Loading...
Structural_Calculations_Yelm_Coffeeshop GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 1 Calc. by GL Date 121223 Chk'd by Date App'd by Date STRUCTURAL CALCULATIONS FOR THE Yelm Coffee Shop Drive Through Located at 407 E Yelm Drive Tacoma, WA 98597 GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 2 Calc. by GL Date 121223 Chk'd by Date App'd by Date Design Criteria_Roof Assembly ............................................................................................................................................................. 3 Dead load construction ...................................................................................................................................................................... 3 Roof Assembly ............................................................................................................................................................................... 3 Design Criteria_Floor Assembly ............................................................................................................................................................ 3 Dead load construction ...................................................................................................................................................................... 3 Floor Assembly............................................................................................................................................................................... 3 B1- ROOF RAFTERS WITH OVERHANG ............................................................................................................................................ 4 Structural wood member analysis & Design (NDS)............................................................................................................................ 4 B2- CANTILEVERED GLULAM BEAM.................................................................................................................................................. 7 Structural glued laminated timber (Glulam) member analysis & Design (NDS) ................................................................................. 7 B3- CANTILEVERED GLULAM BEAM................................................................................................................................................ 11 Structural glued laminated timber (Glulam) member analysis & Design (NDS) ............................................................................... 11 B4- floor beam ..................................................................................................................................................................................... 14 Structural composite lumber member analysis & Design (NDS) ...................................................................................................... 14 B5 – window header ............................................................................................................................................................................ 17 Structural wood member analysis & Design (NDS).......................................................................................................................... 17 B6-steel window girt ............................................................................................................................................................................ 20 Steel beam analysis & design (AISC360-16) ................................................................................................................................... 20 Footing analysis & design (ACI318) .................................................................................................................................................... 23 Footing analysis ............................................................................................................................................................................... 23 Seismic forces (ASCE7) ...................................................................................................................................................................... 26 SEISMIC FORCES .......................................................................................................................................................................... 26 Wind loading (ASCE7) ......................................................................................................................................................................... 27 Wind loading .................................................................................................................................................................................... 27 GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 3 Calc. by GL Date 121223 Chk'd by Date App'd by Date DESIGN CRITERIA_ROOF ASSEMBLY DEAD LOAD CONSTRUCTION Roof Assembly Material Thickness  Weight (in) (lb/ft3) (lb/ft2) Asphalt Shingles; 0.250; 135; 2.8 1/2" Plywood or OSB; 0.500; 45; 1.9 Insulation; 12.000; 1; 1.0 2x Rafters; 1.000; 35; 2.9 Beams; 0.500; 35; 1.5 Gypsum Board; 0.625; 60; 3.1 Miscellaneous; 1.000; ; 1.8 Totals; 15.0 ;Live Load: 25 psf snow DESIGN CRITERIA_FLOOR ASSEMBLY DEAD LOAD CONSTRUCTION Floor Assembly Material Thickness  Weight (in) (lb/ft3) (lb/ft2) Flooring; 0.125; 95; 1.0 3/4" Plywood or OSB; 0.750; 45; 2.8 2x Joists; 0.625; 35; 1.8 Beams; 0.600; 35; 1.7 Gypsum Board; 0.625; 60; 3.1 Miscellaneous; 1.000; ; 1.5 Totals; 12.0 ;Live Load : 40 psf GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 4 Calc. by GL Date 121223 Chk'd by Date App'd by Date