SF_ELREngCalcs_MTB, Inc._RHD-1482B-902B_GL_9512 Solberg Ct. SE_053125 (1)
STRUCTURAL CALCULATIONS
for the
PROPOSED RUEPPELL HOME DESIGN
1482B-902B GARAGE LEFT
May 31, 2025
Client: Mountain Terrace Builders, Inc.
Site: 9512 Solberg Ct. SE
Yelm, WA 98597
Lat. = 46.947454, Long. = -122.607708, Elevation = 350 ft.
Calculated by: Eric L. Rice, PE
ELR Engineering
10508 32nd Ave SW Unit B
Seattle, WA 98146
Phone: (206) 200-8764
Email: elreng33@gmail.com ERIC L. RICE05/31/2025
ELR Engineering Project: Mountain Terrace Builders, Inc./RHD-1482B-902B/GL
10508 32nd Ave SW Unit B Job No. Figured by: ELR
Seattle, WA 98146 Checked by: Date: 5/31/2025 Sheet: 2
phone: (206) 200-8764
email: elreng33@gmail.com
Scope of Work:
ELR Engineering was asked to provide permit submittal structural calculations and the supporting structural sheets
for the proposed RHD-1482B-902B/GL for Mountain Terrace Builders, Inc. Our structural engineering
information is shown in these calculations and on the submitted structural sheets. The information in these
calculations conforms to the 2021 International Building & Residential Codes as amended by the local jurisdiction.
These calculations and associated S-sheets are applicable and valid only for the site stated on the cover sheet
of these calculations. Questions should be addressed to the undersigned.
Eric L. Rice, PE
ELR Engineering
z
O
F-
Q
w
J
w
H
LL.
w
J
z
O
Q
w
J
w
Q
w
af
z
O
Q
w
J
w
S
C�
m
N
O
O
I
m
N
00
Z
O
Q
w
J
w
Z
O
LL
GENERAL STRUCTURAL NOTES
(Unless noted otherwise on plans and details)
CODES AND SPECIFICATIONS
1. International Building Code(IBC)/International Residential Code(IRC) - 2021 edition with local
jurisdiction amendments as applicable
2. ASCE/SEI 7-16 w/supplement 1 - Minimum Design Loads for Buildings and Other Structures
3. AWC NDS-2018/AWC SPDWS 2021/AWC WFCM 2018 - National Design Specification for
Wood Construction with 2018 NDS Supplement/Special Design Provisions for Wind &
Seismic/Wood Frame Construction Manual for One- and Two-Family Dwellings
4. ACI 318-19 - Building Code Requirements for Structural Concrete
5. AISC 360-16/341-16 - Specification for Structural Steel Buildings/Seismic Provisions for
Structural Steel Buildings
6. AWS D1.4/D1.4M-2018 - Structural Welding Code
7. TMS 402-2016 - Building Code Requirements for Masonry Structures
DESIGN CRITERIA
1. Wind - Risk category = II, Basic wind speed (V) = 100 mph, Wind directionality
factor = 0.85, Exposure category = B, Topographic factor Kzt = 1.00, Gust
effect factor = 0.85, Enclosure classification = Enclosed, Internal pressure
coefficient (GCpi) = ± 0.18
2. Seismic - Risk category = II, Seismic importance factor (Ie) = 1.00, Site Class = D
(default per 11.4.3), Ss = 1.293, S1 = 0.451, SDS = 1.034, SD1 = 0.556 Seismic
Design Category = D, Basic seismic-force-resisting system = A.15 per ASCE 7-
16 Table 12.2-1, Seismic response coefficient (CS) = 0.159(orthogonal 1) &
0.159(orthogonal 2), Response modification factor (R) = 6.5(orthogonal 1) &
6.5(orthogonal 2), Design procedure used = Equivalent Lateral Force Procedure.
3. Roof - Dead: 17 psf
Live: 20 psf
Snow: Ps=25 psf
4. Floor - Dead: 12 psf (non-truss floor), 20 psf (truss floor)
Live: 40 psf, 60 psf (deck)
5. Soils - Vertical bearing pressure (capacity): 1500 psf
Lateral bearing pressure (capacity): 150 psf/ft of depth
Coefficient of friction (capacity): 0.25 (multiplied by dead load)
Active design lateral load: 40 psf/ft of depth
At-rest design lateral load: 60 psf/ft of depth
STRUCTURAL OBSERVATION
1. Structural observation is required only when specifically designated as being required by the
registered design professional or the building official.
SOIL CONSTRUCTION
1. Extend footings to undisturbed soil or fill compacted to 95% Modified Proctor (ASTM D1557). All
construction on fill soils shall be reviewed by a registered geotechnical engineer. All footings
shall be 18 inches minimum below adjacent finish grade. It is the contractor's responsibility to
verify that the site soils provide the minimum vertical bearing pressure capacity stated above.
PIPE PILES
1. Pipe shall conform to ASTM A53 Grade B. Unless noted otherwise, pipe is not required to be
galvanized.
2. Pipe shall be driven to refusal and tested (as required) per Geotechnical Engineer’s
requirements.
REINFORCED CONCRETE
1. f'c = 3000 psi(*) at 28 days. Min 5-½ sacks of cement per cubic yard of concrete and
maximum of 6-3/4 gallons of water per 94 lb. sack of cement. (*) Special inspection is
not required - 3000 psi compressive strength is specified for weathering protection only
- structural design is based on f'c = 2500 psi.
2. Maximum aggregate size is 7/8”. Maximum slump = 4 inches.
3. All concrete shall be air entrained - 5% minimum / 7% maximum (percent by volume of
concrete).
4. Mixing and placement of all concrete shall be in accordance with the IBC and ACI 318.
Proportions of aggregate to cement shall be such as to produce a dense, workable mix
which can be placed without segregation or excess free surface water. Provide 3/4 inch
chamfer on all exposed concrete edges unless otherwise indicated on architectural drawings.
5. No special inspection is required.
6. Vibrate all concrete walls. Segregation of materials shall be prevented.
REINFORCING STEEL
1. Concrete reinforcement shall be detailed, fabricated and placed in accordance with ACI 318.
2. Reinforcing steel shall be grade 40 minimum and deformed billet steel conforming to ASTM A615.
1.291 0.466 1.033 0.570
3. Welded wire mesh shall conform to ASTM A185.
4. Reinforcing steel shall be accurately placed and adequately secured in position. The following
protection for reinforcement shall be provided:
Min Cover
Cast against and permanently exposed to earth - 3"
Exposed to earth or weather - 1.5" for #5 bar and smaller
2" for #6 bar and larger
Slabs and walls at interior face - 1.5"
5. Lap continuous reinforcing bars 32 bar diameters (1’-6” min) in concrete. Corner bars
consisting of 32 bar diameter (1’-6” min) bend shall be provided for all horizontal
reinforcement. Lap welded wire mesh edges 1.5 mesh minimum. This criteria applies unless noted
otherwise.
RETAINING WALLS
1. Concrete floor slabs to be poured and cured and floor framing above shall be complete before
backfilling behind retaining walls.
TIMBER
1. Unless noted otherwise, all sawn lumber shall be kiln dried and graded/marked in conformance
with WCLIB standard grading for west coast lumber. Lumber shall meet the following minimum
criteria:
4x and larger: DF #2 (Fb=875 psi)
3x and smaller: HF #2 (Fb=850 psi) or SPF #2 (Fb=875 psi)
2. Wall studs shall be:
Bearing walls with 10'-0" maximum stud length
2x4 HF stud grade or btr at 24" (max) oc - carrying only roof and ceiling
2x4 HF stud grade or btr at 16" (max) oc - carrying only one floor, roof and ceiling
2x6 HF stud grade or btr at 24" (max) oc - carrying only one floor, roof and ceiling
2x6 HF stud grade or btr at 16" (max) oc - carrying only two floors, roof and ceiling
Non-Bearing walls with maximum stud length noted
2x4 HF stud grade or btr at 24" (max) oc - 10'-0" maximum stud length
2x6 HF stud grade or btr at 24" (max) oc - 15'-0" maximum stud length
3. Provide 4x6 DF2 header over openings not noted otherwise. Provide (1)2x trimmer and
(1)2x king header support for clear spans 5'-0" or less. Provide (2)2x trimmer and
(1)2x king header support for clear spans exceeding 5'-0".
4. Provide solid blocking in floor space under all posts and wall members connected to
holdowns. Orient blocking such that wood grain in blocking is oriented vertically.
5. Provide double floor joists under all partition walls parallel to floor joists and along the
perimeter of all diaphragm openings.
6. Provide double blocking between floor joists under all partition walls perpendicular to
floor joists.
WOOD CONNECTORS, FASTENERS AND PRESSURE TREATED WOOD
1. All wood connectors shall be Simpson or approved equal.
2. All nails shall be common wire nails unless noted otherwise.
3. All nailing shall meet the minimum nailing requirements of Table 2304.10.1 of the International
Building Code.
4. All wood in contact with ground or concrete to be pressure-treated with a wood preservative.
5. Wood used above ground shall be pressure treated in accordance with AWPA U1 for the following
conditions:
a) Joists, girders, and subfloors that are closer than 18" to exposed ground in crawl spaces
or unexcavated areas located within the perimeter of the building foundation.
b) Wood framing including sheathing that rest on exterior foundation walls and are less than
8 inches from exposed earth.
c) Sleepers, sills, ledgers, posts and columns in direct contact with concrete or masonry –
except post and columns with code-approved post-base connector with 1 inch standoff.
6. All field-cut ends, notches, and drilled holes of preservative-treated wood shall be treated, for
use category UC4A per AWPA U1-07, in the field using a 9.08% Copper Naphthenate (CuN)
solution such as "End cut Solution" (Cunapsol-1) in accordance with the directions of the
product manufacturer.
7. All wood connectors and associated steel fasteners (except anchor bolts and holdown anchors,
1/2" diameter and larger) in contact with any preservative-treated wood shall conform to one
of the following corrosion protection configuration options:
a) All wood connectors and associated steel fasteners shall be Type 303, 304, 306 or 316
stainless steel when actual wood preservative retention levels exceed the following levels:
Treatment Retention level (pcf)
ACQ (Alkaline Copper Quat) Greater than 0.40
MCQ (Micronized Copper Quat) Greater than 0.34
CA-B (Copper Azole) Greater than 0.21
CA-C & MCA (Copper Azole & Azole Biocide) Greater than 0.15
µCA-C (Azole Biocide) Greater than 0.14
b) When actual wood preservative retention levels do not exceed the levels in 7.a) above, all
wood connectors and fasteners shall, at a minimum, be hot-dipped galvanized by one of
the following methods:
i) Continuous hot-dipped galvanizing per ASTM A653, type G185.
ii) Batch or Post hot-dipped galvanizing per ASTM 123 for individual connectors and
as per ASTM A153 for fasteners. Fasteners, other than nails, timber rivets, wood
screws and lag screws, may be hot-dipped galvanized as per ASTM B695, Class 55
minimum.
c) Plain carbon steel fasteners in SBX/DOT and zinc borate preservative treated wood in an
interior, dry environment shall be permitted.
8. Do not mix stainless steel and hot-dipped galvanized wood connectors and fasteners.
9. All anchor bolts shall be as specified in the general notes on the shearwall schedule.
10. Where a connector strap connects two wood members, install one half of the total required nails
or bolts in each member.
11. All bolts in wood members shall conform to ASTM A307.
12. Provide standard cut washers under the head of all bolts and lag screws bearing on wood.
ANCHORAGE
1. All mudsill anchor bolts embedded in concrete or masonry shall be A307 unless noted
otherwise. Retro-fit anchor bolts shall be Simpson Strong-Bolt 2 wedge anchors per ICC-ES
ESR-3037 or Simpson Titen HD screw anchors per ICC-ES ESR-2713.
2. All shear wall holdown bolts embedded in concrete or masonry shall be A307 unless noted
otherwise. Retro-fit holdown bolts shall be epoxied using Simpson SET-3G with embedment per
plan, installed per manufacturer’s requirements.
NAILS
1. Nailing of wood framed members to be in accordance with IBC table 2304.10.1 unless
otherwise noted. Connection designs are based on nails with the following properties:
PENNY WEIGHT DIAMETER (INCHES) LENGTH (INCHES)
8d sinker 0.113 2-3/8
8d common 0.131 2-1/2
10d box 0.131 3
16d sinker 0.148 3-1/4
16d common 0.162 3-1/2
SHEARWALLS
1. All shearwall plywood nailing and anchors shall be as detailed on the drawings and noted in the
shearwall schedule. All exterior walls shall be sheathed with 7/16” APA rated sheathing (24/16)
- blocked - with minimum nailing 0.131" diameter x 2.5" nails @ 6” OC edges/12” oc field
unless noted otherwise.
2. All headers shall have strap connectors to the top plate each end when the header interrupts
the continuous (2)2x top plate. Use (1)Simpson MSTA24 connector each end unless noted
otherwise.
3. All shearwall holdowns shall be as noted on the plans and shall be Simpson or approved equal.
4. All holdown anchors shall be installed as shown on plans and as per manufacturer's
requirements. Holdown anchors may be wet-set or drilled and epoxied (Simpson "SET-3G"
epoxy or approved equal) with prior approval from the Engineer of Record. Provide the full
embedment into concrete as stated on the plans.
FLOOR AND ROOF DIAPHRAGMS
1. Apply 23/32” APA rated Sturd-I-Floor(24” oc) nailed to floor framing members with 0.131"
diameter x 2.5" nails at 6” OC at all supported edges and at 12” OC at interior supports
unless noted otherwise on the plans. Offset panel joints between parallel adjacent runs of
sheathing.
2. Apply 7/16” APA rated sheathing(24/16) nailed to roof framing members with 0.113" diameter x
2.5" nails at 6” OC at supported edges and at 12” OC at interior supports unless noted
otherwise on the plans. Offset panel joints between parallel adjacent runs of sheathing.
3. Blocking of interior edges is not required unless noted otherwise on the plans.
BUILT-UP WOOD COLUMNS
1. All columns not specified or otherwise noted on the plans shall be (2)2x studs gang fastened
per standard detail.
2. All columns not specified or otherwise noted on the plans supporting girder trusses or beams
shall be (3)2x studs gang fastened per standard detail.
MANUFACTURED WOOD TRUSSES
1. Trusses shall be designed, fabricated, and installed in accordance with the “Design Specifications
for Light Metal Plate Connected Wood Trusses” by the Truss Plate Institute.
2. All trusses shall be designed and stamped by a professional engineer licensed in the State of
Washington.
3. Roof trusses shall be fabricated of Douglas Fir-Larch or Hem-Fir.
4. All mechanical connectors shall be IBC approved.
5. Submit design calculations, shop drawings and installation drawings stamped by a licensed
engineer of all trusses to the owner's representative for review and Building Department
approval.
6. Truss members and components shall not be cut, notched, drilled, spliced or otherwise altered in
any way without written approval of the registered design professional.
7. Where trusses align with shearwalls, a special truss shall be provided that has been designed to
transfer the load between the roof sheathing and the shearwall below. This truss shall be
designed to transfer a minimum of 100 plf along the full length of the truss.
8. All temporary and permanent bracing required for the stability of the truss under gravity loads
and in-plane wind or seismic loads shall be designed by the truss engineer. Any bracing loads
transferred to the main building system shall be identified and submitted to the engineer of
record for review.
PARALLEL STRAND LUMBER (PSL)
1. Parallel strand lumber shall be manufactured as per NER-292 and meet the requirements of
ASTM D2559 - Fb=2900 psi, E=2.2E6 psi for beams and Fb=2400 psi, E=1.8E6 psi for
columns.
