0.509 MCEG peak ground acceleration FPGA 1.2 Site amplification factor at PGA PGAM 0.611 Site modified peak ground acceleration T, 16 Long -period transition period in seconds SsRT 1.288 Probabilistic risk -targeted ground motion. (0.2 second) SsUH 1.418 Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration SsD 1.5 Factored deterministic acceleration value. (0.2 second) S1RT 0.465 Probabilistic risk -targeted ground motion. (1.0 second) S1UH 0.522 Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration. S1D 0.625 Factored deterministic acceleration value. (1.0 second) PGAd 0.509 Factored deterministic acceleration value. (Peak Ground Acceleration) PGAOH 0.552 Uniform -hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration Map data 02023 https://www.seismicmaps.org 113 6122123, 3;46 AM Type Value CRS 0.968 CR1 0.891 CV 1.358 U.S. Seismic Design Maps Description Mapped value of the risk coefficient at short periods Mapped value of the risk coefficient at a period of 1 s Vertical coefficient 35 https:llwww.seismicmaps.orq 2f3 nd� Project: '1'1 No: Page: 36 McClendon scope: 'Siter Date: Checked by: Engineering Inc Item: By: ..... ..... 13A5 C-' 51o� A L- MIASO)-SPI -Zv 49l,O p', U. /��`7 .�G„ �` �- � 4 P4�r- �F Poor O&AW) 6eo CTIO� z, 0 0 0 0 0 0 0 Pei O J 0 0 8 2 =01 3-7 0 Lel 0 0 0 O 0 0 P N 0 0 0 8 8 0 J (32 Z Q J Q Z Sod Project:_ . i 'Uig ��` _ No.-IQPb , Z3— Page: McClendon Scope: � _ flL[Cr�-# -- Date:l?_ Checked by: Engineering Inc item: T = 3Z7FL-f= h 3 2,70 WSGIS. �i}SY%l:� 147, m E C -J O Page, McClendon Date, Checked by: Engineering Inc [tem.; FL�iok-T- thj FOt- A Ai F -t � 7: 77 6 LOAD pLF/ C7S-' par T(Z- s7c) 0-1 SH YAC Project: 1 ala: -W --Z$.: Z-3- Page--AL— McClendon seape:�����_�G�fC-try Date:._,!5 /45-- Checked by: Engineering inc Item:_ =- r�k. r x► s t w sY fz- c = ZI cam, k J1 z� V7 AA to PAF X75, p L F { tU �0 [7So tfa• Fr 145 /'� I� s p / A��. ►z scc �-mss � -c�'SLI04 McClendon 5co�e.2_!�_y�/1� Date. _. Checked bT. Engineering Inc Item:- _— _� By._� _n-pk r2 rv� Z37toc-r- �Zov`�la i ai t°t t" � C? �, /5 %� � Z ! , I I (rs frac S I 5SZ,tt' ti I Vx, q is 5- L to ; _ryP. W = la', -r),�o , _ L :yea. 145 /'� I� s p / A��. ►z scc �-mss � -c�'SLI04 .Br vaL OK '13,/ 110 m N..-IOZ e, 7 �; Page- Project-, McClendon $11P Date: Checked by. Engineering Inc ifem:- By 4, P, L-;�2 C, vi Y sus z t Jr- O's Fe ZO SO'S rsr- lz�� cm,) Proje6 T1-i12o'[! „ ,..l�L � _.._.__._. Ifo:_ �� McClendon don Scape:� 2 C `� l 67l� Date: _ _ Checked by: Engineering Inc item:_ St,7 {i �►�t-� tori c� n.� zd' es4 397 lC3��4"0.c. t� u 5r C fkA t} W ALUI F A,s w %:� j. . z)�(- �Cc :1w SrU J 0 O 0 O 0 0 0 O 0 M 0 0 0 0 f I 1 1 r 1 r � 1 i X I I I I I f I I � I I I r I r I I I , , , , , , , I I I I I , , , , , , I I f I I I I � I ' I I I I 1 Ali , I I I I I I I � I I I I I I I I I I r I I , , , , , , , I , � 1 � 1 I , I , I I r I I I r I � I r 1 I 1 I 1 � 1 I F � ISI O O O m m J m z J CL z 0- z J 0¢ LLIU U) q� E 0� Project: 717pgomA. lasut Flo: 1 Q . Fie,5`5 Page:rr r, McClendon Scope: 7&tkQ1-IC—Q0 _ Date: � Checked by: Engineering Inc !tern: By: 'r - GaAau rAt I € i s � r 3 i i a 4 4 raft ; 6VA 9 9 I y E 3 a , 9 � e 5 j t 1 IrC --,".Oars• Cold-FormedConnectors for 15,480 - S/HDU Hofdowns - Nominal The S/HDU series of holdowns combines performance Tension 5 with ease of installation. The pre -deflected geometry Ref. J�� LRFDLoads virtually eliminates material stretch, resulting in low IBC, 3,705 0.149 5,685 deflection under load. Installation using self -drilling _ 6.106__ ° 9,365 screws into the studs reduces installation time and 0.156_ m 0.189 7,165 saves labor cost. 12,120 ° 23,515 S/HDU Material: 118 mil (10 ga.) Pilot hales for o Q US Patents 5,979,130 and Finish: Galvanized (G90) msnu4aolurng 0 19,445 _ 6,112,495 29,825 Purposes c 0.163 31,715 Installation: (fastener k not required) o • Use all specified fasteners; see General Notes 2 m • Use standard #14 self -drilling screws to fasten to studs e • Anchor bolt washer Is not required • See SB, SSTB and PAB anchor bolts on pp. 163-164 0 for cast -in-place anchorage options • See SET -XP° and AT-XPO adhesive products at hie strongtie.com for anchor bolt retrofit options 3,, � , Codes: See p. 11 for Code Reference Key Chart s,e 1�z'' Typical S/HDU Installation - fasteners_ �; ASD (Iii Stud Member Madel H Anchor Bolt Stud Thickness' Tension Deflection at Diameter' , Fasteners' I mil (9a•) Load ASD Loads (in.) 2-33 2-2 2,320 0.093 [Ti/ 1 S/HDtJ4 7rh (s/e '! 2-43 2-18 3,825 0.115 (6} #14 _ 3 7 0.093 Steel fixture 4,470 0.063 - - - 2-33 (2-20) 4,895 0.125 2-43 (2-18J S/HOU6 14�/e 3a (12) #14 - 6,125 0.119 2-54(2-16) 6,125 0.108 _ Steel fixture _5,995 _0.060 2-33(2-20) 6,965 0.1Q3 S/i 127/s 7/a (18) #14 2-43 2-18) 9,255 0.125 2-54(2-16) 9,990 0.106 Steel fixture 12,715 0.125 2-33(2-40) 6,965_ 0.103 - 7/a (27) #14 2-43(2-18) _ 9,595 0.096 $IHOU11 165/a -- + 2-54 (2-161 _ - _ 9,675 0.110 7/e 2-43 (2-18)" 11,100 0.125 with heavy 1 (27) #14 2_-54 (246) 12,175 0.125 hex -rut- - Steel fixture` 12,945 j __0.111 These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong -Tie for details. 1. The designer shall specify the foundation anchor material type, embedment and configuration. Some of Shearwall the tabulated holdown tension loads exceed the tension chord studs strength of typical ASTM A36 or A307 anchor bolts. 2. Stud design by specifier. Tabulated loads are based on a minimum stud thickness for fastener connection. HoldowI:- 3.'/d" self -drilling screws may be substituted for bearingHoldown #14 self -tapping screws. plate 4. A heavy hex nut for the anchor bolt is required to achieve the table loads for S/HDLl11. Ratl 5. Deflection at ASD or URF❑ includes fastener slip, holdown deformation and anchor rod elongation for 18" max. holdowns installed up to 4" above top of concrete. Holdowns may be installed raised, up to 18" above top of concrete, with no load seduction provided that additional elongation of the anchor rod is accounted for. 6. The Nominal Tension Load is based on the tested average ultimate (peak) load and is provided for design in accordance with section 05 of AISt S213 that requires a holdown to have a nominal strength to