B1- ROOF RAFTERS WITH OVERHANG STRUCTURAL WOOD MEMBER ANALYSIS & DESIGN (NDS) In accordance with the ANSI/AF&PA NDS-2018 using the ASD method Tedds calculation version 1.7.10 Applied loading Beam loads Dead self weight of beam  1 Dead full UDL 30 lb/ft Snow full UDL 50 lb/ft Load combinations Load combination 1 Support A Dead  1.00 Live  1.00 Snow  1.00 Span 1 Dead  1.00 Live  1.00 Snow  1.00 Support B Dead  1.00 GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 5 Calc. by GL Date 121223 Chk'd by Date App'd by Date Live  1.00 Snow  1.00 Span 2 Dead  1.00 Live  1.00 Snow  1.00 Support C Dead  1.00 Live  1.00 Snow  1.00 Span 3 Dead  1.00 Live  1.00 Snow  1.00 Support D Dead  1.00 Live  1.00 Snow  1.00 Analysis results Maximum moment; Mmax = 1987 lb_ft; Mmin = -378 lb_ft Design moment; M = max(abs(Mmax),abs(Mmin)) = 1987 lb_ft Maximum shear; Fmax = 631 lb; Fmin = -631 lb Design shear; F = max(abs(Fmax),abs(Fmin)) = 631 lb Total load on member; Wtot = 1766 lb Reaction at support A; RA_max = 0 lb; RA_min = 0 lb Unfactored dead load reaction at support A; RA_Dead = 0 lb Unfactored snow load reaction at support A; RA_Snow = 0 lb Reaction at support B; RB_max = 883 lb; RB_min = 883 lb Unfactored dead load reaction at support B; RB_Dead = 358 lb Unfactored snow load reaction at support B; RB_Snow = 525 lb Reaction at support C; RC_max = 883 lb; RC_min = 883 lb Unfactored dead load reaction at support C; RC_Dead = 358 lb Unfactored snow load reaction at support C; RC_Snow = 525 lb Reaction at support D; RD_max = 0 lb; RD_min = 0 lb Unfactored dead load reaction at support D; RD_Dead = 0 lb Unfactored snow load reaction at support D; RD_Snow = 0 lb Sawn lumber section details Nominal breadth of sections; bnom = 2 in Dressed breadth of sections; b = 1.5 in Nominal depth of sections; dnom = 12 in GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 6 Calc. by GL Date 121223 Chk'd by Date App'd by Date Dressed depth of sections; d = 11.25 in Number of sections in member; N = 1 Overall breadth of member; bb = N  b = 1.5 in Species, grade and size classification; Hem-Fir, No.2 grade, 2'' & wider Bending parallel to grain; Fb = 850 lb/in2 Tension parallel to grain; Ft = 525 lb/in2 Compression parallel to grain; Fc = 1300 lb/in2 Compression perpendicular to grain; Fc_perp = 405 lb/in2 Shear parallel to grain; Fv = 150 lb/in2 Modulus of elasticity; E = 1300000 lb/in2 Modulus of elasticity, stability calculations; Emin = 470000 lb/in2 Mean shear modulus; Gdef = E / 16 = 81250 lb/in2 Member details Service condition; Dry Length of span 1; Ls1 = 3 ft Length of span 2; Ls2 = 15 ft Length of span 3; Ls3 = 3 ft Length of bearing; Lb = 4 in Load duration; Two months The beam is one of three or more repetitive members Section properties Cross sectional area of member; A = N  b  d = 16.87 in2 Section modulus; Sx = N  b  d2 / 6 = 31.64 in3 Sy = d  (N  b)2 / 6 = 4.22 in3 Second moment of area; Ix = N  b  d3 / 12 = 177.98 in4 Iy = d  (N  b)3 / 12 = 3.16 in4 Adjustment factors Load duration factor - Table 2.3.2; CD = 1.15 Temperature factor - Table 2.3.3; Ct = 1.00 Size factor for bending - Table 4A; CFb = 1.00 Size factor for tension - Table 4A; CFt = 1.00 Size factor for compression - Table 4A; CFc = 1.00 Flat use factor - Table 4A; Cfu = 1.20 Incising factor for modulus of elasticity - Table 4.3.8 CiE = 1.00 Incising factor for bending, shear, tension & compression - Table 4.3.8 Ci = 1.00 Incising factor for perpendicular compression - Table 4.3.8 Cic_perp = 1.00 Repetitive member factor - cl.4.3.9; Cr = 1.15 Bearing area factor - cl.3.10.4; Cb = (Lb + 0.375 in) / Lb = 1.09 Depth-to-breadth ratio; dnom / (N  bnom) = 6.00 - Beam is fully restrained GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 7 Calc. by GL Date 121223 Chk'd by Date App'd by Date Beam stability factor - cl.3.3.3; CL = 1.00 Bearing perpendicular to grain - cl.3.10.2 Design compression perpendicular to grain; Fc_perp' = Fc_perp  Ct  Cic_perp  Cb = 443 lb/in2 Applied compression stress perpendicular to grain; fc_perp = RB_max / (N  b  Lb) = 147 lb/in2 fc_perp / Fc_perp' = 0.332 PASS - Design compressive stress exceeds applied compressive stress at bearing Strength in bending - cl.3.3.1 Design bending stress; Fb' = Fb  CD  Ct  CL  CFb  Ci  Cr = 1124 lb/in2 Actual bending stress; fb = M / Sx = 754 lb/in2 fb / Fb' = 0.670 PASS - Design bending stress exceeds actual bending stress Strength in shear parallel to grain - cl.3.4.1 Design shear stress; Fv' = Fv  CD  Ct  Ci = 173 lb/in2 Actual shear stress - eq.3.4-2; fv = 3  F / (2  A) = 56 lb/in2 fv / Fv' = 0.325 PASS - Design shear stress exceeds actual shear stress Deflection - cl.3.5.1 Modulus of elasticity for deflection; E' = E  CME  Ct  CiE = 1300000 lb/in2 Design deflection; adm = 0.003  2  Ls3 = 0.216 in Total deflection; b_s3 = -0.195 in b_s3 / adm = -0.903 PASS - Total deflection is less than design deflection ; B2- CANTILEVERED GLULAM BEAM STRUCTURAL GLUED LAMINATED TIMBER (GLULAM) MEMBER ANALYSIS & DESIGN (NDS) In accordance with the ANSI/AF&PA NDS-2018 using the ASD method Tedds calculation version 1.7.10 GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 8 Calc. by GL Date 121223 Chk'd by Date App'd by Date Applied loading Beam loads Dead self weight of beam  1 Dead full UDL 158 lb/ft Snow full UDL 263 lb/ft Load combinations Load combination 1 Support A Dead  1.00 Live  1.00 Snow  1.00 Span 1 Dead  1.00 Live  1.00 Snow  1.00 Support B Dead  1.00 Live  1.00 Snow  1.00 Analysis results Maximum moment; Mmax = 0 lb_ft; Mmin = -19627 lb_ft Design moment; M = max(abs(Mmax),abs(Mmin)) = 19627 lb_ft Maximum shear; Fmax = -0 lb; Fmin = -4132 lb Design shear; F = max(abs(Fmax),abs(Fmin)) = 