LAMINATED VENEER LUMBER (LVL)
1. Laminated veneer lumber shall be Doug Fir meeting the requirements of ASTM D2559 -
Fb=2600 psi, E=2.0E6 psi.
2. For top loaded multiple member beams only, fasten with two rows of 0.148" diameter x 3" nails
at 12” OC. Use three rows of 0.148" diameter x 3" nails for beams with depths of 14” or
more.
3. Provide full depth blocking for lateral support at bearing points.
LAMINATED STRAND LUMBER (LSL)
1. Laminated strand lumber shall be manufactured as per NER-292 and meet the requirements
of ASTM D2559 - Fb=2325 psi, E=1.55E6 psi for beams and Fb=1700 psi, E=1.3E6 psi for
beams/columns and Fb=1900 psi, E=1.3E6 psi for planks.
GLUED LAMINATED WOOD MEMBERS (GLB)
1. Glued laminated wood beams shall be Douglas Fir, kiln-dried, stress grade combination 24F-V4
(Fb=2400 psi, E=1.8E6 psi) unless otherwise noted on the plans.
2. Fabrication shall be in conformance with ANSI/APA 190.1-2017 and ASTM D3737-2018E1.
3. AITC stamp and certification required on each and every member.
WOOD I-JOISTS
1. Joists by Truss Joists/MacMillan or approved equal.
2. Joists to be erected in accordance with the plans and any Manufacturers drawings and
installation drawings.
3. Construction loads in excess of the design loads are not permitted.
4. Provide erection bracing until sheathing material has been installed.
5. See manufacturer's references for limitations on the cutting of webs and/or flanges.
STEEL CONSTRUCTION
1. Structural steel shall be ASTM A992 (wide flange shapes) or A53-Grade B (pipe) or A36 (other
shapes and plate) unless noted otherwise.
2. All fabrication and erection shall comply with AISC specifications and codes.
3. All welding shall be as shown on the drawings and in accordance with AWS and AISC standards.
Welding shall be performed by WABO certified welders using E70XX electrodes. Only pre-qualified
welds (as defined by AWS) shall be used.
MASONRY
1. Construction shall meet the requirements of IBC Chapter 21.
2. Special inspection is not required.
3. All concrete block masonry shall be laid up in running bond and shall have a minimum
compressive strength of f’m = 1500 psi, using Type “S” mortar, f’c = 1800 psi.
4. All cells containing reinforcing bars shall be filled with concrete grout with an f’c = 2000 psi in
maximum lifts of 4’-0”.
5. Bond beams with two #5 horizontally shall be provided at all floor and roof elevations and at
the top of the wall.
6. Provide a lintel beam with two #5 horizontally over all openings and extend these two bars
2’-0” past the opening at each side or as far as possible and hook.
7. Provide two #5 vertically for the full story height of the wall at wall ends, intersections, corners
and at each side of all openings unless otherwise shown.
8. Dowels to masonry walls shall be embedded a minimum of 1’-6” or hooked into the supporting
structure and of the same size and spacing as the vertical wall reinforcing.
9. Provide corner bars to match the horizontal walls reinforcing at all wall intersections.
10. Reinforcing steel shall be specified under “REINFORCING STEEL”. Lap all reinforcing
bars 40 bar diameters with a minimum of 1’-6”.
11. Masonry walls shall be reinforced as shown on the plans and details and if not shown, shall
have (1) #5 @ 48” OC horizontally and (1) #5 @ 48” OC vertically.
12. Embed anchor bolts a minimum of 5”.
GENERAL CONSTRUCTION
1. All materials, workmanship, design, and construction shall conform to the project drawings,
specifications, and the International Building Code.
2. Structural drawings shall be used in conjunction with architectural drawings for bidding and
construction. Contractor shall verify dimensions and conditions for compatibility and shall notify
the architect of any discrepancies prior to construction.
Discrepancies: The contractor shall inform the engineer in writing, during the bidding period,
of any and all discrepancies or omissions noted on the drawings and specifications or of any
variations needed in order to conform to codes, rules and regulations. Upon receipt of such
information, the engineer will send written instructions to all concerned. Any such
discrepancy, omission, or variation not reported shall be the responsibility of the contractor.
3. The contractor shall provide temporary bracing as required until all permanent framing and
connections have been completed.
4. The contractor shall coordinate with the building department for all permits and building
department required inspections.
5. Do not scale drawings. Use only written dimensions.
6. Drawings indicate general and typical details of construction. Where conditions are not specifically
indicated but are of similar character to details shown, similar details of construction shall be
used, subject to review and approval by the architect and the structural engineer.
7. Contractor initiated changes shall be submitted in writing to the architect and structural engineer
for approval prior to fabrication or construction.
8. All structural systems which are to be composed of field erected components shall be supervised
by the supplier during manufacturing, delivery, handling, storage, and erection in accordance with
instructions prepared by the supplier.
9. Contractor shall be responsible for all safety precautions and the methods, techniques,
sequences, or procedures required to perform the work.
10. Shop drawing review: Dimensions and quantities are not reviewed by the engineer of record,
therefore, must be reviewed by the contractor. Contractor shall review and stamp all shop
drawings prior to submitting for review by the engineer of record. Submissions shall include a
reproducible and one copy. Reproducible will be marked and returned. Re-submittals of
previously submitted shop drawings shall have all changes clouded and dated with a sequential
revision number. Contractor shall review and stamp all revised and resubmitted shop drawings
prior to submittal and review by the engineer of record. In the event of conflict between the
shop drawings and design drawings/specifications, the design drawings/specifications shall
control and be followed.
Sh
e
a
r
w
a
l
l
S
c
h
e
d
u
l
e
GE
N
E
R
A
L
N
O
T
E
S
:
(
U
N
L
E
S
S
N
O
T
E
D
O
T
H
E
R
W
I
S
E
)
(1
)
W
a
l
l
s
t
u
d
f
r
a
m
i
n
g
i
s
a
s
s
u
m
e
d
t
o
b
e
a
s
p
e
r
t
h
e
g
en
e
r
a
l
s
t
r
u
c
t
u
r
a
l
n
o
t
e
s
.
(2
)
A
l
l
p
a
n
e
l
e
d
g
e
s
a
r
e
t
o
b
e
s
u
p
p
o
r
t
e
d
b
y
f
r
a
m
i
n
g
me
m
b
e
r
s
-
s
t
u
d
s
,
p
l
a
t
e
s
a
n
d
b
l
o
c
k
i
n
g
(
u
n
l
e
s
s
n
o
t
e
d
ot
h
e
r
w
i
s
e
i
n
t
h
e
t
a
b
l
e
a
b
o
v
e
)
.
(3
)
A
l
l
o
w
a
b
l
e
s
h
e
a
r
s
i
n
t
h
e
t
a
b
l
e
a
b
o
v
e
a
s
s
u
m
e
e
i
t
h
er
1
)
w
a
l
l
s
t
u
d
s
a
t
1
6
"
o
c
(
m
a
x
.
)
w
i
t
h
p
a
n
e
l
l
o
n
g
-
a
x
is
o
r
i
e
n
t
e
d
v
e
r
t
i
c
a
l
l
y
o
r
h
o
r
i
z
o
n
t
a
l
l
y
o
r
2
)
w
a
l
l
s
tu
d
s
a
t
2
4
"
o
c
(
m
a
x
.
)
w
i
t
h
p
a
n
e
l
l
o
n
g
-
a
x
i
s
o
r
i
e
n
t
e
d
ho
r
i
z
o
n
t
a
l
l
y
.
(4
)
W
h
e
r
e
t
h
e
f
u
l
l
t
h
i
c
k
n
e
s
s
o
f
(
2
)
2
x
o
r
3
x
m
u
d
s
i
l
l
s
a
r
e
d
i
r
e
c
t
l
y
c
o
n
n
e
c
t
e
d
t
o
w
a
l
l
s
t
u
d
s
,
u
s
e
(
2
)
0
.
1
4
8"
d
i
a
.
x
4
.
5
"
e
n
d
n
a
i
l
s
(
3
0
d
b
o
x
)
p
e
r
s
t
u
d
.
(5
)
(
2
)
2
x
m
a
t
e
r
i
a
l
c
a
n
b
e
u
s
e
d
i
n
l
i
e
u
o
f
3
x
m
a
t
e
r
i
al
p
r
o
v
i
d
e
d
t
h
e
(
2
)
2
x
i
s
g
a
n
g
n
a
i
l
e
d
a
s
p
e
r
t
h
e
a
s
s
oc
i
a
t
e
d
s
h
e
a
r
w
a
l
l
b
o
t
t
o
m
p
l
a
t
e
n
a
i
l
i
n
g
.
(6
)
W
h
e
r
e
b
o
t
t
o
m
p
l
a
t
e
a
t
t
a
c
h
m
e
n
t
s
p
e
c
i
f
i
e
s
2
o
r
m
o
re
r
o
w
s
o
f
n
a
i
l
s
i
n
t
o
t
h
e
w
o
o
d
f
l
o
o
r
b
e
l
o
w
,
p
r
o
v
i
d
e
r
i
m
j
o
i
s
t
(
s
)
,
j
o
i
s
t
(
s
)
,
o
r
b
l
o
c
k
i
n
g
t
h
a
t
h
a
s
a
m
i
n
im
u
m
t
o
t
a
l
w
i
d
t
h
o
f
2
.
5
i
n
c
h
e
s
.
(7
)
U
n
l
e
s
s
n
o
t
e
d
o
t
h
e
r
w
i
s
e
,
p
r
o
v
i
d
e
(
1
)
2
x
t
r
e
a
t
e
d
m
ud
s
i
l
l
w
i
t
h
5
/
8
"
d
i
a
m
e
t
e
r
a
n
c
h
o
r
b
o
l
t
s
a
t
7
2
"
o
c
a
n
d
l
o
c
a
t
e
d
w
i
t
h
i
n
4
"
t
o
1
2
"
f
r
o
m
t
h
e
c
u
t
e
n
d
s
o
f
t
h
e
s
i
l
l
p
l
a
t
e
.
p
r
o
v
i
d
e
a
m
i
n
i
m
u
m
o
f
t
w
o
a
n
c
h
o
r
b
o
l
t
s
pe
r
m
u
d
s
i
l
l
se
c
t
i
o
n
.
(8
)
P
r
o
v
i
d
e
.
2
2
9
"
x
3
"
x
3
"
p
l
a
t
e
w
a
s
h
e
r
s
a
t
a
l
l
a
n
c
h
o
r
b
o
l
t
s
i
n
2
x
4
/
3
x
4
m
u
d
s
i
l
l
s
a
n
d
.
2
2
9
"
x
3
"
x
4
-
1
/
2
"
p
l
a
t
e
w
a
s
h
e
r
s
a
t
a
l
l
a
n
c
h
o
r
b
o
l
t
s
i
n
2
x
6
/
3
x
6
m
u
d
s
i
l
l
s
.
th
e
d
i
s
t
a
n
c
e
f
r
o
m
t
h
e
i
n
s
i
d
e
f
a
c
e
o
f
a
n
y
s
t
r
u
c
t
u
r
a
l
s
h
e
a
t
h
i
n
g
t
o
th
e
n
e
a
r
e
s
t
e
d
g
e
o
f
t
h
e
n
e
a
r
e
s
t
p
l
a
t
e
w
a
s
h
e
r
s
h
a
l
l
no
t
e
x
c
e
e
d
1
/
2
"
.
e
m
b
e
d
a
n
c
h
o
r
b
o
l
t
s
7
i
n
c
h
e
s
m
i
n
.
i
nt
o
c
o
n
c
r
e
t
e
.
m
i
n
.
a
n
c
h
o
r
b
o
l
t
c
o
n
c
r
e
t
e
e
d
g
e
d
i
s
t
.
(p
e
r
p
.
t
o
m
u
d
s
i
l
l
)
i
s
1
-
3
/
4
”
.
m
i
n
.
a
n
c
h
o
r
b
o
l
t
c
o
n
c
re
t
e
e
n
d
di
s
t
.
(
p
a
r
a
l
l
e
l
t
o
m
u
d
s
i
l
l
)
i
s
8
"
.
(9
)
U
s
e
0
.
1
3
1
"
d
i
a
.
x
1
-
1
/
2
"
l
o
n
g
n
a
i
l
s
i
f
c
o
n
n
e
c
t
o
r
i
s
i
n
c
o
n
t
a
c
t
w
i
t
h
f
r
a
m
i
n
g
.
u
s
e
0
.
1
3
1
"
d
i
a
.
x
2
-
1
/
2
"
l
o
ng
n
a
i
l
s
i
f
c
o
n
n
e
c
t
o
r
i
s
i
n
s
t
a
l
l
e
d
o
v
e
r
s
h
e
a
t
h
i
n
g
.
(1
0
)
F
o
r
t
w
o
a
n
d
t
h
r
e
e
s
t
o
r
y
c
o
n
s
t
r
u
c
t
i
o
n
,
a
t
f
l
o
o
r
j
o
i
s
t
/
f
l
o
o
r
t
r
u
s
s
e
l
e
v
a
t
i
o
n
,
a
d
j
o
i
n
i
n
g
h
o
r
z
.
p
a
n
e
l
j
o
i
n
t
s
m
a
y
b
e
l
o
c
a
t
e
d
a
s
p
e
r
d
e
t
a
i
l
1
0
/
1
0
A
/
1
0
B
.
(1
1
)
S
p
a
c
i
n
g
s
h
o
w
n
a
s
s
u
m
e
s
t
o
p
p
l
a
t
e
c
o
n
n
e
c
t
o
r
s
a
r
e
i
n
s
t
a
l
l
e
d
o
n
o
n
e
s
i
d
e
o
f
w
a
l
l
.
i
f
i
n
s
t
a
l
l
e
d
o
n
b
o
th
s
i
d
e
s
o
f
w
a
l
l
,
r
e
q
u
i
r
e
d
s
p
a
c
i
n
g
m
a
y
b
e
m
u
l
t
i
p
l
i
e
d
b
y
t
w
o
(
2
)
.
(1
2
)
T
a
b
l
e
a
b
o
v
e
s
h
o
w
s
A
S
D
a
l
l
o
w
a
b
l
e
u
n
i
t
s
h
e
a
r
c
a
p
ac
i
t
y
.
L
R
F
D
f
a
c
t
o
r
e
d
u
n
i
t
s
h
e
a
r
r
e
s
i
s
t
a
n
c
e
i
s
c
a
l
c
ul
a
t
e
d
b
y
m
u
l
t
i
p
l
y
i
n
g
A
S
D
v
a
l
u
e
s
a
b
o
v
e
b
y
1
.
4
f
o
r
s
ei
s
m
i
c
a
n
d
b
y
1
.
6
f
o
r
w
i
n
d
.
(1
3
)
S
h
e
a
r
w
a
l
l
s
d
e
s
i
g
n
a
t
e
d
a
s
F
T
A
O
(
f
o
r
c
e
t
r
a
n
s
f
e
r
ar
o
u
n
d
o
p
e
n
i
n
g
s
)
o
r
p
e
r
f
o
r
a
t
e
d
r
e
q
u
i
r
e
s
h
e
a
t
h
i
n
g
a
n
d
s
h
e
a
r
n
a
i
l
i
n
g
a
b
o
v
e
a
n
d
b
e
l
o
w
a
l
l
o
p
e
n
i
n
g
s
f
o
r
t
h
e
f
u
l
l
e
x
t
e
n
t
o
f
t
h
e
s
h
e
a
r
w
a
l
l
.
(1
4
)
S
h
e
a
r
w
a
l
l
e
d
g
e
n
a
i
l
i
n
g
i
s
r
e
q
u
i
r
e
d
a
l
o
n
g
f
u
l
l
he
i
g
h
t
o
f
a
l
l
h
o
l
d
o
w
n
m
e
m
b
e
r
s
.