resist the lesser of the amplified seismic load or the maximum force the system can deliver 7. See Fastening Systems catalog (C -F-2019) on strongtie.com for more information on Simpson Strong -Tie fasteners. - LRFD (lb.) 15,480 - - - - Nominal Code Tension Deflection at Tension Load Ref. Load LRFDLoads 13,165 IBC, 3,705 0.149 5,685 F1, LA _ 6.106__ 0.190 9,365 6,345 0.156_ 9,730 0.189 7,165 0.103 12,120 0.162 9,690 1 0.250 15,480 9,785 0.234 15,005 9,580 0.136 14,695 11,125_ 0.189 13,165 IBC, 15,485 0.250 21,810 F1, LA 15,960 _ 0.225 24,480 _20,510 0.177 31,455 0.189 13,165 _11,125 15,330 0.162 23,515 15,460 0.158 23,710_ 17,500 0.250 24,955 19,445 _ 0.243 29,825 20,680 0.163 31,715 5°slope max. �12L) t, -Coupler • -1--Bottom Top of a t,a" concrete -1 1.5' max, Holdown Raised Off CFS Bottom Track Typical S/HDU Floor -to -Floor Installation I� - I Connectors for Cold -Formed Steel Construction i Pre -Assembled 1 Bolt PAB Anchor Bolt - Anchorage Solutions Design Criteria Diameter (in.) Anchor Bolt 2,500 psi Concrete 3,000 psi Concrete Cede net. Dimensions (in.) Tension Load (lb.) Dimensions (in.) Tension Load (lb.) de F ASD li de F ASD li 1h PA84 41h 7 4,270 6,405 4 6 4,270 6,405 PA85 4 6 4,030 6,720 4 6 4,415 7,360 6 9 6,675 10,010 5112 8112 6,675 10,010 '/4 ll 51h 81h 6,500 10,835 5 71/2 6,175 10,290 71h 11112 9,610 14,415 7 1C'/2 9,610 14,415 IB PA87 6 9 7,405 12,345 5'/z 8'12 7,120 11,670 9 13th13,080 19,620 8112 13 13,080 19,620 Wind PAB7W 9 131/2 13,610 22,680 8112 13 13,680 22,805 14 21 27,060 40,590 131/2 201/2 27,060 40,590 1 O PA88 8 12 11,405 19,005 7112 111/2 11,340 18,900 10'12 16 17,080 25,565 10 15 17,080 25,560 PABBH 1016 16 17,150 28,580 10 15 17,460 29,100 161h 25 35,345 53015 151h 231h 35,345 53,015 11/8 PAB9 9 131/2 13,610 22,680 8 12 12,495 20,820 121h 19 21,620 32,430 12 18 21,620 32,430 11/4 PA1310 14 21 26,690 40,035 131/2 201/2 26,690 40,035 1h PA84 5 71h 4,270 6,405 41h 7 4,270 6,405 200 PA35 61h 10 6,675 10,010 6 9 6,675 10,010 3/4 PA86 7'12 11112 9,060 12,940 7 10112 8,945 12,780 8 12 9,610 14,415 71h 111h 9,610 14,415 rh 19 AB7 131/2 11,905 17,010 81h 13 11,970 17,100 10 15 13,080 19,620 91h 141/2 13,080 19,620 Seismic f PAB7H 141/2 22 25,350 36,215 131/2 201/2 24,650 35,215 151h 231h 27,060 40,590 141/2 22 27,060 40,590 1 4PABB 11 161/2 15,996 22,850 10112 16 16,435 23,480 111h 171/2 17,080 25,625 11 161h 17,080 25,625 PA881i 17 251/2 33,045 47,205 16 24 32,720 46,740 18 27 35,345 53,015 17 251/2 35,345 53,015 11/0 PA69 121/2 19 19,795 28,275 12 18 20,255 28,940 131/2 201h 21,620 32,430 12112 19 21,620 32,430 1 r/. PAB1.0 141h 22 25,350 36,215 14 21 26,190 37,415 15 221/2 26,690 1 40,035 1 141h 22 26,690 40,035 1. Anchorage designs conform to ACI 318-14 and assume cracked concrete with no supplementary reinforcement. 2. Seismic indicates Seismic Design Category C through F and designs comply with ACI 318-14 Section 17,2.3.4, Per Section 1613 of the IBC, detached one- and two-family dwellings in SDC C may use wind values. 