4132 lb Total load on member; Wtot = 4132 lb Reaction at support A; RA_max = 0 lb; RA_min = 0 lb Unfactored dead load reaction at support A; RA_Dead = 0 lb Unfactored snow load reaction at support A; RA_Snow = 0 lb Reaction at support B; RB_max = 4132 lb; RB_min = 4132 lb Unfactored dead load reaction at support B; RB_Dead = 1638 lb GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 9 Calc. by GL Date 121223 Chk'd by Date App'd by Date Unfactored snow load reaction at support B; RB_Snow = 2494 lb Glulam section details Net finished breadth of sections; b = 5.125 in Net finished depth of sections; d = 12 in Number of sections in member; N = 1 Overall breadth of member; bb = N  b = 5.125 in Alignment of laminations; Horizontal Stress class; 24F-V8 DF/DF Tension parallel to grain; Ft = 1100 lb/in2 Compression parallel to grain; Fc = 1650 lb/in2 Bending about X-X axis properties (loaded perpendicular to wide faces of laminations): Positive bending; Fbx_pos = 2400 lb/in2 Negative bending; Fbx_neg = 2400 lb/in2 Compression perpendicular to grain; Fc_perp = 650 lb/in2 Shear parallel to grain; Fv = 265 lb/in2 Modulus of elasticity; E = 1800000 lb/in2 Modulus of elasticity, stability calculations; Emin = 950000 lb/in2 Mean shear modulus; Gdef = E / 16 = 112500 lb/in2 Bending about Y-Y axis properties (loaded parallel to wide faces of laminations): Bending; Fby = 1550 lb/in2 Modulus of elasticity; stability calculations; Eymin = 850000 lb/in2 Member details Service condition; Wet Length of span; Ls1 = 9.5 ft Length of bearing; Lb = 4 in Load duration; Two months The beam is one of three or more repetitive members Section properties Cross sectional area of member; A = N  b  d = 61.50 in2 Section modulus; Sx = N  b  d2 / 6 = 123.00 in3 Sy = d  (N  b)2 / 6 = 52.53 in3 Second moment of area; Ix = N  b  d3 / 12 = 738.00 in4 Iy = d  (N  b)3 / 12 = 134.61 in4 Adjustment factors Load duration factor - Table 2.3.2; CD = 1.15 GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 10 Calc. by GL Date 121223 Chk'd by Date App'd by Date Temperature factor - Table 2.3.3; Ct = 1.00 Flat use factor - Table 5A; Cfu = 1.10 Bearing area factor - cl.3.10.4; Cb = 1.00 Wet service factor for bending - Table 5A; CMb = 0.80 Wet service factor for tension - Table 5A; CMt = 0.80 Wet service factor for compression - Table 5A; CMc = 0.73 Wet service factor for perpendicular compression - Table 5A CMc_perp = 0.53 Wet service factor for shear - Table 5A; CMv = 0.88 Wet service factor for modulus of elasticity - Table 5A CME = 0.83 Length of beam between points of zero moment; L0 = 9.5 ft For species other than Southern Pine; x = 10 Volume factor - eq.5.3-1; CV = min((21 ft / L0)1/x  (12 in / d)1/x  (5.125 in / b)1/x, 1) = 1.00 Depth-to-breadth ratio; d / (N  b) = 2.34 - Beam is fully restrained Beam stability factor - cl.3.3.3; CL = 1.00 Bearing perpendicular to grain - cl.3.10.2 Design compression perpendicular to grain; Fc_perp' = Fc_perp  CMc_perp  Ct  Cb = 345 lb/in2 Applied compression stress perpendicular to grain; fc_perp = RB_max / (N  b  Lb) = 202 lb/in2 fc_perp / Fc_perp' = 0.585 PASS - Design compressive stress exceeds applied compressive stress at bearing Strength in bending - cl.3.3.1 Design bending stress; Fb' = Fbx_neg  CD  CMb  Ct  min(CL, CV)  Cc = 2208 lb/in2 Actual bending stress; fb = abs(Mmin) / Sx = 1915 lb/in2 fb / Fb' = 0.867 PASS - Design bending stress exceeds actual bending stress Strength in shear parallel to grain - cl.3.4.1 Design shear stress; Fv' = Fv  CD  CMv  Ct = 267 lb/in2 Actual shear stress - eq.3.4-2; fv = 3  F / (2  A) = 101 lb/in2 fv / Fv' = 0.378 PASS - Design shear stress exceeds actual shear stress Deflection - cl.3.5.1 Modulus of elasticity for deflection; E' = Ex  CME  Ct = 1499400 lb/in2 Design deflection; adm = 0.0042  2  Ls1 = 0.958 in Total deflection; b_s1 = 0.692 in b_s1 / adm = 0.722 PASS - Total deflection is less than design deflection ; GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 11 Calc. by GL Date 121223 Chk'd by Date App'd by Date B3- CANTILEVERED GLULAM BEAM STRUCTURAL GLUED LAMINATED TIMBER (GLULAM) MEMBER ANALYSIS & DESIGN (NDS) In accordance with the ANSI/AF&PA NDS-2018 using the ASD method Tedds calculation version 1.7.10 Applied loading Beam loads Dead self weight of beam  1 Dead full UDL 158 lb/ft Snow full UDL 263 lb/ft Load combinations Load combination 1 Support A Dead  1.00 Live  1.00 Snow  1.00 Span 1 Dead  1.00 Live  1.00 Snow  1.00 Support B Dead  1.00 GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 12 Calc. by GL Date 121223 Chk'd by Date App'd by Date Live  1.00 Snow  1.00 Analysis results Maximum moment; Mmax = 0 lb_ft; Mmin = -7762 lb_ft Design moment; M = max(abs(Mmax),abs(Mmin)) = 7762 lb_ft Maximum shear; Fmax = -0 lb; Fmin = -2587 lb Design shear; F = max(abs(Fmax),abs(Fmin)) = 2587 lb Total load on member; Wtot = 2587 lb Reaction at support A; RA_max = 0 lb; RA_min = 0 lb Unfactored dead load reaction at support A; RA_Dead = 0 lb Unfactored snow load reaction at support A; RA_Snow = 0 lb Reaction at support B; RB_max = 2587 lb; RB_min = 2587 lb Unfactored dead load reaction at support B; RB_Dead = 1012 lb Unfactored snow load reaction at support B; RB_Snow = 1575 lb Glulam section details Net finished breadth of sections; b = 5.125 in Net finished depth of sections; d = 9 in Number of sections in member; N = 1 Overall breadth of member; bb = N  b = 5.125 in Alignment of laminations; Horizontal Stress class; 24F-V8 DF/DF Tension parallel to grain; Ft = 1100 lb/in2 Compression parallel to grain; Fc = 1650 lb/in2 Bending about X-X axis properties (loaded perpendicular to wide faces of laminations): Positive bending; Fbx_pos = 2400 