A
t
b
u
i
l
t
-
u
p
h
o
l
d
o
w
n
m
e
m
b
e
r
s
,
d
i
s
t
r
i
b
u
t
e
e
d
g
e
n
a
i
l
i
n
g
i
n
t
o
a
l
l
l
a
m
i
n
a
t
i
on
s
.
(1
5
)
F
o
r
t
w
o
a
n
d
t
h
r
e
e
s
t
o
r
y
c
o
n
s
t
r
u
c
t
i
o
n
,
a
t
f
l
o
o
r
j
o
i
s
t
/
f
l
o
o
r
t
r
u
s
s
e
l
e
v
a
t
i
o
n
,
L
T
P
4
'
s
a
n
d
/
o
r
A
3
5
'
s
a
re
n
o
t
r
e
q
u
i
r
e
d
a
t
t
h
e
t
o
p
o
f
t
h
e
s
h
e
a
r
w
a
l
l
w
h
e
n
/
w
he
r
e
t
h
e
s
h
e
a
r
w
a
l
l
i
s
s
h
e
a
t
h
e
d
o
n
o
n
e
s
i
d
e
o
n
l
y
a
n
d
w
h
e
n
/
w
h
e
r
e
t
h
e
lo
c
a
t
i
o
n
o
f
a
d
j
o
i
n
i
n
g
h
o
r
z
.
p
a
n
e
l
j
o
i
n
t
s
m
e
e
t
s
f
o
o
t
no
t
e
(
1
0
)
r
e
q
u
i
r
e
m
e
n
t
s
.
(1
6
)
V
e
r
t
i
c
a
l
a
n
d
h
o
r
i
z
o
n
t
a
l
p
a
n
e
l
j
o
i
n
t
s
(
w
h
e
r
e
o
c
cu
r
)
o
n
o
p
p
o
s
i
t
e
s
i
d
e
s
o
f
t
h
e
w
a
l
l
s
h
a
l
l
n
o
t
o
c
c
u
r
on
t
h
e
s
a
m
e
f
r
a
m
i
n
g
m
e
m
b
e
r
(
s
t
u
d
,
p
l
a
t
e
,
o
r
b
l
o
c
k
i
n
g)
u
n
l
e
s
s
t
h
a
t
f
r
a
m
i
n
g
m
e
m
b
e
r
i
s
a
3
x
m
e
m
b
e
r
(
m
i
n
.
)
w
i
t
h
p
a
n
e
l
ed
g
e
n
a
i
l
i
n
g
s
t
a
g
g
e
r
e
d
o
r
t
h
a
t
f
r
a
m
i
n
g
m
e
m
b
e
r
i
s
a
(2
)
2
x
(
m
i
n
.
)
a
s
p
e
r
f
o
o
t
n
o
t
e
(
5
)
a
b
o
v
e
.
(1
7
)
H
o
t
-
d
i
p
p
e
d
o
r
m
e
c
h
a
n
i
c
a
l
l
y
d
e
p
o
s
i
t
e
d
g
a
l
v
a
n
i
z
e
d
b
o
x
n
a
i
l
s
(
2
.
5
"
l
o
n
g
x
0
.
1
1
3
"
s
h
a
n
k
d
i
a
.
x
0
.
2
9
7
"
h
e
a
d
d
i
a
.
)
m
a
y
b
e
s
u
b
s
t
i
t
u
t
e
d
f
o
r
t
h
e
s
h
e
a
t
h
i
n
g
n
a
il
s
i
n
t
h
e
t
a
b
l
e
a
b
o
v
e
.
re
v
.
0
6
.
1
4
.
2
0
2
3
Ma
r
k
pe
r
pl
a
n
Sh
e
a
t
h
i
n
g
No
.
s
i
d
e
s
sh
e
a
t
h
e
d
Sh
e
a
t
h
i
n
g
na
i
l
s
i
z
e
(L
e
n
g
t
h
x
Sh
a
n
k
x
H
e
a
d
)
(1
7
)
Ed
g
e
fa
s
t
e
n
e
r
sp
a
c
i
n
g
(1
4
)
Fi
e
l
d
fa
s
t
e
n
e
r
sp
a
c
i
n
g
Fr
a
m
i
n
g
me
m
b
e
r
a
t
ad
j
o
i
n
i
n
g
pa
n
e
l
s
(
2
)
Bot
t
o
m
pl
a
t
e
wh
e
n
di
r
e
c
t
l
y
on
w
o
o
d
(4
)
,
(
5
)
Bo
t
t
o
m
pl
a
t
e
na
i
l
s
i
z
e
(L
e
n
g
t
h
x
S
h
a
n
k
x
H
e
a
d
)
Bo
t
t
o
m
pl
a
t
e
na
i
l
sp
a
c
i
n
g
in
e
a
c
h
ro
w
Bot
t
o
m
pl
a
t
e
wh
e
n
di
r
e
c
t
l
y
o
n
co
n
c
r
e
t
e
(4
)
,
(
5
)
An
c
h
o
r
bo
l
t
di
a
.
(7
)
,
(
8
)
An
c
h
o
r
bo
l
t
sp
a
c
i
n
g
,
(2
x
s
i
l
l
)
(3
x
s
i
l
l
)
To
p
p
l
a
t
e
co
n
n
e
c
t
o
r
(9
)
,
(
1
5
)
To
p
p
l
a
t
e
co
n
n
e
c
t
o
r
sp
a
c
i
n
g
(1
1
)
,
(
1
5
)
AS
D
Vs
e
i
s
m
i
c
(1
2
)
AS
D
Vw
i
n
d
(+
4
0
%
)
(1
2
)
W6
A
7/
1
6
”
PL
Y
/
O
S
B
1
2.
5
"
L
x
0.
1
3
1
"
D
x
0.
2
8
1
"
H
6”
1
2
”
2x
st
u
d
&
un
b
l
o
c
k
e
d
ho
r
z
.
j
o
i
n
t
s
2x
o
r
3
x
3.
2
5
"
L
x
0.
1
4
8
"
D
x
0.
3
4
4
"
H
1-
r
o
w
12
”
2x
o
r
3
x
5/
8
”
48
”
(
2
x
)
72
"
(
3
x
)
A3
5
o
r
LT
P
4
50
”
14
5
pl
f
20
3
pl
f
W6
B
7/
1
6
”
PL
Y
/
O
S
B
1
2.
5
"
L
x
0.
1
3
1
"
D
x
0.
2
8
1
"
H
6”
6
”
2x
st
u
d
&
un
b
l
o
c
k
e
d
ho
r
z
.
j
o
i
n
t
s
2x
o
r
3
x
3.
2
5
"
L
x
0.
1
4
8
"
D
x
0.
3
4
4
"
H
1-
r
o
w
9”
2x
o
r
3
x
5/
8
”
48
”
(
2
x
)
72
"
(
3
x
)
A3
5
o
r
LT
P
4
36
”
19
4
pl
f
27
1
pl
f
W6
7/
1
6
”
PL
Y
/
O
S
B
1
2.
5
"
L
x
0.
1
3
1
"
D
x
0.
2
8
1
"
H
6”
1
2
”
(3
)
2
x
2
x
o
r
3
x
3.
2
5
"
L
x
0.
1
4
8
"
D
x
0.
3
4
4
"
H
1-
r
o
w
7”
2x
o
r
3
x
5/
8
”
48
”
(
2
x
)
72
"
(
3
x
)
A3
5
o
r
LT
P
4
30
”
24
2
pl
f
33
9
pl
f
W4
7/
1
6
”
PL
Y
/
O
S
B
1
2.
5
"
L
x
0.
1
3
1
"
D
x
0.
2
8
1
"
H
4”
1
2
”
(3
)
3x
(5
)
2x
o
r
3
x
3.
2
5
"
L
x
0.
1
4
8
"
D
x
0.
3
4
4
"
H
2-
r
o
w
10
"
(6
)
2x
o
r
3
x
5/
8
”
42
”
(
2
x
)
58
"
(
3
x
)
A3
5
o
r
LT
P
4
20
”
35
4
pl
f
49
5
pl
f
W3
7/
1
6
”
PL
Y
/
O
S
B
1
2.
5
"
L
x
0.
1
3
1
"
D
x
0.
2
8
1
"
H
3”
1
2
”
(3
)
3x
(5
)
2x
o
r
3
x
3.
2
5
"
L
x
0.
1
4
8
"
D
x
0.
3
4
4
"
H
2-
r
o
w
8"
(6
)
2x
o
r
3
x
5
/
8
”
36
”
(
2
x
)
45
"
(
3
x
)
A3
5
o
r
LT
P
4
16
”
45
5
pl
f
63
7
pl
f
W2
7/
1
6
”
PL
Y
/
O
S
B
1
2.
5
"
L
x
0.
1
3
1
"
D
x
0.
2
8
1
"
H
2”
1
2
”
(3
)
3x
(5
)
2x
o
r
3
x
3.
2
5
"
L
x
0.
1
4
8
"
D
x
0.
3
4
4
"
H
2-
r
o
w
s
6"
(6
)
2x
o
r
3
x
5
/
8
”
28
"
(
2
x
)
34
"
(
3
x
)
A3
5
o
r
LT
P
4
12
”
59
5
pl
f
83
2
pl
f
2W
3
7/
1
6
”
PL
Y
/
O
S
B
2
2.
5
"
L
x
0.
1
3
1
"
D
x
0.
2
8
1
"
H
3”
1
2
”
(3
)
3x
(5
,
1
6
)
2x
o
r
3
x
3.
2
5
"
L
x
0.
1
4
8
"
D
x
0.
3
4
4
"
H
3-
r
o
w
s
6"
(6
)
2x
o
r
3x
(
1
6
)
5/
8
”
18
"
(
2
x
)
22
"
(
3
x
)
A3
5
o
r
LT
P
4
8”
91
0
pl
f
12
7
4
pl
f
2W
2
19
/
3
2
”
PL
Y
/
O
S
B
2
2.
5
"
L
x
0.
1
3
1
"
D
x
0.
2
8
1
"
H
2”
1
2
”
(3
)
3x
(5
,
1
6
)
2x
o
r
3
x
3.
2
5
"
L
x
0.
1
4
8
"
D
x
0.
3
4
4
"
H
3-
r
o
w
s
4"
(6
)
2x
o
r
3x
(
1
6
)
5/
8
”
12
"
(
2
x
)
15
"
(
3
x
)
A3
5
o
r
LT
P
4
5”
13
6
2
pl
f
19
0
7
pl
f
ELR Engineering
10508 32nd Ave SW Unit B
Seattle, WA 98146
phone: (206) 200-8764
email: elreng33@gmail.com
Vertical Calculations
8SSHU 5RRI
0HPEHU 1DPH 5HVXOWV 0D[ 87,/ &XUUHQW 6ROXWLRQ &RPPHQWV
3DVVHG 0 SLHFHV [ ') 1R
/RZHU 5RRI8SSHU )ORRU
0HPEHU 1DPH 5HVXOWV 0D[ 87,/ &XUUHQW 6ROXWLRQ &RPPHQWV
D 3DVVHG Δ/ SLHFHV 7-, # 2&
E 3DVVHG 5 SLHFHV 7-, # 2&
F 3DVVHG 5 SLHFHV 7-, # 2&:HE 6WLIIHQHUV 5HTXLUHG
G 3DVVHG 5 SLHFHV 7-, # 2&
3DVVHG 5 SLHFHV [ )9 ') *OXODP
3DVVHG 5 SLHFHV [ ') 1R
3DVVHG 5 SLHFHV [ ') 1R
3DVVHG Δ7 SLHFHV [ ( 3DUDOODP 36/
$%3DVVHG 9 SLHFHV [ )9 ') *OXODP
$%3DVVHG 0 SLHFHV [ )9 ') *OXODP
3DVVHG 5 SLHFHV [ ( 0LFUROODP /9/
3DVVHG Δ/ SLHFHV [ ( 3DUDOODP 36/
3DVVHG 5 SLHFHV [ ( 3DUDOODP 36/
0DLQ )ORRU
0HPEHU 1DPH 5HVXOWV 0D[ 87,/ &XUUHQW 6ROXWLRQ &RPPHQWV
3DVVHG 5 SLHFHV [ ( 0LFUROODP /9/
3DVVHG 5 SLHFHV [ ( 0LFUROODP /9/
3DVVHG 5 SLHFHV [ ') 1R
%%*/ IRU 07% ,QF
-2% 6800$5< 5(3257
)RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV 30 87&
(ULF 5LFH
(/5 (QJLQHHULQJ
HOUHQJ#JPDLOFRP
)RUWH:(% Y
)LOH 1DPH %%*/ IRU 07% ,QF
&OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF
3URMHFW %%*/
Page 1 / 27
'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ
0HPEHU 5HDFWLRQ OEV # 3DVVHG ' 6 $OO 6SDQV
6KHDU OEV # 3DVVHG ' 6 $OO 6SDQV
0RPHQW )WOEV #
3DVVHG ' 6 $OO 6SDQV
/LYH /RDG 'HIO LQ #
3DVVHG / ' 6 $OO 6SDQV
7RWDO /RDG 'HIO LQ #
3DVVHG / ' 6 $OO 6SDQV
0HPEHU /HQJWK
6\VWHP :DOO
0HPEHU 7\SH +HDGHU
%XLOGLQJ 8VH 5HVLGHQWLDO
%XLOGLQJ &RGH ,%&
'HVLJQ 0HWKRGRORJ\ $6'
'HIOHFWLRQ FULWHULD // / DQG 7/ /
$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU
$SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6
%HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV
6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG 6QRZ )DFWRUHG $FFHVVRULHV
7ULPPHU +)1RQH
7ULPPHU +)1RQH
0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG
/DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV
7RS (GJH /X
RF
%RWWRP (GJH /X
RF
'HDG 6QRZ
9HUWLFDO /RDGV /RFDWLRQ 7ULEXWDU\
:LGWK
&RPPHQWV
6HOI :HLJKW 3/) WR
1$
8QLIRUP 36) WR
'HIDXOW /RDG
:H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHV
UHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV
UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW
:H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65
DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV
GRFXPHQWOLEUDU\
7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ $UFKLWHFW'HVLJQHU 5+'
:H\HUKDHXVHU 1RWHV
'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG $OO GLPHQVLRQV DUH KRUL]RQWDO W\S
0(0%(5 5(3257 3$66('
8SSHU 5RRI
SLHFHV [ ') 1R
)RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV 30 87&
(ULF 5LFH
(/5 (QJLQHHULQJ
HOUHQJ#JPDLOFRP
)RUWH:(% Y (QJLQH 9 'DWD 9
)LOH 1DPH %%*/ IRU 07% ,QF
&OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF
3URMHFW %%*/
Page 3 / 27
'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ
0HPEHU 5HDFWLRQ OEV #
3DVVHG ' / $OO 6SDQV
6KHDU OEV # 3DVVHG ' / $OO 6SDQV
0RPHQW )WOEV #
3DVVHG ' / $OO 6SDQV
/LYH /RDG 'HIO LQ #
3DVVHG / ' / $OO 6SDQV
7RWDO /RDG 'HIO LQ #
3DVVHG / ' / $OO 6SDQV
7-3UR 5DWLQJ $Q\3DVVHG
0HPEHU /HQJWK
6\VWHP )ORRU
0HPEHU 7\SH -RLVW
%XLOGLQJ 8VH 5HVLGHQWLDO
%XLOGLQJ &RGH ,%&
'HVLJQ 0HWKRGRORJ\ $6'
'HIOHFWLRQ FULWHULD // / DQG 7/ /
$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU
$ VWUXFWXUDO DQDO\VLV RI WKH GHFN KDV QRW EHHQ SHUIRUPHG
'HIOHFWLRQ DQDO\VLV LV EDVHG RQ FRPSRVLWH DFWLRQ ZLWK D VLQJOH OD\HU RI 3DQHO 6SDQ 5DWLQJ WKDW LV JOXHG DQG QDLOHG GRZQ
$GGLWLRQDO FRQVLGHUDWLRQV IRU WKH 7-3UR 5DWLQJ LQFOXGH *\SVXP FHLOLQJ
5LP %RDUG LV DVVXPHG WR FDUU\ DOO ORDGV DSSOLHG GLUHFWO\ DERYH LW E\SDVVLQJ WKH PHPEHU EHLQJ GHVLJQHG
%HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV
6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH )DFWRUHG $FFHVVRULHV 'HWDLOV
6WXG ZDOO +) 5LP %RDUG $
6WXG ZDOO +) 5LP %RDUG $
7-, MRLVWV DUH RQO\ DQDO\]HG XVLQJ 0D[LPXP $OORZDEOH EUDFLQJ VROXWLRQV
0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG
/DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV
7RS (GJH /X
RF
%RWWRP (GJH /X
RF
'HDG )ORRU /LYH
9HUWLFDO /RDG /RFDWLRQ 6SDFLQJ &RPPHQWV
8QLIRUP 36) WR
'HIDXOW /RDG
:H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHV
UHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV
UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW
:H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65
DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV
GRFXPHQWOLEUDU\
7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ $UFKLWHFW'HVLJQHU 5+'
:H\HUKDHXVHU 1RWHV
'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG $OO GLPHQVLRQV DUH KRUL]RQWDO W\S
0(0%(5 5(3257 3$66('
/RZHU 5RRI8SSHU )ORRU D
SLHFHV 7-, # 2&
)RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV 30 87&
(ULF 5LFH
(/5 (QJLQHHULQJ
HOUHQJ#JPDLOFRP
)RUWH:(% Y (QJLQH 9 'DWD 9
)LOH 1DPH %%*/ IRU 07% ,QF
&OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF
3URMHFW %%*/
Page 4 / 27
'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ
0HPEHU 5HDFWLRQ OEV #
3DVVHG ' / $OO 6SDQV
6KHDU OEV #
3DVVHG ' / $OO 6SDQV
0RPHQW )WOEV #
3DVVHG ' / $OO 6SDQV
/LYH /RDG 'HIO LQ #
3DVVHG / ' / $OW 6SDQV
7RWDO /RDG 'HIO LQ #
3DVVHG / ' / $OW 6SDQV
7-3UR 5DWLQJ $Q\3DVVHG
0HPEHU /HQJWK
6\VWHP )ORRU
0HPEHU 7\SH -RLVW
%XLOGLQJ 8VH 5HVLGHQWLDO
%XLOGLQJ &RGH ,%&
'HVLJQ 0HWKRGRORJ\ $6'
'HIOHFWLRQ FULWHULD // / DQG 7/ /
$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU
$ VWUXFWXUDO DQDO\VLV RI WKH GHFN KDV QRW EHHQ SHUIRUPHG
'HIOHFWLRQ DQDO\VLV LV EDVHG RQ FRPSRVLWH DFWLRQ ZLWK D VLQJOH OD\HU RI 3DQHO 6SDQ 5DWLQJ WKDW LV JOXHG DQG QDLOHG GRZQ
$GGLWLRQDO FRQVLGHUDWLRQV IRU WKH 7-3UR 5DWLQJ LQFOXGH *\SVXP FHLOLQJ
5LP %RDUG LV DVVXPHG WR FDUU\ DOO ORDGV DSSOLHG GLUHFWO\ DERYH LW E\SDVVLQJ WKH PHPEHU EHLQJ GHVLJQHG
%ORFNLQJ 3DQHOV DUH DVVXPHG WR FDUU\ QR ORDGV DSSOLHG GLUHFWO\ DERYH WKHP DQG WKH IXOO ORDG LV DSSOLHG WR WKH PHPEHU EHLQJ GHVLJQHG