3. Wind includes Sesmic Design Category A and B. 4. Foundation dimensions are for anchorage only. Foundation design (size and reinforcement) by Designer. The registered design professional may specify alternate embedment, tooting size, and anchor bolt. 5. Where tension loads are governed by anchor steel, the design provisions from AISC 360-10 are used to determine the tensile steel limit. LRFD values are calculated by multiplying the nominal AISC steel capacity by a 0.75 phi factor and allowable values are calculated by dividing the AISC nominal capacity by a 2.0 omega factor. 6. Where tension loads are governed by an Appendix D concrete limit, the allowable Stress Design (ASD} values are obtained by multiplying Load Factor Resistance Design (LRFD) capacities by 0.7 for Seismic and 0.6 for Wind de F - SIMPSON Strong -Tie L____' __ __%_11 1 2F min. Design loads are calculated using a full shear cone. Coverage on each side of the bolt shall be a minimum of F or reductions must be taken. 5Z El 241 Project Na:_ 10463 Q?age: 5 -3 McClendon scOPe:_ Date: Checked by: Engineering Inc Item:— By.— G7 A 0 tie CrAU ,A 7-77 kr OLI 6 Oft M - q y q -7 1% 67 C-7 h ^ co t(7 cD (o (D (C1 m m m N p C31 r 6I 6i m 6'1 n n n n N N N N N n[ N C It 7 7 p m d C u r O O O O J .y' r u7n m N W) h Ir N co m m 4s h Q (Mn C [p m m (o p f0 d _� C N C O M M M O v, O Uc V �D ~ 0 0 0 6 6 0 0 0 C7 r r a o 0 6 r. m O [3 O N dd r co m rn n n O (o C M co to u� <a ,n rn p tD M 'w If Q1 r m fD M MCh m ti co O i- O ar m�m d O r o D r ti X G N N a [a co (n Q o O p w m M N N 0 O Jy v N N N N N N N N N N N N N N N N k x t•` p 'V' (0 7 w N r0 aD 6 I<n n n M o R T 6 n n Cn r! m rt' M (O "I (o r N (O N � V' h [D N LO a L N N m N m M m p (R 4 N M CA : = W 7 O m o� M N PJ r O _nc0 Ql m n M 41 M try 00 00 V (o d {o N n r r C* Ql to w so 0 W t° a 0 r- rn^ .�� c� v V, c m r-: co o m r n N 4 h N R 0 a M to co w m r (D Un ro M (D ,- L (o (y Q J Y m O m v N m O V m� N C� n N h m It to, r0 M V u) h( i LD n M 7 (O n a a w n ` d a 2 r-0 h h o oD (n m as m w oD m n h n d co m m aD m m m m n h � o w m M w (n m w m= n h o m coLD M cq m OR n V U C O [7 W U C LO m (o a oD N [O V3 MC o m M to o m [� co C_ QOI p Lo m m p a OMD O N 47 01 O M Q O O r a a p r 4 0 O. N tCtl O C Cn (N U V V a ¢ ~ L W d a1 (D h co (D h to n M LO 0 d m (OpN C dC1 t•• d 4? n O c"1 (D [S7 h M N 0 i- O� of u] m Cn h M h T 47 O h (o N Q 'ow�.a d N M vi Q N( 5 Q C CV m T 4i N M M 7 o I o ao N z °' 0y (LC T Y Y d > U7 .v CL Gl W O 7n Lo (D O LO Lo 4) O in 47 o O LLi U) - O a J C C (A h= O u} p h p W O LO n CO O to, n M O LLJ�C C . v O O p r O r O 0 0 0 0 o r U L_ N N (6 �I �� Z d d p d d d C O o o o 0 o o o o LLI cu t9 fD a M N r (O r m r N (p m N (R V c2 N Q f a o o a ui o o d o (n (n M m m H M m 6 m vi M v v •t •t NN N N N (V X C x X x K K x X X X X X x x X K x ❑ C C 4 4 C C C O p O o 0 0 0 0 0 (8 (D to co (o (o (D cD (D (O CD CD h. h r -- -G3 CD d 7 m_ N p C m N_ m �_ m N_ (D V m Nfu_ Z 0 0 00 U U U U U U U U 'U U U Cl C C X O X p O % LO X L-) M W> X to X 0 % 0 % 0 % 0 % §D Lq X X V O n TM( a a C a a o p p p QR-io •X p X p O a♦ p (D to fo (o d c0 fD to CO (o 40 n h n h cn w McClendon Engineering Inc THIS PAGE INTENTIONALLY LEFT BLANK