lb/in2 Negative bending; Fbx_neg = 2400 lb/in2 Compression perpendicular to grain; Fc_perp = 650 lb/in2 Shear parallel to grain; Fv = 265 lb/in2 Modulus of elasticity; E = 1800000 lb/in2 Modulus of elasticity, stability calculations; Emin = 950000 lb/in2 Mean shear modulus; Gdef = E / 16 = 112500 lb/in2 Bending about Y-Y axis properties (loaded parallel to wide faces of laminations): Bending; Fby = 1550 lb/in2 Modulus of elasticity; stability calculations; Eymin = 850000 lb/in2 Member details Service condition; Wet GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 13 Calc. by GL Date 121223 Chk'd by Date App'd by Date Length of span; Ls1 = 6 ft Length of bearing; Lb = 4 in Load duration; Two months The beam is one of three or more repetitive members Section properties Cross sectional area of member; A = N  b  d = 46.13 in2 Section modulus; Sx = N  b  d2 / 6 = 69.19 in3 Sy = d  (N  b)2 / 6 = 39.40 in3 Second moment of area; Ix = N  b  d3 / 12 = 311.34 in4 Iy = d  (N  b)3 / 12 = 100.96 in4 Adjustment factors Load duration factor - Table 2.3.2; CD = 1.15 Temperature factor - Table 2.3.3; Ct = 1.00 Flat use factor - Table 5A; Cfu = 1.10 Bearing area factor - cl.3.10.4; Cb = 1.00 Wet service factor for bending - Table 5A; CMb = 0.80 Wet service factor for tension - Table 5A; CMt = 0.80 Wet service factor for compression - Table 5A; CMc = 0.73 Wet service factor for perpendicular compression - Table 5A CMc_perp = 0.53 Wet service factor for shear - Table 5A; CMv = 0.88 Wet service factor for modulus of elasticity - Table 5A CME = 0.83 Length of beam between points of zero moment; L0 = 6 ft For species other than Southern Pine; x = 10 Volume factor - eq.5.3-1; CV = min((21 ft / L0)1/x  (12 in / d)1/x  (5.125 in / b)1/x, 1) = 1.00 Depth-to-breadth ratio; d / (N  b) = 1.76 - Beam is fully restrained Beam stability factor - cl.3.3.3; CL = 1.00 Bearing perpendicular to grain - cl.3.10.2 Design compression perpendicular to grain; Fc_perp' = Fc_perp  CMc_perp  Ct  Cb = 345 lb/in2 Applied compression stress perpendicular to grain; fc_perp = RB_max / (N  b  Lb) = 126 lb/in2 fc_perp / Fc_perp' = 0.366 PASS - Design compressive stress exceeds applied compressive stress at bearing Strength in bending - cl.3.3.1 Design bending stress; Fb' = Fbx_neg  CD  CMb  Ct  min(CL, CV)  Cc = 2208 lb/in2 Actual bending stress; fb = abs(Mmin) / Sx = 1346 lb/in2 fb / Fb' = 0.610 PASS - Design bending stress exceeds actual bending stress Strength in shear parallel to grain - cl.3.4.1 Design shear stress; Fv' = Fv  CD  CMv  Ct = 267 lb/in2 Actual shear stress - eq.3.4-2; fv = 3  F / (2  A) = 84 lb/in2 GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 14 Calc. by GL Date 121223 Chk'd by Date App'd by Date fv / Fv' = 0.316 PASS - Design shear stress exceeds actual shear stress Deflection - cl.3.5.1 Modulus of elasticity for deflection; E' = Ex  CME  Ct = 1499400 lb/in2 Design deflection; adm = 0.0042  2  Ls1 = 0.605 in Total deflection; b_s1 = 0.259 in b_s1 / adm = 0.428 PASS - Total deflection is less than design deflection ; B4- FLOOR BEAM STRUCTURAL COMPOSITE LUMBER MEMBER ANALYSIS & DESIGN (NDS) In accordance with the ANSI/AF&PA NDS-2018 using the ASD method Tedds calculation version 1.7.10 Applied loading Beam loads Dead self weight of beam  1 GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 15 Calc. by GL Date 121223 Chk'd by Date App'd by Date Dead full UDL 66 lb/ft Live full UDL 220 lb/ft Load combinations Load combination 1 Support A Dead  1.00 Live  1.00 Snow  1.00 Span 1 Dead  1.00 Live  1.00 Snow  1.00 Support B Dead  1.00 Live  1.00 Snow  1.00 Analysis results Maximum moment; Mmax = 6954 lb_ft; Mmin = 0 lb_ft Design moment; M = max(abs(Mmax),abs(Mmin)) = 6954 lb_ft Maximum shear; Fmax = 2036 lb; Fmin = -2036 lb Design shear; F = max(abs(Fmax),abs(Fmin)) = 2036 lb Total load on member; Wtot = 4072 lb Reaction at support A; RA_max = 2036 lb; RA_min = 2036 lb Unfactored dead load reaction at support A; RA_Dead = 534 lb Unfactored live load reaction at support A; RA_Live = 1503 lb Reaction at support B; RB_max = 2036 lb; RB_min = 2036 lb Unfactored dead load reaction at support B; RB_Dead = 534 lb Unfactored live load reaction at support B; RB_Live = 1503 lb Composite section details Breadth of composite section; b = 3.5 in Depth of composite section; d = 11.875 in Number of composite sections in member; N = 1 Overall breadth of composite member; bb = N  b = 3.5 in Composite type and grade; Microllam LVL, 2.0E-2600Fb grade Bending parallel to grain; Fb = 2600 lb/in2 Tension parallel to grain; Ft = 1555 lb/in2 Compression parallel to grain; Fc = 2510 lb/in2 Compression perpendicular to grain; Fc_perp = 750 lb/in2 Shear parallel to grain; Fv = 285 lb/in2 Modulus of elasticity; E = 2000000 lb/in2 GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 16 Calc. by GL Date 121223 Chk'd by Date App'd by Date Modulus of elasticity, stability calculations; Emin = 1017000 lb/in2 Mean shear modulus; Gdef = E / 16 = 125000 lb/in2 Average density;  = 42 lb/ft3 Member details Service condition; Dry Length of span; Ls1 = 13.66 ft Length of bearing; Lb = 4 in Load duration; Two months Section properties Cross sectional area of member; A = N  b  d = 41.56 in2 Section modulus; Sx = N  b  d2 / 6 = 82.26 in3 Sy = d  (N  b)2 / 6 = 24.24 in3 Second moment of area; Ix = N  b  d3 / 12 = 488.41 in4 Iy = d  (N  b)3 / 12 = 42.43 in4 Adjustment factors Load duration factor - Table 2.3.2; CD = 1.15 Temperature factor - Table 2.3.3; Ct = 1.00 Volume factor; CV = (12 in / max(d, 3.5 in))0.136 = 1.00 Repetitive member factor - cl.8.3.7; Cr = 1.00 Length factor; CLen = (4 ft / Ls1)0.085 = 0.90 Bearing area factor - cl.3.10.4; Cb = 1.00 