$W KDQJHU VXSSRUWV WKH 7RWDO %HDULQJ GLPHQVLRQ LV HTXDO WR WKH ZLGWK RI WKH PDWHULDO WKDW LV VXSSRUWLQJ WKH KDQJHU
ï 6HH &RQQHFWRU JULG EHORZ IRU DGGLWLRQDO LQIRUPDWLRQ DQGRU UHTXLUHPHQWV
ð 5HTXLUHG %HDULQJ /HQJWK 5HTXLUHG %HDULQJ /HQJWK ZLWK :HE 6WLIIHQHUV
%HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV
6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH )DFWRUHG $FFHVVRULHV 'HWDLOV
6WXG ZDOO +) 5LP %RDUG $
6WXG ZDOO +)%ORFNLQJ %
+DQJHU RQ 36/ EHDP +DQJHUï
ð 6HH QRWH ï
7-, MRLVWV DUH RQO\ DQDO\]HG XVLQJ 0D[LPXP $OORZDEOH EUDFLQJ VROXWLRQV
0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG
/DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV
7RS (GJH /X
RF
%RWWRP (GJH /X
RF
&RQQHFWRU 6LPSVRQ 6WURQJ7LH
6XSSRUW 0RGHO 6HDW /HQJWK 7RS )DVWHQHUV )DFH )DVWHQHUV 0HPEHU )DVWHQHUV $FFHVVRULHV
)DFH 0RXQW +DQJHU ,861$G[6WURQJ*ULS
5HIHU WR PDQXIDFWXUHU QRWHV DQG LQVWUXFWLRQV IRU SURSHU LQVWDOODWLRQ DQG XVH RI DOO FRQQHFWRUV
'HDG )ORRU /LYH
9HUWLFDO /RDG /RFDWLRQ 6SDFLQJ &RPPHQWV
8QLIRUP 36) WR
'HIDXOW /RDG
'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG $OO GLPHQVLRQV DUH KRUL]RQWDO W\S
0(0%(5 5(3257 3$66('
/RZHU 5RRI8SSHU )ORRU E
SLHFHV 7-, # 2&
)RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV 30 87&
(ULF 5LFH
(/5 (QJLQHHULQJ
HOUHQJ#JPDLOFRP
)RUWH:(% Y (QJLQH 9 'DWD 9
)LOH 1DPH %%*/ IRU 07% ,QF
&OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF
3URMHFW %%*/
Page 5 / 27
'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ
0HPEHU 5HDFWLRQ OEV #
3DVVHG ' / $OO 6SDQV
6KHDU OEV #
3DVVHG ' / $OO 6SDQV
0RPHQW )WOEV #
3DVVHG ' / 6 $OO 6SDQV
/LYH /RDG 'HIO LQ #
3DVVHG / ' / $OW 6SDQV
7RWDO /RDG 'HIO LQ # 3DVVHG / ' / 6 $OW 6SDQV
7-3UR 5DWLQJ $Q\3DVVHG
0HPEHU /HQJWK
6\VWHP )ORRU
0HPEHU 7\SH -RLVW
%XLOGLQJ 8VH 5HVLGHQWLDO
%XLOGLQJ &RGH ,%&
'HVLJQ 0HWKRGRORJ\ $6'
'HIOHFWLRQ FULWHULD // / DQG 7/ /
2YHUKDQJ GHIOHFWLRQ FULWHULD // / DQG 7/
$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU
$ VWUXFWXUDO DQDO\VLV RI WKH GHFN KDV QRW EHHQ SHUIRUPHG
'HIOHFWLRQ DQDO\VLV LV EDVHG RQ FRPSRVLWH DFWLRQ ZLWK D VLQJOH OD\HU RI 3DQHO 6SDQ 5DWLQJ WKDW LV JOXHG DQG QDLOHG GRZQ
$GGLWLRQDO FRQVLGHUDWLRQV IRU WKH 7-3UR 5DWLQJ LQFOXGH *\SVXP FHLOLQJ
%ORFNLQJ 3DQHOV DUH DVVXPHG WR FDUU\ QR ORDGV DSSOLHG GLUHFWO\ DERYH WKHP DQG WKH IXOO ORDG LV DSSOLHG WR WKH PHPEHU EHLQJ GHVLJQHG
$W KDQJHU VXSSRUWV WKH 7RWDO %HDULQJ GLPHQVLRQ LV HTXDO WR WKH ZLGWK RI WKH PDWHULDO WKDW LV VXSSRUWLQJ WKH KDQJHU
ï 6HH &RQQHFWRU JULG EHORZ IRU DGGLWLRQDO LQIRUPDWLRQ DQGRU UHTXLUHPHQWV
ð 5HTXLUHG %HDULQJ /HQJWK 5HTXLUHG %HDULQJ /HQJWK ZLWK :HE 6WLIIHQHUV
%HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV
6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV 'HWDLOV
6WXG ZDOO +)%ORFNLQJ (
+DQJHU RQ 36/ EHDP +DQJHUï
ð 6HH QRWH ï :
7-, MRLVWV DUH RQO\ DQDO\]HG XVLQJ 0D[LPXP $OORZDEOH EUDFLQJ VROXWLRQV
0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG
/DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV
7RS (GJH /X
RF
%RWWRP (GJH /X
RF
&RQQHFWRU 6LPSVRQ 6WURQJ7LH
6XSSRUW 0RGHO 6HDW /HQJWK 7RS )DVWHQHUV )DFH )DVWHQHUV 0HPEHU )DVWHQHUV $FFHVVRULHV
)DFH 0RXQW +DQJHU ,861$G[G[:HE 6WLIIHQHUV
5HIHU WR PDQXIDFWXUHU QRWHV DQG LQVWUXFWLRQV IRU SURSHU LQVWDOODWLRQ DQG XVH RI DOO FRQQHFWRUV
'HDG )ORRU /LYH 6QRZ
9HUWLFDO /RDGV /RFDWLRQ 6SDFLQJ &RPPHQWV
8QLIRUP 36) WR
'HIDXOW /RDG
3RLQW 3/)
3RLQW 3/)
'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG $OO GLPHQVLRQV DUH KRUL]RQWDO W\S
0(0%(5 5(3257 3$66('
/RZHU 5RRI8SSHU )ORRU F
SLHFHV 7-, # 2&
)RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV 30 87&
(ULF 5LFH
(/5 (QJLQHHULQJ
HOUHQJ#JPDLOFRP
)RUWH:(% Y (QJLQH 9 'DWD 9
)LOH 1DPH %%*/ IRU 07% ,QF
&OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF
3URMHFW %%*/
Page 7 / 27
'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ
0HPEHU 5HDFWLRQ OEV # 3DVVHG ' / $OO 6SDQV
6KHDU OEV # 3DVVHG ' / $OO 6SDQV
0RPHQW )WOEV #
3DVVHG ' / $OO 6SDQV
/LYH /RDG 'HIO LQ #
3DVVHG / ' / $OO 6SDQV
7RWDO /RDG 'HIO LQ #
3DVVHG / ' / $OO 6SDQV
7-3UR 5DWLQJ $Q\3DVVHG
0HPEHU /HQJWK
6\VWHP )ORRU
0HPEHU 7\SH -RLVW
%XLOGLQJ 8VH 5HVLGHQWLDO
%XLOGLQJ &RGH ,%&
'HVLJQ 0HWKRGRORJ\ $6'
'HIOHFWLRQ FULWHULD // / DQG 7/ /
$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU
$ VWUXFWXUDO DQDO\VLV RI WKH GHFN KDV QRW EHHQ SHUIRUPHG
'HIOHFWLRQ DQDO\VLV LV EDVHG RQ FRPSRVLWH DFWLRQ ZLWK D VLQJOH OD\HU RI 3DQHO 6SDQ 5DWLQJ WKDW LV JOXHG DQG QDLOHG GRZQ
$GGLWLRQDO FRQVLGHUDWLRQV IRU WKH 7-3UR 5DWLQJ LQFOXGH *\SVXP FHLOLQJ
$W KDQJHU VXSSRUWV WKH 7RWDO %HDULQJ GLPHQVLRQ LV HTXDO WR WKH ZLGWK RI WKH PDWHULDO WKDW LV VXSSRUWLQJ WKH KDQJHU
ï 6HH &RQQHFWRU JULG EHORZ IRU DGGLWLRQDO LQIRUPDWLRQ DQGRU UHTXLUHPHQWV
ð 5HTXLUHG %HDULQJ /HQJWK 5HTXLUHG %HDULQJ /HQJWK ZLWK :HE 6WLIIHQHUV
%HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV
6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH )DFWRUHG $FFHVVRULHV
+DQJHU RQ /9/ EHDP +DQJHUï
ð 6HH QRWH ï
+DQJHU RQ /9/ EHDP +DQJHUï
ð 6HH QRWH ï
7-, MRLVWV DUH RQO\ DQDO\]HG XVLQJ 0D[LPXP $OORZDEOH EUDFLQJ VROXWLRQV
0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG
/DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV
7RS (GJH /X
RF
%RWWRP (GJH /X
RF
&RQQHFWRU 6LPSVRQ 6WURQJ7LH
6XSSRUW 0RGHO 6HDW /HQJWK 7RS )DVWHQHUV )DFH )DVWHQHUV 0HPEHU )DVWHQHUV $FFHVVRULHV
)DFH 0RXQW +DQJHU ,861$G[6WURQJ*ULS
)DFH 0RXQW +DQJHU ,861$G[6WURQJ*ULS
5HIHU WR PDQXIDFWXUHU QRWHV DQG LQVWUXFWLRQV IRU SURSHU LQVWDOODWLRQ DQG XVH RI DOO FRQQHFWRUV
'HDG )ORRU /LYH
9HUWLFDO /RDG /RFDWLRQ 6SDFLQJ &RPPHQWV
8QLIRUP 36) WR
'HIDXOW /RDG
'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG $OO GLPHQVLRQV DUH KRUL]RQWDO W\S
0(0%(5 5(3257 3$66('
/RZHU 5RRI8SSHU )ORRU G
SLHFHV 7-, # 2&
)RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV 30 87&
(ULF 5LFH
(/5 (QJLQHHULQJ
HOUHQJ#JPDLOFRP
)RUWH:(% Y (QJLQH 9 'DWD 9
)LOH 1DPH %%*/ IRU 07% ,QF
&OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF
3URMHFW %%*/
Page 9 / 27
'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ
0HPEHU 5HDFWLRQ OEV #
3DVVHG ' 6 $GM 6SDQV
6KHDU OEV #
3DVVHG ' 6 $GM 6SDQV
3RV 0RPHQW )WOEV #
3DVVHG ' 6 $OW 6SDQV
1HJ 0RPHQW )WOEV #
3DVVHG ' 6 $GM 6SDQV
/LYH /RDG 'HIO LQ #
3DVVHG / ' 6 $OW 6SDQV
7RWDO /RDG 'HIO LQ #
3DVVHG / ' 6 $OW 6SDQV
0HPEHU /HQJWK
6\VWHP :DOO
0HPEHU 7\SH +HDGHU
%XLOGLQJ 8VH 5HVLGHQWLDO
%XLOGLQJ &RGH ,%&
'HVLJQ 0HWKRGRORJ\ $6'
'HIOHFWLRQ FULWHULD // / DQG 7/ /
$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU
9ROXPH IDFWRU RI ZDV FDOFXODWHG IRU SRVLWLYH EHQGLQJ XVLQJ OHQJWK /
9ROXPH IDFWRU RI ZDV FDOFXODWHG IRU QHJDWLYH EHQGLQJ XVLQJ OHQJWK /
OEV XSOLIW DW VXSSRUW ORFDWHG DW
6WUDSSLQJ RU RWKHU UHVWUDLQW PD\ EH UHTXLUHG
OEV XSOLIW DW VXSSRUW ORFDWHG DW
6WUDSSLQJ RU RWKHU UHVWUDLQW PD\ EH UHTXLUHG
7KH HIIHFWV RI SRVLWLYH RU QHJDWLYH FDPEHU KDYH QRW EHHQ DFFRXQWHG IRU ZKHQ FDOFXODWLQJ GHIOHFWLRQ
7KH VSHFLILHG JOXODP LV DVVXPHG WR KDYH LWV VWURQJ ODPLQDWLRQV DW WKH ERWWRP RI WKH EHDP ,QVWDOO ZLWK SURSHU VLGH XS DV LQGLFDWHG E\ WKH PDQXIDFWXUHU
$SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6
%HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV
6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG 6QRZ )DFWRUHG $FFHVVRULHV
7ULPPHU +)1RQH
7ULPPHU +)
1RQH
7ULPPHU +)1RQH
7ULPPHU +)1RQH
7ULPPHU +)
1RQH
7ULPPHU +)1RQH
0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG
/DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV
7RS (GJH /X
RF
%RWWRP (GJH /X
RF
'HDG 6QRZ
9HUWLFDO /RDGV /RFDWLRQ 7ULEXWDU\
:LGWK
&RPPHQWV
6HOI :HLJKW 3/) WR
1$
8QLIRUP 36) WR
'HIDXOW /RDG
3RLQW OE
1$
3RLQW OE
1$
'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG $OO GLPHQVLRQV DUH KRUL]RQWDO W\S
0(0%(5 5(3257 3$66('
/RZHU 5RRI8SSHU )ORRU
SLHFHV [ )9 ') *OXODP
)RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV 30 87&
(ULF 5LFH
(/5 (QJLQHHULQJ
HOUHQJ#JPDLOFRP
)RUWH:(% Y (QJLQH 9 'DWD 9
)LOH 1DPH %%*/ IRU 07% ,QF
&OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF
3URMHFW %%*/
Page 11 / 27
'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ
0HPEHU 5HDFWLRQ OEV # 3DVVHG ' 6 $OO 6SDQV
6KHDU OEV # 3DVVHG ' 6 $OO 6SDQV
0RPHQW )WOEV #
3DVVHG ' 6 $OO 6SDQV
/LYH /RDG 'HIO LQ #
3DVVHG / ' 6 $OO 6SDQV
7RWDO /RDG 'HIO LQ #
3DVVHG / ' 6 $OO 6SDQV
0HPEHU /HQJWK
6\VWHP :DOO
0HPEHU 7\SH +HDGHU
%XLOGLQJ 8VH 5HVLGHQWLDO
%XLOGLQJ &RGH ,%&
'HVLJQ 0HWKRGRORJ\ $6'
'HIOHFWLRQ FULWHULD // / DQG 7/ /
$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU
$SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6
%HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV
6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG 6QRZ )DFWRUHG $FFHVVRULHV
7ULPPHU +)1RQH
7ULPPHU +)1RQH
0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG
/DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV
7RS (GJH /X
RF
%RWWRP (GJH /X
RF
'HDG 6QRZ
9HUWLFDO /RDGV /RFDWLRQ 7ULEXWDU\
:LGWK
&RPPHQWV
6HOI :HLJKW 3/) WR
1$
8QLIRUP 36) WR
'HIDXOW /RDG
:H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHV
UHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV
UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW
:H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65
DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV
GRFXPHQWOLEUDU\
7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ $UFKLWHFW'HVLJQHU 5+'
:H\HUKDHXVHU 1RWHV
'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG $OO GLPHQVLRQV DUH KRUL]RQWDO W\S
0(0%(5 5(3257 3$66('
/RZHU 5RRI8SSHU )ORRU
SLHFHV [ ') 1R
)RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV 30 87&
(ULF 5LFH
(/5 (QJLQHHULQJ
HOUHQJ#JPDLOFRP
)RUWH:(% Y (QJLQH 9 'DWD 9
)LOH 1DPH %%*/ IRU 07% ,QF
&OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF
3URMHFW %%*/
Page 13 / 27
'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ
0HPEHU 5HDFWLRQ OEV #
3DVVHG ' / 6 $GM 6SDQV
6KHDU OEV #
3DVVHG ' / $GM 6SDQV
0RPHQW )WOEV #
3DVVHG ' / $GM 6SDQV
/LYH /RDG 'HIO LQ #
3DVVHG / ' / 6 $OW 6SDQV
7RWDO /RDG 'HIO LQ #
3DVVHG / ' / 6 $OW 6SDQV
0HPEHU /HQJWK
6\VWHP :DOO
0HPEHU 7\SH +HDGHU
%XLOGLQJ 8VH 5HVLGHQWLDO
%XLOGLQJ &RGH ,%&
'HVLJQ 0HWKRGRORJ\ $6'
'HIOHFWLRQ FULWHULD // / DQG 7/ /
$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU
OEV XSOLIW DW VXSSRUW ORFDWHG DW
6WUDSSLQJ RU RWKHU UHVWUDLQW PD\ EH UHTXLUHG
OEV XSOLIW DW VXSSRUW ORFDWHG DW
6WUDSSLQJ RU RWKHU UHVWUDLQW PD\ EH UHTXLUHG
$SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6
%HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV
6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV
7ULPPHU +)1RQH
7ULPPHU +)1RQH
7ULPPHU +)1RQH
7ULPPHU +)1RQH
7ULPPHU +)1RQH
7ULPPHU +)1RQH
0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG
/DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV
7RS (GJH /X
RF
%RWWRP (GJH /X
RF
'HDG )ORRU /LYH 6QRZ
9HUWLFDO /RDGV /RFDWLRQ 7ULEXWDU\
:LGWK
&RPPHQWV
6HOI :HLJKW 3/) WR
1$
8QLIRUP 36) WR
'HIDXOW /RDG
8QLIRUP 36) WR
'HIDXOW /RDG
8QLIRUP 36) WR
'HIDXOW /RDG
:H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHV
UHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV
UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW
:H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65
DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV
GRFXPHQWOLEUDU\
7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ $UFKLWHFW'HVLJQHU 5+'
:H\HUKDHXVHU 1RWHV
'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG $OO GLPHQVLRQV DUH KRUL]RQWDO W\S
0(0%(5 5(3257 3$66('
/RZHU 5RRI8SSHU )ORRU
SLHFHV [ ') 1R
)RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV 30 87&
(ULF 5LFH
(/5 (QJLQHHULQJ
HOUHQJ#JPDLOFRP
)RUWH:(% Y (QJLQH 9 'DWD 9
)LOH 1DPH %%*/ IRU 07% ,QF
&OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF
3URMHFW %%*/
Page 14 / 27
'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ >*URXS@
0HPEHU 5HDFWLRQ OEV # 3DVVHG ' / 6 $OO 6SDQV >@
6KHDU OEV #
3DVVHG ' / 6 $OO 6SDQV >@
0RPHQW )WOEV #
3DVVHG ' / 6 $OO 6SDQV >@
/LYH /RDG 'HIO LQ #
3DVVHG / ' / 6 $OO 6SDQV >@
7RWDO /RDG 'HIO LQ #
3DVVHG / ' / 6 $OO 6SDQV >@
0HPEHU /HQJWK
6\VWHP )ORRU
0HPEHU 7\SH )OXVK %HDP
%XLOGLQJ 8VH 5HVLGHQWLDO
%XLOGLQJ &RGH ,%&
'HVLJQ 0HWKRGRORJ\ $6'
'HIOHFWLRQ FULWHULD // / DQG 7/ /
$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU
%ORFNLQJ 3DQHOV DUH DVVXPHG WR FDUU\ QR ORDGV DSSOLHG GLUHFWO\ DERYH WKHP DQG WKH IXOO ORDG LV DSSOLHG WR WKH PHPEHU EHLQJ GHVLJQHG
%HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV
6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV
6WXG ZDOO +)%ORFNLQJ
6WXG ZDOO +)%ORFNLQJ
0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG
/DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV
7RS (GJH /X
RF
%RWWRP (GJH /X
RF
6LGH ORDGV DUH DVVXPHG WR QRW LQGXFH FURVVJUDLQ WHQVLRQ
'HDG )ORRU /LYH 6QRZ
9HUWLFDO /RDGV /RFDWLRQ 6LGH7ULEXWDU\
:LGWK
&RPPHQWV
6HOI :HLJKW 3/) WR
1$
8QLIRUP 36) WR
7RS
8QLIRUP 36) WR
7RS
8QLIRUP 3/) WR
%DFN1$/LQNHG IURP E
6XSSRUW
:H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHV
UHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV
UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW
:H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65
DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV
GRFXPHQWOLEUDU\
7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ $UFKLWHFW'HVLJQHU 5+'
:H\HUKDHXVHU 1RWHV
'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG $OO GLPHQVLRQV DUH KRUL]RQWDO W\S
0(0%(5 5(3257 3$66('
/RZHU 5RRI8SSHU )ORRU
SLHFHV [ ( 3DUDOODP 36/
)RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV 30 87&
(ULF 5LFH
(/5 (QJLQHHULQJ
HOUHQJ#JPDLOFRP
)RUWH:(% Y (QJLQH 9 'DWD 9
)LOH 1DPH %%*/ IRU 07% ,QF
&OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF
3URMHFW %%*/
Page 15 / 27
'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ >*URXS@
0HPEHU 5HDFWLRQ OEV #
3DVVHG ' / 6 $OO 6SDQV >@
6KHDU OEV #
3DVVHG ' / 6 $OO 6SDQV >@
3RV 0RPHQW )WOEV #
3DVVHG ' / 6 $OO 6SDQV >@
/LYH /RDG 'HIO LQ #
3DVVHG / ' / 6 $OO 6SDQV >@
7RWDO /RDG 'HIO LQ #
3DVVHG / ' / 6 $OO 6SDQV >@
0HPEHU /HQJWK
6\VWHP :DOO
0HPEHU 7\SH +HDGHU
%XLOGLQJ 8VH 5HVLGHQWLDO
%XLOGLQJ &RGH ,%&
'HVLJQ 0HWKRGRORJ\ $6'
'HIOHFWLRQ FULWHULD // / DQG 7/ /
$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU
9ROXPH IDFWRU RI ZDV FDOFXODWHG IRU SRVLWLYH EHQGLQJ XVLQJ OHQJWK /
7KH HIIHFWV RI SRVLWLYH RU QHJDWLYH FDPEHU KDYH QRW EHHQ DFFRXQWHG IRU ZKHQ FDOFXODWLQJ GHIOHFWLRQ
7KH VSHFLILHG JOXODP LV DVVXPHG WR KDYH LWV VWURQJ ODPLQDWLRQV DW WKH ERWWRP RI WKH EHDP ,QVWDOO ZLWK SURSHU VLGH XS DV LQGLFDWHG E\ WKH PDQXIDFWXUHU
$SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6
%HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV
6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV
7ULPPHU ')1RQH
7ULPPHU ')1RQH
0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG
/DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV
7RS (GJH /X
RF
%RWWRP (GJH /X
RF
'HDG )ORRU /LYH 6QRZ
9HUWLFDO /RDGV /RFDWLRQ 7ULEXWDU\
:LGWK
&RPPHQWV
6HOI :HLJKW 3/) WR
1$
8QLIRUP 36)
WR
8QLIRUP 36) WR
8QLIRUP 36) WR
8QLIRUP 36) WR
3RLQW OE
1$/LQNHG IURP
6XSSRUW
:H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHV
UHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV
UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW
:H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65
DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV
GRFXPHQWOLEUDU\
7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ $UFKLWHFW'HVLJQHU 5+'
:H\HUKDHXVHU 1RWHV
'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG $OO GLPHQVLRQV DUH KRUL]RQWDO W\S
0(0%(5 5(3257 3$66('
/RZHU 5RRI8SSHU )ORRU $%
SLHFHV [ )9 ') *OXODP
)RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV 30 87&
(ULF 5LFH
(/5 (QJLQHHULQJ
HOUHQJ#JPDLOFRP
)RUWH:(% Y (QJLQH 9 'DWD 9
)LOH 1DPH %%*/ IRU 07% ,QF
&OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF
3URMHFW %%*/
Page 16 / 27
'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ
0HPEHU 5HDFWLRQ OEV # 3DVVHG ' / 6 $OO 6SDQV
6KHDU OEV #
3DVVHG ' / $OO 6SDQV
3RV 0RPHQW )WOEV #
3DVVHG ' / $OO 6SDQV
/LYH /RDG 'HIO LQ #
3DVVHG / ' / 6 $OO 6SDQV
7RWDO /RDG 'HIO LQ #
3DVVHG / ' / 6 $OO 6SDQV
0HPEHU /HQJWK
6\VWHP :DOO
0HPEHU 7\SH +HDGHU
%XLOGLQJ 8VH 5HVLGHQWLDO
%XLOGLQJ &RGH ,%&
'HVLJQ 0HWKRGRORJ\ $6'
'HIOHFWLRQ FULWHULD // / DQG 7/ /
$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU
9ROXPH IDFWRU RI ZDV FDOFXODWHG IRU SRVLWLYH EHQGLQJ XVLQJ OHQJWK /
7KH HIIHFWV RI SRVLWLYH RU QHJDWLYH FDPEHU KDYH QRW EHHQ DFFRXQWHG IRU ZKHQ FDOFXODWLQJ GHIOHFWLRQ
7KH VSHFLILHG JOXODP LV DVVXPHG WR KDYH LWV VWURQJ ODPLQDWLRQV DW WKH ERWWRP RI WKH EHDP ,QVWDOO ZLWK SURSHU VLGH XS DV LQGLFDWHG E\ WKH PDQXIDFWXUHU
$SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6
%HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV
6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV
7ULPPHU ')1RQH
7ULPPHU ')1RQH
0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG
/DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV
7RS (GJH /X
RF
%RWWRP (GJH /X
RF
'HDG )ORRU /LYH 6QRZ
9HUWLFDO /RDGV /RFDWLRQ 7ULEXWDU\
:LGWK
&RPPHQWV
6HOI :HLJKW 3/) WR
1$
8QLIRUP 36) WR
8QLIRUP 36) WR
8QLIRUP 36) WR
8QLIRUP 3/) WR
1$/LQNHG IURP F
6XSSRUW
:H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHV
UHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV
UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW
:H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65
DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV
GRFXPHQWOLEUDU\
7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ $UFKLWHFW'HVLJQHU 5+'
:H\HUKDHXVHU 1RWHV
'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG $OO GLPHQVLRQV DUH KRUL]RQWDO W\S
0(0%(5 5(3257 3$66('
/RZHU 5RRI8SSHU )ORRU $%
SLHFHV [ )9 ') *OXODP
)RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV 30 87&
(ULF 5LFH
(/5 (QJLQHHULQJ
HOUHQJ#JPDLOFRP
)RUWH:(% Y (QJLQH 9 'DWD 9
)LOH 1DPH %%*/ IRU 07% ,QF
&OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF
3URMHFW %%*/
Page 17 / 27
'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ
0HPEHU 5HDFWLRQ OEV #
3DVVHG ' / $OO 6SDQV
6KHDU OEV #
3DVVHG ' / $OO 6SDQV
0RPHQW )WOEV #
3DVVHG ' / $OO 6SDQV
/LYH /RDG 'HIO LQ #
3DVVHG / ' / $OO 6SDQV
7RWDO /RDG 'HIO LQ #
3DVVHG / ' / $OO 6SDQV
0HPEHU /HQJWK
6\VWHP )ORRU
0HPEHU 7\SH )OXVK %HDP
%XLOGLQJ 8VH 5HVLGHQWLDO
%XLOGLQJ &RGH ,%&
'HVLJQ 0HWKRGRORJ\ $6'
'HIOHFWLRQ FULWHULD // / DQG 7/ /
$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU
%ORFNLQJ 3DQHOV DUH DVVXPHG WR FDUU\ QR ORDGV DSSOLHG GLUHFWO\ DERYH WKHP DQG WKH IXOO ORDG LV DSSOLHG WR WKH PHPEHU EHLQJ GHVLJQHG
$W KDQJHU VXSSRUWV WKH 7RWDO %HDULQJ GLPHQVLRQ LV HTXDO WR WKH ZLGWK RI WKH PDWHULDO WKDW LV VXSSRUWLQJ WKH KDQJHU
ï 6HH &RQQHFWRU JULG EHORZ IRU DGGLWLRQDO LQIRUPDWLRQ DQGRU UHTXLUHPHQWV
%HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV
6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH )DFWRUHG $FFHVVRULHV
6WXG ZDOO +)%ORFNLQJ
+DQJHU RQ 36/ EHDP +DQJHUï 6HH QRWH ï
0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG
/DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV
7RS (GJH /X
RF
%RWWRP (GJH /X
RF
&RQQHFWRU 6LPSVRQ 6WURQJ7LH
6XSSRUW 0RGHO 6HDW /HQJWK 7RS )DVWHQHUV )DFH )DVWHQHUV 0HPEHU )DVWHQHUV $FFHVVRULHV
)DFH 0RXQW +DQJHU /861$G G
5HIHU WR PDQXIDFWXUHU QRWHV DQG LQVWUXFWLRQV IRU SURSHU LQVWDOODWLRQ DQG XVH RI DOO FRQQHFWRUV
0XOWLSOH 0HPEHU &RQQHFWLRQV
7\SH /RFDWLRQ )DVWHQHU 3ODFHPHQW 5RZV 2& RI )DVWHQHUV 'HWDLOV
8QLIRUP WR
G [ RU [ 1DLO 2QH )DFH /
6LGH ORDGV DUH DVVXPHG WR QRW LQGXFH FURVVJUDLQ WHQVLRQ
'HDG )ORRU /LYH
9HUWLFDO /RDGV /RFDWLRQ 6LGH7ULEXWDU\
:LGWK
&RPPHQWV
6HOI :HLJKW 3/) WR
1$
8QLIRUP 36) WR
%DFN
'HIDXOW /RDG
8QLIRUP 36) WR
)URQW
'HIDXOW /RDG
'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG $OO GLPHQVLRQV DUH KRUL]RQWDO W\S
0(0%(5 5(3257 3$66('
/RZHU 5RRI8SSHU )ORRU
SLHFHV [ ( 0LFUROODP /9/
)RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV 30 87&
(ULF 5LFH
(/5 (QJLQHHULQJ
HOUHQJ#JPDLOFRP
)RUWH:(% Y (QJLQH 9 'DWD 9
)LOH 1DPH %%*/ IRU 07% ,QF
&OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF
3URMHFW %%*/
Page 18 / 27
'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ
0HPEHU 5HDFWLRQ OEV #
3DVVHG ' / $OO 6SDQV
6KHDU OEV #
3DVVHG ' / $OO 6SDQV
0RPHQW )WOEV #
3DVVHG ' / $OO 6SDQV
/LYH /RDG 'HIO LQ #
3DVVHG / ' / $OO 6SDQV
7RWDO /RDG 'HIO LQ #
3DVVHG / ' / $OO 6SDQV
0HPEHU /HQJWK
6\VWHP )ORRU
0HPEHU 7\SH )OXVK %HDP
%XLOGLQJ 8VH 5HVLGHQWLDO
%XLOGLQJ &RGH ,%&
'HVLJQ 0HWKRGRORJ\ $6'
'HIOHFWLRQ FULWHULD // / DQG 7/ /
$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU
5LP %RDUG LV DVVXPHG WR FDUU\ DOO ORDGV DSSOLHG GLUHFWO\ DERYH LW E\SDVVLQJ WKH PHPEHU EHLQJ GHVLJQHG
%HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV
6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH )DFWRUHG $FFHVVRULHV
6WXG ZDOO +) 5LP %RDUG
6WXG ZDOO +) 5LP %RDUG
0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG
/DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV
7RS (GJH /X
RF
%RWWRP (GJH /X
RF
6LGH ORDGV DUH DVVXPHG WR QRW LQGXFH FURVVJUDLQ WHQVLRQ
'HDG )ORRU /LYH
9HUWLFDO /RDGV /RFDWLRQ 6LGH7ULEXWDU\
:LGWK
&RPPHQWV
6HOI :HLJKW 3/) WR
1$
8QLIRUP 36) WR
7RS
8QLIRUP 36) WR
7RS
3RLQW OE
)URQW1$
3RLQW OE
)URQW1$/LQNHG IURP
6XSSRUW
:H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHV
UHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV
UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW
:H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65
DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV
GRFXPHQWOLEUDU\
7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ $UFKLWHFW'HVLJQHU 5+'
:H\HUKDHXVHU 1RWHV
'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG $OO GLPHQVLRQV DUH KRUL]RQWDO W\S
0(0%(5 5(3257 3$66('
/RZHU 5RRI8SSHU )ORRU
SLHFHV [ ( 3DUDOODP 36/
)RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV 30 87&
(ULF 5LFH
(/5 (QJLQHHULQJ
HOUHQJ#JPDLOFRP
)RUWH:(% Y (QJLQH 9 'DWD 9
)LOH 1DPH %%*/ IRU 07% ,QF
&OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF
3URMHFW %%*/
Page 20 / 27
'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ >*URXS@
0HPEHU 5HDFWLRQ OEV #
3DVVHG ' / $OO 6SDQV >@
6KHDU OEV #
3DVVHG ' / $OO 6SDQV >@
0RPHQW )WOEV #
3DVVHG ' / $OO 6SDQV >@
/LYH /RDG 'HIO LQ #
3DVVHG / ' / $OW 6SDQV >@
7RWDO /RDG 'HIO LQ #
3DVVHG / ' / $OW 6SDQV >@
0HPEHU /HQJWK
6\VWHP )ORRU
0HPEHU 7\SH )OXVK %HDP
%XLOGLQJ 8VH 5HVLGHQWLDO
%XLOGLQJ &RGH ,%&
'HVLJQ 0HWKRGRORJ\ $6'
'HIOHFWLRQ FULWHULD // / DQG 7/ /
$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU
5LP %RDUG LV DVVXPHG WR FDUU\ DOO ORDGV DSSOLHG GLUHFWO\ DERYH LW E\SDVVLQJ WKH PHPEHU EHLQJ GHVLJQHG
%ORFNLQJ 3DQHOV DUH DVVXPHG WR FDUU\ QR ORDGV DSSOLHG GLUHFWO\ DERYH WKHP DQG WKH IXOO ORDG LV DSSOLHG WR WKH PHPEHU EHLQJ GHVLJQHG
$W KDQJHU VXSSRUWV WKH 7RWDO %HDULQJ GLPHQVLRQ LV HTXDO WR WKH ZLGWK RI WKH PDWHULDO WKDW LV VXSSRUWLQJ WKH KDQJHU
ï 6HH &RQQHFWRU JULG EHORZ IRU DGGLWLRQDO LQIRUPDWLRQ DQGRU UHTXLUHPHQWV
%HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV
6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV
6WXG ZDOO +) 5LP %RDUG
6WXG ZDOO +)%ORFNLQJ
+DQJHU RQ /9/ EHDP +DQJHUï 6HH QRWH ï
0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG
/DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV
7RS (GJH /X
RF
%RWWRP (GJH /X
RF
&RQQHFWRU 6LPSVRQ 6WURQJ7LH
6XSSRUW 0RGHO 6HDW /HQJWK 7RS )DVWHQHUV )DFH )DVWHQHUV 0HPEHU )DVWHQHUV $FFHVVRULHV
)DFH 0RXQW +DQJHU /861$G[G
5HIHU WR PDQXIDFWXUHU QRWHV DQG LQVWUXFWLRQV IRU SURSHU LQVWDOODWLRQ DQG XVH RI DOO FRQQHFWRUV
6LGH ORDGV DUH DVVXPHG WR QRW LQGXFH FURVVJUDLQ WHQVLRQ
'HDG )ORRU /LYH 6QRZ
9HUWLFDO /RDGV /RFDWLRQ 6LGH7ULEXWDU\
:LGWK
&RPPHQWV
6HOI :HLJKW 3/) WR
1$
8QLIRUP 36) WR
7RS
3RLQW OE
)URQW1$
8QLIRUP 36)
WR
7RS
8QLIRUP 3/) WR
)URQW1$/LQNHG IURP F
6XSSRUW
'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG $OO GLPHQVLRQV DUH KRUL]RQWDO W\S
0(0%(5 5(3257 3$66('
/RZHU 5RRI8SSHU )ORRU
SLHFHV [ ( 3DUDOODP 36/
)RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV 30 87&
(ULF 5LFH
(/5 (QJLQHHULQJ
HOUHQJ#JPDLOFRP
)RUWH:(% Y (QJLQH 9 'DWD 9
)LOH 1DPH %%*/ IRU 07% ,QF
&OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF
3URMHFW %%*/
Page 21 / 27
'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ
0HPEHU 5HDFWLRQ OEV #
3DVVHG ' / 6 $GM 6SDQV
6KHDU OEV #
3DVVHG ' / $GM 6SDQV
0RPHQW )WOEV #
3DVVHG ' / $GM 6SDQV
/LYH /RDG 'HIO LQ #
3DVVHG / ' / 6 $OW 6SDQV
7RWDO /RDG 'HIO LQ #
3DVVHG / ' / 6 $OW 6SDQV
0HPEHU /HQJWK
6\VWHP )ORRU
0HPEHU 7\SH )OXVK %HDP
%XLOGLQJ 8VH 5HVLGHQWLDO
%XLOGLQJ &RGH ,%&
'HVLJQ 0HWKRGRORJ\ $6'
'HIOHFWLRQ FULWHULD // / DQG 7/ /
$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU
5LP %RDUG LV DVVXPHG WR FDUU\ DOO ORDGV DSSOLHG GLUHFWO\ DERYH LW E\SDVVLQJ WKH PHPEHU EHLQJ GHVLJQHG
%ORFNLQJ 3DQHOV DUH DVVXPHG WR FDUU\ QR ORDGV DSSOLHG GLUHFWO\ DERYH WKHP DQG WKH IXOO ORDG LV DSSOLHG WR WKH PHPEHU EHLQJ GHVLJQHG
8SOLIW FRQVWUDLQW KDV EHHQ UHOHDVHG DW VXSSRUW ORFDWLRQ
%HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV
6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV
3ODWH RQ FRQFUHWH +) 5LP %RDUG
%HDP ')%ORFNLQJ
%HDP ')%ORFNLQJ
%HDP ')%ORFNLQJ
3ODWH RQ FRQFUHWH +) 5LP %RDUG
0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG
/DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV
7RS (GJH /X
RF
%RWWRP (GJH /X
RF
0XOWLSOH 0HPEHU &RQQHFWLRQV
7\SH /RFDWLRQ )DVWHQHU 3ODFHPHQW 5RZV 2& RI )DVWHQHUV 'HWDLOV
8QLIRUP WR
G [ RU [ 1DLO %RWK )DFHV /
6LGH ORDGV DUH DVVXPHG WR QRW LQGXFH FURVVJUDLQ WHQVLRQ
'HDG )ORRU /LYH 6QRZ
9HUWLFDO /RDGV /RFDWLRQ 6LGH7ULEXWDU\
:LGWK
&RPPHQWV
6HOI :HLJKW 3/) WR
1$
8QLIRUP 36) WR
7RS
8QLIRUP 36) WR
7RS
8QLIRUP 36) WR
7RS
8QLIRUP 36) WR
7RS
8QLIRUP 3/)
WR
7RS1$/LQNHG IURP D
6XSSRUW
3RLQW OE
7RS1$/LQNHG IURP
6XSSRUW
'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG $OO GLPHQVLRQV DUH KRUL]RQWDO W\S
0(0%(5 5(3257 3$66('
0DLQ )ORRU
SLHFHV [ ( 0LFUROODP /9/
)RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV 30 87&
(ULF 5LFH
(/5 (QJLQHHULQJ
HOUHQJ#JPDLOFRP
)RUWH:(% Y (QJLQH 9 'DWD 9
)LOH 1DPH %%*/ IRU 07% ,QF
&OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF
3URMHFW %%*/
Page 23 / 27
'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ
0HPEHU 5HDFWLRQ OEV #
3DVVHG ' 6 $GM 6SDQV
6KHDU OEV #
3DVVHG ' 6 $GM 6SDQV
0RPHQW )WOEV #
3DVVHG ' 6 $GM 6SDQV
/LYH /RDG 'HIO LQ #
3DVVHG / ' 6 $OW 6SDQV
7RWDO /RDG 'HIO LQ #
3DVVHG / ' 6 $OW 6SDQV
0HPEHU /HQJWK
6\VWHP )ORRU
0HPEHU 7\SH )OXVK %HDP
%XLOGLQJ 8VH 5HVLGHQWLDO
%XLOGLQJ &RGH ,%&
'HVLJQ 0HWKRGRORJ\ $6'
'HIOHFWLRQ FULWHULD // / DQG 7/ /
$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU
5LP %RDUG LV DVVXPHG WR FDUU\ DOO ORDGV DSSOLHG GLUHFWO\ DERYH LW E\SDVVLQJ WKH PHPEHU EHLQJ GHVLJQHG
%ORFNLQJ 3DQHOV DUH DVVXPHG WR FDUU\ QR ORDGV DSSOLHG GLUHFWO\ DERYH WKHP DQG WKH IXOO ORDG LV DSSOLHG WR WKH PHPEHU EHLQJ GHVLJQHG
%HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV
6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG 6QRZ )DFWRUHG $FFHVVRULHV
3ODWH RQ FRQFUHWH +) 5LP %RDUG
%HDP ')%ORFNLQJ
%HDP ')%ORFNLQJ
%HDP ')%ORFNLQJ
3ODWH RQ FRQFUHWH +) 5LP %RDUG
0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG
/DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV
7RS (GJH /X
RF
%RWWRP (GJH /X
RF
0XOWLSOH 0HPEHU &RQQHFWLRQV
7\SH /RFDWLRQ )DVWHQHU 3ODFHPHQW 5RZV 2& RI )DVWHQHUV 'HWDLOV
8QLIRUP WR
G [ RU [ 1DLO 2QH )DFH /
6LGH ORDGV DUH DVVXPHG WR QRW LQGXFH FURVVJUDLQ WHQVLRQ
'HDG 6QRZ
9HUWLFDO /RDGV /RFDWLRQ 6LGH7ULEXWDU\
:LGWK
&RPPHQWV
6HOI :HLJKW 3/) WR
1$
8QLIRUP 36) WR
7RS
8QLIRUP 36) WR
7RS
:H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHV
UHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV
UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW
:H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65
DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV
GRFXPHQWOLEUDU\
7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ $UFKLWHFW'HVLJQHU 5+'
:H\HUKDHXVHU 1RWHV
'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG $OO GLPHQVLRQV DUH KRUL]RQWDO W\S
0(0%(5 5(3257 3$66('
0DLQ )ORRU
SLHFHV [ ( 0LFUROODP /9/
)RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV 30 87&
(ULF 5LFH
(/5 (QJLQHHULQJ
HOUHQJ#JPDLOFRP
)RUWH:(% Y (QJLQH 9 'DWD 9
)LOH 1DPH %%*/ IRU 07% ,QF
&OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF
3URMHFW %%*/
Page 25 / 27
'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ
0HPEHU 5HDFWLRQ OEV #
3DVVHG ' / 6 $GM 6SDQV
6KHDU OEV #
3DVVHG ' / $GM 6SDQV
0RPHQW )WOEV #
3DVVHG ' / $GM 6SDQV
/LYH /RDG 'HIO LQ #
3DVVHG / ' / $OW 6SDQV
7RWDO /RDG 'HIO LQ # 3DVVHG / ' / $OW 6SDQV
0HPEHU /HQJWK
6\VWHP )ORRU
0HPEHU 7\SH 'URS %HDP
%XLOGLQJ 8VH 5HVLGHQWLDO
%XLOGLQJ &RGH ,%&
'HVLJQ 0HWKRGRORJ\ $6'
'HIOHFWLRQ FULWHULD // / DQG 7/ /
2YHUKDQJ GHIOHFWLRQ FULWHULD // / DQG 7/
$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU
$SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6
%ORFNLQJ 3DQHOV DUH DVVXPHG WR FDUU\ QR ORDGV DSSOLHG GLUHFWO\ DERYH WKHP DQG WKH IXOO ORDG LV DSSOLHG WR WKH PHPEHU EHLQJ GHVLJQHG
%HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV
6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV
&ROXPQ +)%ORFNLQJ
&ROXPQ +)%ORFNLQJ
&ROXPQ +)%ORFNLQJ
&ROXPQ +)%ORFNLQJ
&ROXPQ +)%ORFNLQJ
&ROXPQ +)%ORFNLQJ
&ROXPQ +)%ORFNLQJ
&ROXPQ +)%ORFNLQJ
&ROXPQ +)%ORFNLQJ
&ROXPQ +)%ORFNLQJ
0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG
/DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV
7RS (GJH /X
RF
%RWWRP (GJH /X
RF
6LGH ORDGV DUH DVVXPHG WR QRW LQGXFH FURVVJUDLQ WHQVLRQ
'HDG )ORRU /LYH 6QRZ
9HUWLFDO /RDGV /RFDWLRQ 6LGH7ULEXWDU\
:LGWK
&RPPHQWV
6HOI :HLJKW 3/) WR
1$
8QLIRUP 36) WR
7RS
'HIDXOW /RDG
3RLQW OE
7RS1$/LQNHG IURP
6XSSRUW
3RLQW OE
7RS1$/LQNHG IURP
6XSSRUW
'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG $OO GLPHQVLRQV DUH KRUL]RQWDO W\S
0(0%(5 5(3257 3$66('
0DLQ )ORRU
SLHFHV [ ') 1R
)RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV 30 87&
(ULF 5LFH
(/5 (QJLQHHULQJ
HOUHQJ#JPDLOFRP
)RUWH:(% Y (QJLQH 9 'DWD 9
)LOH 1DPH %%*/ IRU 07% ,QF
&OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF
3URMHFW %%*/
Page 26 / 27
ELR Engineering
10508 32nd Ave SW Unit B
Seattle, WA 98146
phone: (206) 200-8764
email: elreng33@gmail.com
Lateral Calculations
ASCE Hazards Report
Address:
No Address at This Location
Standard:ASCE/SEI 7-16 Latitude:46.947454
Risk Category:II Longitude:-122.607708
Soil Class:D - Default (see
Section 11.4.3)
Elevation:350.0811120654561 ft
(NAVD 88)
Wind
Results:
Wind Speed 97 Vmph
10-year MRI 67 Vmph
25-year MRI 73 Vmph
50-year MRI 77 Vmph
100-year MRI 83 Vmph
Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2
Date Accessed: Sat May 31 2025
Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear
interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds
correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability =
0.00143, MRI = 700 years).
Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.
Page 1 of 3https://ascehazardtool.org/Sat May 31 2025
SS : 1.291
S1 : 0.466
F a : 1.2
F v : N/A
SMS : 1.549
SM1 : N/A
SDS : 1.033
SD1 : N/A
T L : 16
PGA : 0.51
PGA M : 0.612
F PGA : 1.2
Ie : 1
C v : 1.358
Seismic
Site Soil Class:
Results:
Data Accessed:
Date Source:
D - Default (see Section 11.4.3)
USGS Seismic Design Maps
Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8.
Sat May 31 2025
Page 2 of 3https://ascehazardtool.org/Sat May 31 2025
ASCE 7-16 Seismic Base Shear
LIC# : KW-06019101, Build:20.25.05.28 ELR Engineering (c) ENERCALC, LLC 1982-2025
DESCRIPTION:Seismic Base Shear Analysis
ELR Engineering
10508 32nd Ave SW Unit B
Seattle, WA 98146
Phone: 206.200.8764
Email: elreng33@gmail.com
Project File: 1482B-902B-GL.ec6
Project Title:1482B-902B_GL for MTB, Inc.
Engineer:ELR
Project ID:
Printed: 31 MAY 2025, 8:57AM
Project Descr:
Risk Category
ASCE 7-16, Page 4, Table 1.5-1
Calculations per ASCE 7-16
"II" : All Buildings and other structures except those listed as Category
I, III, and IV
Risk Category of Building or Other Structure :
Seismic Importance Factor = 1 ASCE 7-16, Page 5, Table 1.5-2
Specific Description: RHD 1482B-902B/GL - 9512 Solberg Ct. SE, Yelm, WA 98597
USER DEFINED Ground Motion ASCE 7-16 11.4.2
Max. Ground Motions, 5% Damping :
S =1.291
Longitude = 0.000 deg West
S
Latitude = 0.000
g, 0.2 sec response
deg North
S 0.46601 g, 1.0 sec response=
For the closest datapoint grid location . . .
Site Class, Site Coeff. and Design Category
Classification:ASCE 7-16 Table 20.3-1"D" : Shear Wave Velocity 600 to 1,200 ft/sec =D
Site Coefficients Fa & Fv ASCE 7-16 Table 11.4-1 & 11.4-2
(using straight-line interpolation from table values)
Fa =1.20
Fv =1.83
Maximum Considered Earthquake Acceleration ASCE 7-16 Eq. 11.4-1S = Fa * Ss 1.549=MS
S = Fv * S1 =0.855M1 ASCE 7-16 Eq. 11.4-2
Design Spectral Acceleration ASCE 7-16 Eq. 11.4-3S = S * 2/3 =1.033DS MS
=0.570 ASCE 7-16 Eq. 11.4-4S = S * 2/3D1 M1
Seismic Design Category ASCE 7-16 Table 11.6-1 & -2=D
(By Default per 11.4.3)
Resisting System ASCE 7-16 Table 12.2-1
Basic Seismic Force Resisting System . . .Bearing Wall Systems
15.Light-frame (wood) walls sheathed w/wood structural panels rated for shear resistance.
NOTE! See ASCE 7-16 for all applicable footnotes.
Building height Limits :Response Modification Coefficient " R "= 6.50
Category "A & B" Limit: No LimitSystem Overstrength Factor " Wo " = 2.50
Category "C" Limit: No LimitDeflection Amplification Factor " Cd "= 4.00 Category "D" Limit: Limit = 65
Category "E" Limit: Limit = 65
Category "F" Limit: Limit = 65
Lateral Force Procedure ASCE 7-16 Section 12.8.2
Equivalent Lateral Force Procedure
The "Equivalent Lateral Force Procedure" is being used according to the provisions of ASCE 7-16 12.8
Use ASCE 12.8-7Determine Building Period
Structure Type for Building Period Calculation :All Other Structural Systems
" Ct " value 0.020=
" x " value
" hn " : Height from base to highest level =21.0 ft
" Ta " Approximate fundemental period using Eq. 12.8-7 :
16.000"TL" : Long-period transition period per ASCE 7-16 Maps 22-14 -> 22-17 sec
Ta = Ct * (hn ^ x) =0.196
0.75
sec
=
Building Period " Ta " Calculated from Approximate Method selected= 0.196
ASCE 7-16 Seismic Base Shear
LIC# : KW-06019101, Build:20.25.05.28 ELR Engineering (c) ENERCALC, LLC 1982-2025
DESCRIPTION:Seismic Base Shear Analysis
ELR Engineering
10508 32nd Ave SW Unit B
Seattle, WA 98146
Phone: 206.200.8764
Email: elreng33@gmail.com
Project File: 1482B-902B-GL.ec6
Project Title:1482B-902B_GL for MTB, Inc.
Engineer:ELR
Project ID:
Printed: 31 MAY 2025, 8:57AM
Project Descr:
" Cs " Response Coefficient ASCE 7-16 Section 12.8.1.1
S : Short Period Design Spectral ResponseDS =1.0331.033
From Eq. 12.8-2, Preliminary Cs =0.159
Upper limit on SDS =0.000
SDS used for CS calc =1.033
" R " : Response Modification Factor =6.500
From Eq. 12.8-3 & 12.8-4 , Cs need not exceed 0.447=
" I " : Seismic Importance Factor =1
From Eq. 12.8-5 & 12.8-6, Cs not be less than =0.045
=Cs : Seismic Response Coefficient 0.1589
Seismic Base Shear ASCE 7-16 Section 12.8.1
W ( see Sum Wi below ) =84.16 kCs = 0.1589 from 12.8.1.1
Seismic Base Shear V = Cs * W =13.37 k
Vertical Distribution of Seismic Forces ASCE 7-16 Section 12.8.3
" k " : hx exponent based on Ta =1.00
Table of building Weights by Floor Level...
Wi : Weight Hi : Height (Wi * Hi^k) Cvx Fx=Cvx * V Sum Story Shear Sum Story MomentLevel #
2 28.85 18.75 540.94 0.5051 6.75 6.75 0.00
1 55.31 9.58 530.04 0.4949 6.62 13.37 61.92
Sum Wi = 84.16 k Total Base Shear =13.37 k
Base Moment =
1,070.97 k-ftSum Wi * Hi =
190.1k-ft
Diaphragm Forces : Seismic Design Category "B" to "F"ASCE 7-16 12.10.1.1
Level # Wi Fi Fpx : MaxFpx : CalcdSum Fi Sum Wi Fpx Dsgn. ForceFpx : Min
2 28.85 6.75 6.75 28.85 6.75 5.96 11.92 6.75 6.75
1 55.31 6.62 13.37 84.16 8.79 11.42 22.85 11.42 11.42
Wpx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Weight at level of diaphragm and other structure elements attached to it.
Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Design Lateral Force applied at the level.
Sum Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Sum of "Lat. Force" of current level plus all levels above
0.20 * S * I * WpxMIN Req'd Force @ Level . . . . . . . . . .DS
DSMAX Req'd Force @ Level . . . . . . . . . .0.40 * S * I * Wpx
Fpx : Design Force @ Level . . . . . . . . . .Wpx * SUM(x->n) Fi / SUM(x->n) wi, x = Current level, n = Top Level
ASCE 7-16 Wind Forces, Chapter 27, Part 1
LIC# : KW-06019101, Build:20.25.05.28 ELR Engineering (c) ENERCALC, LLC 1982-2025
DESCRIPTION:ASCE 7-16 wind loads
ELR Engineering
10508 32nd Ave SW Unit B
Seattle, WA 98146
Phone: 206.200.8764
Email: elreng33@gmail.com
Project File: 1482B-902B-GL.ec6
Project Title:1482B-902B_GL for MTB, Inc.
Engineer:ELR
Project ID:
Printed: 31 MAY 2025, 8:58AM
Project Descr:
RHD 1482B-902B/9512 Solberg Ct. SE, Yelm, WA 98597
Basic Values
2
100.0
0.850
Exposure B
Exposure B
Exposure B
Exposure B
52.0
41.0
21.0
Risk Category
V : Basic Wind Speed
per ASCE 7-16 Table 1.5-1 Horizontal Dim. in North-South Direction (B or L) =
Exposure Category per ASCE 7-16 Section 26.7
h : Mean Roof height =ftKd : Directionality Factor per ASCE 7-16 Table 26.6-1
Horizontal Dim. in East-West Direction (B or L) =ft
North : East :
South : West :
Topographic Factor per ASCE 7-16 Sec 26.8 & Figure 26.8-1
North : K1 = K2 = K3 = Kzt =
East : K1 = K2 = K3 =
West : K1 = K2 = K3 =
Kzt = 1.000
Kzt = 1.000
User has specified the building frequency is >= 1 Hz, therefore considered RIGID for both North-South and East-West directions.
Building Period & Flexibility Category
1.000
ft
South : K1 = K2 = K3 = Kzt = 1.000
per ASCE 7-16 Fig. 26.5-1 & 26.5-2
Building Story Data
Level Description
hi E : XStory Ht E : XR
ft ft
R
ftft
Upper 9.1718.75 0.000 0.000
Lower 9.589.58 0.000 0.000
Gust Factor For wind coming from direction indicated
North =
East =0.850 West =0.850
0.850 South =0.850
ASCE 7-16 Wind Forces, Chapter 27, Part 1
LIC# : KW-06019101, Build:20.25.05.28 ELR Engineering (c) ENERCALC, LLC 1982-2025
DESCRIPTION:ASCE 7-16 wind loads
ELR Engineering
10508 32nd Ave SW Unit B
Seattle, WA 98146
Phone: 206.200.8764
Email: elreng33@gmail.com
Project File: 1482B-902B-GL.ec6
Project Title:1482B-902B_GL for MTB, Inc.
Engineer:ELR
Project ID:
Printed: 31 MAY 2025, 8:58AM
Project Descr:
Check that Building Qualifies as "OPEN"
Roof Total
ft^2 5,806.0 ft^2
ft^2
2,328.0
0.0 ft^20.0
759.0
0.0
769.0
0.0
975.0
0.0
975.0
ft^2 0.0
North Wall South Wall East Wall
ft^2
ft^2
West Wall
ft^2ft^2
ft^2
ft^2
ft^2
Agross
Aopenings
Aopenings >= 0.8 * Agross ?No No
Building does NOT qualify as OPEN
NoNo
Enclosure
North Wall . . . .
Building qualifies as "ENCLOSED" when the North wall receives positive external pressure.
Reference Area = Smaller of 4 sq. ft. or 1% of Agross 4.0 ft^2
Is Ao < Reference Area ?Yes
Continue to check this direction for ENCLOSED
South Wall . . . .
Building qualifies as "ENCLOSED" when the South wall receives positive external pressure.
Reference Area = Smaller of 4 sq. ft. or 1% of Agross 4.0 ft^2
Is Ao < Reference Area ?Yes
Continue to check this direction for ENCLOSED
East Wall . . . .
Building qualifies as "ENCLOSED" when the East wall receives positive external pressure.
Reference Area = Smaller of 4 sq. ft. or 1% of Agross 4.0 ft^2
Is Ao < Reference Area ?Yes
Continue to check this direction for ENCLOSED
West Wall . . . .
Building qualifies as "ENCLOSED" when the West wall receives positive external pressure.
Reference Area = Smaller of 4 sq. ft. or 1% of Agross 4.0 ft^2
Is Ao < Reference Area ?Yes
Continue to check this direction for ENCLOSED
Velocity Pressures
psf
When the following walls experience leeward or sidewall pressures, the value of Kh shall be (per Table 26.10-1) :
North Wall =0.6327 South Wall =0.6327 psf East Wall = 0.6327
psf West Wall =0.6327 psf
When the following walls experience leeward or sidewall pressures, the value of qh shall be (per Eq 26.10-1) :
North Wall =13.768 psf South Wall =13.768 psf East Wall = 13.768
psf West Wall =13.768 psf
qz : Windward Wall Velocity Pressures at various heights per Eq. 27.3-1
Height Above Base (ft)
North Elevation East Elevation West Elevation
Kz qz Kz qzKz qz Kz qz
South Elevation
0.575 12.510.00 0.57512.51 12.51 12.510.5750.575
0.575 12.514.00 0.57512.51 12.51 12.510.5750.575
0.575 12.518.00 0.57512.51 12.51 12.510.5750.575
0.575 12.5112.00 0.57512.51 12.51 12.510.5750.575
0.585 12.7416.00 0.58512.74 12.74 12.740.5850.585
0.624 13.5820.00 0.62413.58 13.58 13.580.6240.624
0.633 13.7721.00 0.63313.77 13.77 13.770.6330.633
ASCE 7-16 Wind Forces, Chapter 27, Part 1
LIC# : KW-06019101, Build:20.25.05.28 ELR Engineering (c) ENERCALC, LLC 1982-2025
DESCRIPTION:ASCE 7-16 wind loads
ELR Engineering
10508 32nd Ave SW Unit B
Seattle, WA 98146
Phone: 206.200.8764
Email: elreng33@gmail.com
Project File: 1482B-902B-GL.ec6
Project Title:1482B-902B_GL for MTB, Inc.