Depth-to-breadth ratio; d / (N  b) = 3.39 - Beam is fully restrained Beam stability factor - cl.3.3.3; CL = 1.00 Bearing perpendicular to grain - cl.3.10.2 Design compression perpendicular to grain; Fc_perp' = Fc_perp  Ct  Cb = 750 lb/in2 Applied compression stress perpendicular to grain; fc_perp = RA_max / (N  b  Lb) = 145 lb/in2 fc_perp / Fc_perp' = 0.194 PASS - Design compressive stress exceeds applied compressive stress at bearing Strength in bending - cl.3.3.1 Design bending stress; Fb' = Fb  CD  Ct  CL  CV  Cr = 2994 lb/in2 Actual bending stress; fb = M / Sx = 1014 lb/in2 fb / Fb' = 0.339 PASS - Design bending stress exceeds actual bending stress Strength in shear parallel to grain - cl.3.4.1 Design shear stress; Fv' = Fv  CD  Ct = 328 lb/in2 Actual shear stress - eq.3.4-2; fv = 3  F / (2  A) = 73 lb/in2 fv / Fv' = 0.224 PASS - Design shear stress exceeds actual shear stress Deflection - cl.3.5.1 Modulus of elasticity for deflection; E' = E  CM  Ct = 2000000 lb/in2 Design deflection; adm = 0.0042  Ls1 = 0.688 in GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 17 Calc. by GL Date 121223 Chk'd by Date App'd by Date Total deflection; b_s1 = 0.239 in b_s1 / adm = 0.347 PASS - Total deflection is less than design deflection ; B5 – WINDOW HEADER STRUCTURAL WOOD MEMBER ANALYSIS & DESIGN (NDS) In accordance with the ANSI/AF&PA NDS-2018 using the ASD method Tedds calculation version 1.7.10 Applied loading Beam loads Dead self weight of beam  1 Dead full UDL 158 lb/ft Snow full UDL 263 lb/ft Load combinations Load combination 1 Support A Dead  1.00 Live  1.00 GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 18 Calc. by GL Date 121223 Chk'd by Date App'd by Date Snow  1.00 Span 1 Dead  1.00 Live  1.00 Snow  1.00 Support B Dead  1.00 Live  1.00 Snow  1.00 Analysis results Maximum moment; Mmax = 3436 lb_ft; Mmin = 0 lb_ft Design moment; M = max(abs(Mmax),abs(Mmin)) = 3436 lb_ft Maximum shear; Fmax = 1718 lb; Fmin = -1718 lb Design shear; F = max(abs(Fmax),abs(Fmin)) = 1718 lb Total load on member; Wtot = 3436 lb Reaction at support A; RA_max = 1718 lb; RA_min = 1718 lb Unfactored dead load reaction at support A; RA_Dead = 668 lb Unfactored snow load reaction at support A; RA_Snow = 1050 lb Reaction at support B; RB_max = 1718 lb; RB_min = 1718 lb Unfactored dead load reaction at support B; RB_Dead = 668 lb Unfactored snow load reaction at support B; RB_Snow = 1050 lb Sawn lumber section details Nominal breadth of sections; bnom = 4 in Dressed breadth of sections; b = 3.5 in Nominal depth of sections; dnom = 10 in Dressed depth of sections; d = 9.25 in Number of sections in member; N = 1 Overall breadth of member; bb = N  b = 3.5 in Species, grade and size classification; Douglas Fir-Larch, No.2 grade, 2'' & wider Bending parallel to grain; Fb = 900 lb/in2 Tension parallel to grain; Ft = 575 lb/in2 Compression parallel to grain; Fc = 1350 lb/in2 Compression perpendicular to grain; Fc_perp = 625 lb/in2 Shear parallel to grain; Fv = 180 lb/in2 Modulus of elasticity; E = 1600000 lb/in2 Modulus of elasticity, stability calculations; Emin = 580000 lb/in2 Mean shear modulus; Gdef = E / 16 = 100000 lb/in2 GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 19 Calc. by GL Date 121223 Chk'd by Date App'd by Date Member details Service condition; Dry Length of span; Ls1 = 8 ft Length of bearing; Lb = 4 in Load duration; Two months Section properties Cross sectional area of member; A = N  b  d = 32.38 in2 Section modulus; Sx = N  b  d2 / 6 = 49.91 in3 Sy = d  (N  b)2 / 6 = 18.89 in3 Second moment of area; Ix = N  b  d3 / 12 = 230.84 in4 Iy = d  (N  b)3 / 12 = 33.05 in4 Adjustment factors Load duration factor - Table 2.3.2; CD = 1.15 Temperature factor - Table 2.3.3; Ct = 1.00 Size factor for bending - Table 4A; CFb = 1.20 Size factor for tension - Table 4A; CFt = 1.10 Size factor for compression - Table 4A; CFc = 1.00 Flat use factor - Table 4A; Cfu = 1.10 Incising factor for modulus of elasticity - Table 4.3.8 CiE = 1.00 Incising factor for bending, shear, tension & compression - Table 4.3.8 Ci = 1.00 Incising factor for perpendicular compression - Table 4.3.8 Cic_perp = 1.00 Repetitive member factor - cl.4.3.9; Cr = 1.00 Bearing area factor - cl.3.10.4; Cb = 1.00 Depth-to-breadth ratio; dnom / (N  bnom) = 2.50 - Beam is fully restrained Beam stability factor - cl.3.3.3; CL = 1.00 Bearing perpendicular to grain - cl.3.10.2 Design compression perpendicular to grain; Fc_perp' = Fc_perp  Ct  Cic_perp  Cb = 625 lb/in2 Applied compression stress perpendicular to grain; fc_perp = RB_max / (N  b  Lb) = 123 lb/in2 fc_perp / Fc_perp' = 0.196 PASS - Design compressive stress exceeds applied compressive stress at bearing Strength in bending - cl.3.3.1 Design bending stress; Fb' = Fb  CD  Ct  CL  CFb  Ci  Cr = 1242 lb/in2 Actual bending stress; fb = M / Sx = 826 lb/in2 fb / Fb' = 0.665 PASS - Design bending stress exceeds actual bending stress Strength in shear parallel to grain - cl.3.4.1 Design shear stress; Fv' = Fv  CD  Ct  Ci = 207 lb/in2 Actual shear stress - eq.3.4-2; fv = 3  F / (2  A) = 80 lb/in2 GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 20 Calc. by GL Date 121223 Chk'd by Date App'd by Date fv / Fv' = 0.384 PASS - Design shear stress exceeds actual shear stress Deflection - cl.3.5.1 Modulus of elasticity for deflection; E' = E  CME  Ct  CiE = 1600000 lb/in2 Design deflection; adm = 0.0042  Ls1 = 0.403 in Total deflection; b_s1 = 0.107 in b_s1 / adm = 0.266 PASS - Total deflection is less than design deflection ; B6-STEEL WINDOW GIRT STEEL BEAM ANALYSIS & DESIGN (AISC360-16) In accordance with AISC360-16 using the LRFD method Tedds calculation version 3.0.15 Support conditions Support A Vertically restrained Rotationally free GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 21 Calc. by GL Date 121223 Chk'd by Date App'd by Date Support B Vertically restrained Rotationally free Applied loading Beam loads Dead self weight of beam  1 Wind full UDL 0.176 kips/ft Load combinations Load combination 1 Support A Dead  1.20 Live  1.60 Roof live  1.60 Snow  1.60 Wind  1.00 Dead  1.20 Live  1.60 Roof live  1.60 Snow  1.60 Wind  1.00 Support B Dead  1.20 Live  1.60 Roof live  1.60 Snow  1.60 Wind  1.00 Analysis results Maximum moment; Mmax = 5.1 kips_ft; Mmin = 0 kips_ft Maximum shear; Vmax = 1.4 kips; Vmin = -1.4 kips Deflection; max = 0.6 in; min = 0 in Maximum reaction at support A; RA_max = 1.4 kips; RA_min = 1.4 kips Unfactored dead load reaction at support A; RA_Dead = 0.1 kips Unfactored wind load reaction at support A; RA_Wind = 1.3 kips Maximum reaction at support B; RB_max = 1.4 kips; RB_min = 1.4 kips Unfactored dead load reaction at support B; RB_Dead = 0.1 kips Unfactored wind load reaction at support B; RB_Wind = 1.3 kips Section details Section type; HSS 6x4x1/4 (AISC 15th Edn (v15.0)) ASTM steel designation; A500 Gr.B 46 Steel yield stress; Fy = 46 ksi Steel tensile stress; Fu = 58 ksi Modulus of elasticity; E = 29000 ksi GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 22 Calc. by GL Date 121223 Chk'd by Date App'd by Date Resistance factors Resistance factor for tensile yielding ty = 0.90 Resistance factor for tensile rupture tr = 0.75 Resistance factor for compression c = 0.90 Resistance factor for flexure b = 0.90 Lateral bracing Span 1 has lateral bracing at supports only Classification of sections for local buckling - Section B4.1 Classification of flanges in flexure - Table B4.1b (case 17) Width to thickness ratio; (d - 3  t) / t = 22.75 Limiting ratio for compact section; pff = 1.12  [E / Fy] = 28.12 Limiting ratio for non-compact section; rff = 1.40  [E / Fy] = 35.15; Compact Classification of web in flexure - Table B4.1b (case 19) Width to thickness ratio; (bf - 3  t) / t = 14.17 Limiting ratio for compact section; pwf = 2.42  [E / Fy] = 60.76 Limiting ratio for non-compact section; rwf = 5.70  [E / Fy] = 143.12; Compact Section is compact in flexure Design of members for shear - Chapter G Required shear strength Vr = max(abs(Vmax), abs(Vmin)) = 1.403 kips Web area Aw = 2  (bf - 3  t)  t = 1.538 in2 Web plate buckling coefficient kv = 5 Web shear coefficient - eq G2-9 Cv2 = 1 Nominal shear strength – eq G4-1 Vn = 0.6  Fy  Aw  Cv2 = 42.456 kips Resistance factor for shear v = 0.90 Design shear strength Vc = v  Vn = 38.211 kips PASS - Design shear strength exceeds required shear strength 6" GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 23 Calc. by GL Date 121223 Chk'd by Date App'd by Date Design of members for flexure in the minor axis - Chapter F Required flexural strength; Mr = max(abs(Ms1_max), abs(Ms1_min)) = 5.087 kips_ft Yielding - Section F7.1 Nominal flexural strength for yielding - eq F7-1; Mnyld = Mp = Fy  Zy = 24.725 kips_ft Nominal flexural strength; Mn = Mnyld = 24.725 kips_ft Design flexural strength; Mc = b  Mn = 22.252 kips_ft PASS - Design flexural strength exceeds required flexural strength Design of members for vertical deflection Consider deflection due to dead, live, roof live, snow and wind loads Limiting deflection;; lim = Ls1 / 180 = 0.967 in Maximum deflection span 1;  = max(abs(max), abs(min)) = 0.589 in PASS - Maximum deflection does not exceed deflection limit ; FOOTING ANALYSIS & DESIGN (ACI318) FOOTING ANALYSIS In accordance with ACI318 Tedds calculation version 3.3.04 Summary results Overall design status; PASS; Overall design utilisation; 0.451 Description Unit Applied Resisting FoS Result Uplift verification kips 9.8 Pass Overturning stability, y kip_ft 0.71 -19.55 27.65 Pass Sliding stability, y kips 0.2 5.6 35.921 Pass Description Unit Applied Resisting Utilization Result Soil bearing ksf 0.677 1.5 0.451 Pass Pad footing details Length of footing; Lx = 4 ft Width of footing; Ly = 4 ft Footing area; A = Lx  Ly = 16 ft2 Depth of footing; h = 18 in Depth of soil over footing; hsoil = 0 in Density of concrete; conc = 150.0 lb/ft3 GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 24 Calc. by GL Date 121223 Chk'd by Date App'd by Date Column no.1 details Length of column; lx1 = 10.00 in Width of column; ly1 = 10.00 in position in x-axis; x1 = 24.00 in position in y-axis; y1 = 24.00 in Height of pedestal; hped1 = 36.00 in Length of pedestal; lx,ped1 = 18.00 in Width of pedestal; ly,ped1 = 18.00 in Soil properties Gross allowable bearing pressure; qallow_Gross = 1.5 ksf; Density of soil; soil = 120.0 lb/ft3 Angle of internal friction; b = 30.0 deg Design base friction angle; bb = 30.0 deg Coefficient of base friction; tan(bb) = 0.577 Footing loads Live surcharge load; FLsur = 40 psf Self weight; Fswt = h  conc = 225 psf Column no.1 loads Pedestal self weight; FSWz1 = 1.0 kips Dead load in z; FDz1 = 1.3 kips Live load in z; FLz1 = 1.7 kips Snow load in z; FSz1 = 2.1 kips Seismic load in y; FEy1 = 0.3 kips GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 25 Calc. by GL Date 121223 Chk'd by Date App'd by Date Footing analysis for soil and stability Load combinations per ASCE 7-16 1.0D (0.245) 1.0D + 1.0L (0.341) 1.0D + 0.75L + 0.75S (0.383) (1.0 + 0.14  SDS)D + 0.7E (0.338) 1.0D + 0.75L + 0.75Lr + 0.45W (0.317) 1.0D + 0.75L + 0.75S + 0.45W (0.383) 1.0D + 0.75L + 0.75R + 0.45W (0.317) (1.0 + 0.10  SDS)D + 0.75L + 0.75S + 0.525E (0.451) (0.6 - 0.14  SDS)D + 0.7E (0.174) Combination 14 results: (1.0 + 0.10  SDS)D + 0.75L + 0.75S + 0.525E Forces on footing Force in y-axis; Fdy = E  FEy1 = 0.2 kips Force in z-axis; Fdz = D  A  Fswt + L  A  FLsur + D  (FDz1 + FSWz1 - lx,ped1  ly,ped1  hsoil  soil) + L  FLz1 + S  FSz1 = 9.8 kips Moments on footing Moment in x-axis, about x is 0; Mdx = D  A  Fswt  Lx / 2 + L  A  FLsur  Lx / 2 + D  (((FDz1 + FSWz1 - lx,ped1  ly,ped1  hsoil  soil))  x1) + L  (FLz1  x1) + S  (FSz1  x1) = 19.5 kip_ft Moment in y-axis, about y is 0; Mdy = D  A  Fswt  Ly / 2 + L  A  FLsur  Ly / 2 + D  (((FDz1 + FSWz1 - lx,ped1  ly,ped1  hsoil  soil))  y1) + L  (FLz1  y1) + S  (FSz1  y1) + E  (FEy1  (h + hped1)) = 20.3 kip_ft Uplift verification Vertical force; Fdz = 9.775 kips PASS - Footing is not subject to uplift Stability against overturning in y direction, moment about y is Ly Overturning moment; MOTyL = E  (FEy1  (h + hped1)) = 0.71 kip_ft Resisting moment; MRyL = -1  (D  A  Fswt  Ly / 2 + L  A  FLsur  Ly / 2) + D  (((FDz1 + FSWz1 - lx,ped1  ly,ped1  hsoil  soil))  (y1 - Ly)) + L  (FLz1  (y1 - Ly)) + S  (FSz1  (y1 - Ly)) = -19.55 kip_ft Factor of safety; abs(MRyL / MOTyL) = 27.652 PASS - Overturning moment safety factor exceeds the minimum of 1.50 Stability against sliding Resistance due to base friction; FRFriction = max(Fdz, 0 kN)  tan(bb) = 5.643 kips Stability against sliding in y direction Total sliding resistance; FRy = FRFriction = 5.643 kips Factor of safety; abs(FRy / Fdy) = 35.92 PASS - Sliding factor of safety exceeds the minimum of 1.00 GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 26 Calc. by GL Date 121223 Chk'd by Date App'd by Date Bearing resistance Eccentricity of base reaction Eccentricity of base reaction in x-axis; edx = Mdx / Fdz - Lx / 2 = 0 in Eccentricity of base reaction in y-axis; edy = Mdy / Fdz - Ly / 2 = 0.868 in Pad base pressures q1 = Fdz  (1 - 6  edx / Lx - 6  edy / Ly) / (Lx  Ly) = 0.545 ksf q2 = Fdz  (1 - 6  edx / Lx + 6  edy / Ly) / (Lx  Ly) = 0.677 ksf q3 = Fdz  (1 + 6  edx / Lx - 6  edy / Ly) / (Lx  Ly) = 0.545 ksf q4 = Fdz  (1 + 6  edx / Lx + 6  edy / Ly) / (Lx  Ly) = 0.677 ksf Minimum base pressure; qmin = min(q1,q2,q3,q4) = 0.545 ksf Maximum base pressure; qmax = max(q1,q2,q3,q4) = 0.677 ksf Allowable bearing capacity Allowable bearing capacity; qallow = qallow_Gross = 1.5 ksf qmax / qallow = 0.451 PASS - Allowable bearing capacity exceeds design base pressure ; SEISMIC FORCES (ASCE7) SEISMIC FORCES In accordance with ASCE 7-16 Tedds calculation version 3.1.03 Site parameters Site class; D Mapped acceleration parameters at short periods; SS = 1.285; at 1 sec period; S1 = 0.464 Site coefficientat short periods; Fa = 1.2; at 1 sec period; Fv = 1.8 Spectral response acceleration parameters at short period ; SMS = 1.542; at 1 sec period ; SM1 = 0.852 Design spectral acceleration parameters at short period; SDS = 1.028; at 1 sec period; SD1 = 0.568 Seismic design category Occupancy category; II; ; Seismic design category; D Approximate fundamental period Height above base to highest level of building; hn = 22.66 ft Building period parameter Ct; Ct = 0.02; Building period parameter x; x = 0.75 Building fundamental period; T = Ta = 0.208 sec; Long-period transition period; TL = 6 sec Limiting period; TS = 0.552 sec GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 27 Calc. by GL Date 121223 Chk'd by Date App'd by Date Seismic response coefficient Seismic force resisting system:A. Bearing_Wall_Systems 15. Light-frame (wood) walls sheathed with wood structural panels Response modification factor; R = 6.5; Seismic importance factor; Ie = 1.000; Seismic response coefficient; Cs = 0.158 Seismic base shear Effective seismic weight of the structure; W = 20.4 kips Seismic response coefficient; Cs = 0.158; Seismic base shear; V = 3.22 kips Vertical force distribution table Level Height from base to Level i (ft), hx Portion of effective seismic weight assigned to Level i (kips), wx Distribution exponent related to building period, k Vertical distribution factor, Cvx Lateral force induced at Level i (kips), Fx; 1 9.0; 5.3; 1.00; 0.121; 0.4; 2 22.7; 15.1; 1.00; 0.879; 2.8; ; ; WIND LOADING (ASCE7) WIND LOADING In accordance with ASCE7-16 Using the directional design method Tedds calculation version 2.1.10 Building data Type of roof; Monoslope Length of building; b = 36.00 ft Width of building; d = 15.00 ft Height to eaves; H = 21.00 ft GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 28 Calc. by GL Date 121223 Chk'd by Date App'd by Date Pitch of roof; 0 = 9.5 deg Mean height; h = 21.00 ft General wind load requirements Basic wind speed; V = 110.0 mph Risk category; II Velocity pressure exponent coef (Table 26.6-1); Kd = 0.85 Ground elevation above sea level; zgl = 0 ft Ground elevation factor; Ke = exp(-0.0000362  zgl/1ft) = 1.00 Exposure category (cl 26.7.3); B Enclosure classification (cl.26.12); Enclosed buildings Internal pressure coef +ve (Table 26.13-1); GCpi_p = 0.18 Internal pressure coef –ve (Table 26.13-1); GCpi_n = -0.18 Gust effect factor; Gf = 0.85 Minimum design wind loading (cl.27.4.7); pmin_r = 8 lb/ft2 Topography Topography factor not significant; Kzt = 1.0 Velocity pressure equation; q = 0.00256  Kz  Kzt  Kd  V2  1psf/mph2; Velocity pressures table z (ft) Kz (Table 26.10-1) qz (psf) 15.00 0.57 15.01 15.00 0.57 15.01 21.00 0.63 16.53 23.50 0.65 17.06 Peak velocity pressure for internal pressure Peak velocity pressure – internal (as roof press.); qi = 16.53 psf Pressures and forces Net pressure; p = q  Gf  Cpe - qi  GCpi; Net force; Fw = p  Aref; Roof load case 1 - Wind 0, GCpi 0.18, -cpe Zone Ref. height (ft) Ext pressure coefficient cpe Peak velocity pressure qp (psf) Net pressure p (psf) Area Aref (ft2) Net force Fw (kips) A (-ve) 21.00 -1.15 16.53 -19.11 383.21 -7.32 B (-ve) 21.00 -0.70 16.53 -12.81 164.23 -2.10 Total vertical net force; Fw,v = -9.30 kips Total horizontal net force; Fw,h = -1.55 kips Walls load case 1 - Wind 0, GCpi 0.18, -cpe Zone Ref. height (ft) Ext pressure coefficient cpe Peak velocity pressure qp (psf) Net pressure p (psf) Area Aref (ft2) Net force Fw (kips) A1 15.00 0.80 15.01 7.23 540.00 3.90 GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 29 Calc. by GL Date 121223 Chk'd by Date App'd by Date Zone Ref. height (ft) Ext pressure coefficient cpe Peak velocity pressure qp (psf) Net pressure p (psf) Area Aref (ft2) Net force Fw (kips) A2 15.00 0.80 15.01 7.23 0.00 0.00 A3 21.00 0.80 16.53 8.27 216.00 1.79 B 21.00 -0.50 16.53 -10.00 845.98 -8.46 C 21.00 -0.70 16.53 -12.81 333.75 -4.28 D 21.00 -0.70 16.53 -12.81 333.75 -4.28 Overall loading Projected vertical plan area of wall; Avert_w_0 = b  H = 756.00 ft2 Projected vertical area of roof; Avert_r_0 = b  d  tan(0) = 89.98 ft2 Minimum overall horizontal loading; Fw,total_min = pmin_w  Avert_w_0 + pmin_r  Avert_r_0 = 12.82 kips Leeward net force; Fl = Fw,wB = -8.5 kips Windward net force; Fw = Fw,wA_1 + Fw,wA_2 + Fw,wA_3 = 5.7 kips Overall horizontal loading; Fw,total = max(Fw - Fl + Fw,h, Fw,total_min) = 12.8 kips Roof load case 2 - Wind 0, GCpi -0.18, -0cpe Zone Ref. height (ft) Ext pressure coefficient cpe Peak velocity pressure qp (psf) Net pressure p (psf) Area Aref (ft2) Net force Fw (kips) A (+ve) 21.00 -0.18 16.53 0.45 383.21 0.17 B (+ve) 21.00 -0.18 16.53 0.45 164.23 0.07 Total vertical net force; Fw,v = 0.24 kips Total horizontal net force; Fw,h = 0.04 kips Walls load case 2 - Wind 0, GCpi -0.18, -0cpe Zone Ref. height (ft) Ext pressure coefficient cpe Peak velocity pressure qp (psf) Net pressure p (psf) Area Aref (ft2) Net force Fw (kips) A1 15.00 0.80 15.01 13.18 540.00 7.12 A2 15.00 0.80 15.01 13.18 0.00 0.00 A3 21.00 0.80 16.53 14.22 216.00 3.07 B 21.00 -0.50 16.53 -4.05 845.98 -3.43 C 21.00 -0.70 16.53 -6.86 333.75 -2.29 D 21.00 -0.70 16.53 -6.86 333.75 -2.29 Overall loading Projected vertical plan area of wall; Avert_w_0 = b  H = 756.00 ft2 Projected vertical area of roof; Avert_r_0 = b  d  tan(0) = 89.98 ft2 Minimum overall horizontal loading; Fw,total_min = pmin_w  Avert_w_0 + pmin_r  Avert_r_0 = 12.82 kips Leeward net force; Fl = Fw,wB = -3.4 kips Windward net force; Fw = Fw,wA_1 + Fw,wA_2 + Fw,wA_3 = 10.2 kips Overall horizontal loading; Fw,total = max(Fw - Fl + Fw,h, Fw,total_min) = 13.7 kips Roof load case 3 - Wind 90, GCpi 0.18, -cpe GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 30 Calc. by GL Date 121223 Chk'd by Date App'd by Date Zone Ref. height (ft) Ext pressure coefficient cpe Peak velocity pressure qp (psf) Net pressure p (psf) Area Aref (ft2) Net force Fw (kips) A (-ve) 21.00 -0.96 16.53 -16.45 159.67 -2.63 B (-ve) 21.00 -0.87 16.53 -15.16 159.67 -2.42 C (-ve) 21.00 -0.53 16.53 -10.47 228.10 -2.39 Total vertical net force; Fw,v = -7.33 kips Total horizontal net force; Fw,h = 0.00 kips Walls load case 3 - Wind 90, GCpi 0.18, -cpe Zone Ref. height (ft) Ext pressure coefficient cpe Peak velocity pressure qp (psf) Net pressure p (psf) Area Aref (ft2) Net force Fw (kips) A1 15.00 0.80 15.01 7.23 225.00 1.63 A2 15.00 0.80 15.01 7.23 0.00 0.00 A3 23.50 0.80 17.06 8.63 108.75 0.94 B 21.00 -0.28 16.53 -6.91 333.75 -2.31 C 21.00 -0.70 16.53 -12.81 756.00 -9.69 D 21.00 -0.70 16.53 -12.81 845.98 -10.84 Overall loading Projected vertical plan area of wall; Avert_w_90 = d  (H + d  tan(0) / 2) = 333.75 ft2 Projected vertical area of roof; Avert_r_90 = 0.00 ft2 Minimum overall horizontal loading; Fw,total_min = pmin_w  Avert_w_90 + pmin_r  Avert_r_90 = 5.34 kips Leeward net force; Fl = Fw,wB = -2.3 kips Windward net force; Fw = Fw,wA_1 + Fw,wA_2 + Fw,wA_3 = 2.6 kips Overall horizontal loading; Fw,total = max(Fw - Fl + Fw,h, Fw,total_min) = 5.3 kips Roof load case 4 - Wind 90, GCpi -0.18, +cpe Zone Ref. height (ft) Ext pressure coefficient cpe Peak velocity pressure qp (psf) Net pressure p (psf) Area Aref (ft2) Net force Fw (kips) A (+ve) 21.00 -0.18 16.53 0.45 159.67 0.07 B (+ve) 21.00 -0.18 16.53 0.45 159.67 0.07 C (+ve) 21.00 -0.18 16.53 0.45 228.10 0.10 Total vertical net force; Fw,v = 0.24 kips Total horizontal net force; Fw,h = 0.00 kips Walls load case 4 - Wind 90, GCpi -0.18, +cpe Zone Ref. height (ft) Ext pressure coefficient cpe Peak velocity pressure qp (psf) Net pressure p (psf) Area Aref (ft2) Net force Fw (kips) A1 15.00 0.80 15.01 13.18 225.00 2.97 A2 15.00 0.80 15.01 13.18 0.00 0.00 A3 23.50 0.80 17.06 14.58 108.75 1.59 GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 31 Calc. by GL Date 121223 Chk'd by Date App'd by Date Zone Ref. height (ft) Ext pressure coefficient cpe Peak velocity pressure qp (psf) Net pressure p (psf) Area Aref (ft2) Net force Fw (kips) B 21.00 -0.28 16.53 -0.96 333.75 -0.32 C 21.00 -0.70 16.53 -6.86 756.00 -5.19 D 21.00 -0.70 16.53 -6.86 845.98 -5.81 Overall loading Projected vertical plan area of wall; Avert_w_90 = d  (H + d  tan(0) / 2) = 333.75 ft2 Projected vertical area of roof; Avert_r_90 = 0.00 ft2 Minimum overall horizontal loading; Fw,total_min = pmin_w  Avert_w_90 + pmin_r  Avert_r_90 = 5.34 kips Leeward net force; Fl = Fw,wB = -0.3 kips Windward net force; Fw = Fw,wA_1 + Fw,wA_2 + Fw,wA_3 = 4.6 kips Overall horizontal loading; Fw,total = max(Fw - Fl + Fw,h, Fw,total_min) = 5.3 kips GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 32 Calc. by GL Date 121223 Chk'd by Date App'd by Date GL Architectural Engr PO Box 1040, Tacoma, WA 98401-1040 Email: akegl2002@gmail.com Ph: (360)747-7509 Project Yelm Drive Through Job Ref. 230603 Section Sheet no./rev. 33 Calc. by GL Date 121223 Chk'd by Date App'd by Date ;By Inspection, use SW1 and STHD14 holdowns.