Engineer:ELR
Project ID:
Printed: 31 MAY 2025, 8:58AM
Project Descr:
Pressure Coefficients GCpi Values when elevation receives positive external pressure
0.80 0.80 0.80 0.80
-0.450 -0.450 -0.50 -0.50
-0.70 -0.70 -0.70 -0.70
GCpi : Internal pressure coefficient, per sec. 26.13 and Table 26.13-1
North South East West
0.180+/- 0.180 0.180 0.180+/-
Specify Cp Values from Figure 27.3-1 for Windward, Leeward & Side Walls
Cp Values when elevation receives positive external pressure
Windward Wall
East WestSouth
Leeward Wall
Side Walls
North
+/-+/-
User Defined Roof locations and Net Directional Pressure Coefficients : Cp or Cn
Cp or Cn Values when the indicated building elevation receives positive external pressure
Description North South East West
Perp: windward -0.350 -0.350
Perp: leeward -0.60 -0.60
Perp: windward 0.10 0.10
-0.90Parallel: 0 to h/2 -0.90
-0.90Parallel: h/2 to h -0.90
-0.50Parallel: h to 2h -0.50
-0.30Parallel: > 2h -0.30
-0.180Parallel: 0 to > 2h -0.180
Wind Pressures
Wind Pressures when NORTH Elevation receives positive external wind pressure
psf
Windward Wall Pressures . . .
Height Above Base (ft)
Positive Internal Negative Internal
Pressure (psf) Pressure (psf)
Positive Internal Negative Internal
Leeward Wall Pressures -7.744 -2.788
Side Wall Pressures -10.670 -5.714
psf
psf psf
0.00 6.03 10.98
4.00 6.03 10.98
8.00 6.03 10.98
12.00 6.03 10.98
16.00 6.18 11.14
20.00 6.75 11.71
21.00 6.88 11.84
Roof Pressures . . .Positive Internal Negative Internal
Description Pressure (psf) Pressure (psf)
Parallel: 0 to h/2 -13.01 -8.05
Parallel: h/2 to h -13.01 -8.05
Parallel: h to 2h -8.33 -3.37
Parallel: > 2h -5.99 -1.03
Parallel: 0 to > 2h -4.58 0.37
ASCE 7-16 Wind Forces, Chapter 27, Part 1
LIC# : KW-06019101, Build:20.25.05.28 ELR Engineering (c) ENERCALC, LLC 1982-2025
DESCRIPTION:ASCE 7-16 wind loads
ELR Engineering
10508 32nd Ave SW Unit B
Seattle, WA 98146
Phone: 206.200.8764
Email: elreng33@gmail.com
Project File: 1482B-902B-GL.ec6
Project Title:1482B-902B_GL for MTB, Inc.
Engineer:ELR
Project ID:
Printed: 31 MAY 2025, 8:58AM
Project Descr:
Wind Pressures when SOUTH Elevation receives positive external wind pressure
psf
Windward Wall Pressures . . .
Height Above Base (ft)
Positive Internal Negative Internal
Pressure (psf) Pressure (psf)
Positive Internal Negative Internal
Leeward Wall Pressures -7.744 -2.788
Side Wall Pressures -10.670 -5.714
psf
psf psf
0.00 6.03 10.98
4.00 6.03 10.98
8.00 6.03 10.98
12.00 6.03 10.98
16.00 6.18 11.14
20.00 6.75 11.71
21.00 6.88 11.84
Roof Pressures . . .Positive Internal Negative Internal
Description Pressure (psf) Pressure (psf)
Parallel: 0 to h/2 -13.01 -8.05
Parallel: h/2 to h -13.01 -8.05
Parallel: h to 2h -8.33 -3.37
Parallel: > 2h -5.99 -1.03
Parallel: 0 to > 2h -4.58 0.37
Wind Pressures when EAST Elevation receives positive external wind pressure
psf
Windward Wall Pressures . . .
Height Above Base (ft)
Positive Internal Negative Internal
Pressure (psf) Pressure (psf)
Positive Internal Negative Internal
Leeward Wall Pressures -8.330 -3.373
Side Wall Pressures -10.670 -5.714
psf
psf psf
0.00 6.03 10.98
4.00 6.03 10.98
8.00 6.03 10.98
12.00 6.03 10.98
16.00 6.18 11.14
20.00 6.75 11.71
21.00 6.88 11.84
Roof Pressures . . .Positive Internal Negative Internal
Description Pressure (psf) Pressure (psf)
Perp: windward -6.57 -1.62
Perp: leeward -9.50 -4.54
Perp: windward -1.31 3.65
Wind Pressures when WEST Elevation receives positive external wind pressure
psf
Windward Wall Pressures . . .
Height Above Base (ft)
Positive Internal Negative Internal
Pressure (psf) Pressure (psf)
Positive Internal Negative Internal
Leeward Wall Pressures -8.330 -3.373
Side Wall Pressures -10.670 -5.714
psf
psf psf
0.00 6.03 10.98
4.00 6.03 10.98
8.00 6.03 10.98
12.00 6.03 10.98
ASCE 7-16 Wind Forces, Chapter 27, Part 1
LIC# : KW-06019101, Build:20.25.05.28 ELR Engineering (c) ENERCALC, LLC 1982-2025
DESCRIPTION:ASCE 7-16 wind loads
ELR Engineering
10508 32nd Ave SW Unit B
Seattle, WA 98146
Phone: 206.200.8764
Email: elreng33@gmail.com
Project File: 1482B-902B-GL.ec6
Project Title:1482B-902B_GL for MTB, Inc.
Engineer:ELR
Project ID:
Printed: 31 MAY 2025, 8:58AM
Project Descr:
16.00 6.18 11.14
20.00 6.75 11.71
21.00 6.88 11.84
Roof Pressures . . .Positive Internal Negative Internal
Description Pressure (psf) Pressure (psf)
Perp: windward -6.57 -1.62
Perp: leeward -9.50 -4.54
Perp: windward -1.31 3.65
Story Forces for Design Wind Load Cases
Values below are calculated based on a building with dimensions B x L x h as defined on the "Basic Values" tab.
Load Case Windward Wall
Eccentricity for (ft)Wind Shear Components (k)
In "Y" Direction In "X" Direction Mt, (ft-k)
Ht. Range "Y" Shear "X" Shear
Building level Trib. Height
CASE 1 ---Level 2 -2.63 ------4.5814.17' -> 18.75'---North
CASE 1 ---Level 1 -5.29 ------9.384.79' -> 14.17'---North
CASE 1 ---Level 2 2.63 ------4.5814.17' -> 18.75'---South
CASE 1 ---Level 1 5.29 ------9.384.79' -> 14.17'---South
CASE 1 ---Level 2 --- -3.48 ---4.5814.17' -> 18.75'---East
CASE 1 ---Level 1 --- -7.00 ---9.384.79' -> 14.17'---East
CASE 1 ---Level 2 --- 3.48 ---4.5814.17' -> 18.75'---West
CASE 1 ---Level 1 --- 7.00 ---9.384.79' -> 14.17'---West
CASE 2 +/- 12.1Level 2 -1.97 ---6.154.5814.17' -> 18.75'---North
CASE 2 +/- 24.4Level 1 -3.97 ---6.159.384.79' -> 14.17'---North
CASE 2 +/- 12.1Level 2 1.97 ---6.154.5814.17' -> 18.75'---South
CASE 2 +/- 24.4Level 1 3.97 ---6.159.384.79' -> 14.17'---South
CASE 2 +/- 20.3Level 2 --- -2.61 ---4.5814.17' -> 18.75'7.80East
CASE 2 +/- 40.9Level 1 --- -5.25 ---9.384.79' -> 14.17'7.80East
CASE 2 +/- 20.3Level 2 --- 2.61 ---4.5814.17' -> 18.75'7.80West
CASE 2 +/- 40.9Level 1 --- 5.25 ---9.384.79' -> 14.17'7.80West
CASE 3 ---Level 2 -1.97 -2.61 ---4.5814.17' -> 18.75'---North & East
CASE 3 ---Level 1 -3.97 -5.25 ---9.384.79' -> 14.17'---North & East
CASE 3 ---Level 2 -1.97 2.61 ---4.5814.17' -> 18.75'---North & West
CASE 3 ---Level 1 -3.97 5.25 ---9.384.79' -> 14.17'---North & West
CASE 3 ---Level 2 1.97 2.61 ---4.5814.17' -> 18.75'---South & West
CASE 3 ---Level 1 3.97 5.25 ---9.384.79' -> 14.17'---South & West
CASE 3 ---Level 2 1.97 -2.61 ---4.5814.17' -> 18.75'---South & East
CASE 3 ---Level 1 3.97 -5.25 ---9.384.79' -> 14.17'---South & East
CASE 4 +/- 24.4Level 2 -1.48 -1.96 6.154.5814.17' -> 18.75'7.80North & East
CASE 4 +/- 49.1Level 1 -2.98 -3.94 6.159.384.79' -> 14.17'7.80North & East
CASE 4 +/- 24.4Level 2 -1.48 1.96 6.154.5814.17' -> 18.75'7.80North & West
CASE 4 +/- 49.1Level 1 -2.98 3.94 6.159.384.79' -> 14.17'7.80North & West
CASE 4 +/- 24.4Level 2 1.48 1.96 6.154.5814.17' -> 18.75'7.80South & West
CASE 4 +/- 49.1Level 1 2.98 3.94 6.159.384.79' -> 14.17'7.80South & West
CASE 4 +/- 24.4Level 2 1.48 -1.96 6.154.5814.17' -> 18.75'7.80South & East
CASE 4 +/- 49.1Level 1 2.98 -3.94 6.159.384.79' -> 14.17'7.80South & East
ASCE 7-16 Wind Forces, Chapter 27, Part 1
LIC# : KW-06019101, Build:20.25.05.28 ELR Engineering (c) ENERCALC, LLC 1982-2025
DESCRIPTION:ASCE 7-16 wind loads
ELR Engineering
10508 32nd Ave SW Unit B
Seattle, WA 98146
Phone: 206.200.8764
Email: elreng33@gmail.com
Project File: 1482B-902B-GL.ec6
Project Title:1482B-902B_GL for MTB, Inc.
Engineer:ELR
Project ID:
Printed: 31 MAY 2025, 8:58AM
Project Descr:
Min per ASCE 27.1.5 ---Level 2 -3.01 ------4.5814.17' -> 18.75'---North
Min per ASCE 27.1.5 ---Level 1 -6.15 ------9.384.79' -> 14.17'---North
Min per ASCE 27.1.5 ---Level 2 3.01 ------4.5814.17' -> 18.75'---South
Min per ASCE 27.1.5 ---Level 1 6.15 ------9.384.79' -> 14.17'---South
Min per ASCE 27.1.5 ---Level 2 --- -3.81 ---4.5814.17' -> 18.75'---East
Min per ASCE 27.1.5 ---Level 1 --- -7.80 ---9.384.79' -> 14.17'---East
Min per ASCE 27.1.5 ---Level 2 --- 3.81 ---4.5814.17' -> 18.75'---West
Min per ASCE 27.1.5 ---Level 1 --- 7.80 ---9.384.79' -> 14.17'---West
Base Shear for Design Wind Load Cases North
+Y
Values below are calculated based on a building with dimensions B x L x h as defined on the "General" tab.
Load Case Windward Wall Leeward Wall
Wind Base Shear Components (k)West +X
In "Y" Direction In "X" Direction Mt, (ft-k)
Case 1 ---South -7.92 ---North
Case 1 ---North 7.92 ---South
Case 1 ---West --- -10.48East
Case 1 ---East --- 10.48West
Case 2 +/- 36.6South -5.94 ---North
Case 2 +/- 36.6North 5.94 ---South
Case 2 +/- 61.3West --- -7.86East
Case 2 +/- 61.3East --- 7.86West
Case 3 ---South & West -5.94 -7.86North & East
Case 3 ---South & East -5.94 7.86North & West
Case 3 ---North & East 5.94 7.86South & West
Case 3 ---North & West 5.94 -7.86South & East
Case 4 +/- 73.4South & West -4.46 -5.90North & East
Case 4 +/- 73.4South & East -4.46 5.90North & West
Case 4 +/- 73.4North & East 4.46 5.90South & West
Case 4 +/- 73.4North & West 4.46 -5.90South & East
Min per ASCE 27.1.5 ---South -9.16 ---North
Min per ASCE 27.1.5 ---North 9.16 ---South
Min per ASCE 27.1.5 ---West --- -11.61East
Min per ASCE 27.1.5 ---East --- 11.61West
EL
R
E
n
g
i
n
e
e
r
i
n
g
10
5
0
8
3
2
n
d
A
v
e
S
W
U
n
i
t
B
Se
a
t
t
l
e
,
W
A
9
8
1
4
6
20
6
.
2
0
0
.
8
7
6
4
el
r
e
n
g
3
3
@
g
m
a
i
l
.
c
o
m
LA
T
E
R
A
L
L
O
A
D
I
N
G
St
o
r
y
/
b
a
s
e
s
h
e
a
r
a
n
d
d
i
a
p
h
r
a
g
m
f
o
r
c
e
s
rh
o
(
ρ
)
Cl
i
e
n
t
:
Mo
u
n
t
a
i
n
T
e
r
r
a
c
e
B
u
i
l
d
e
r
s
,
I
n
c
.
Wi
n
d
(
E
-
W
l
o
a
d
s
)
Wi
n
d
(
N
-
S
l
o
a
d
s
)
Se
i
s
m
i
c
WI
N
D
0.
6
Sd
s
SE
I
S
M
I
C
0.
7
1.
3
Pr
o
j
e
c
t
:
RH
D
1
4
8
2
B
-
9
0
2
B
-
G
L
Hs
t
o
r
y
B
(
<
N
-
S
>
)
L
(
<
E
-
W
>
)
Al
e
v
e
l
N-
S
l
o
a
d
s
E-
W
l
o
a
d
s
Fp
y
(
N
-
S
)
Fp
x
(
E
-
W
)
1.
0
3
3
N-
S
l
o
a
d
s
E-
W
l
o
a
d
s
Fp
x
y
(
b
o
t
h
)
Da
t
e
:
5/
3
1
/
2
0
2
5
Ro
o
f
52
4
1
1
2
0
0
Pw
x
B
x
L
=
3.
0
1
3
.
8
1
3.
0
1
3
.
8
1
Cs
x
W
=
6.
7
5
6
.
7
5
6
.
7
5
Re
v
i
s
e
d
:
8.
0
8
De
s
c
r
i
p
t
i
o
n
:
Wi
n
d
/
E
Q
D
e
s
i
g
n
Ro
o
f
-
1
51
.
3
3
4
1
2
1
4
8
Pw
x
B
x
L
=
6.
1
5
7
.
7
0
6.
1
5
7
.
7
0
Cs
x
W
=
6.
6
2
6
.
6
2
1
1
.
4
3
Co
d
e
:
A
W
C
-
S
D
P
W
S
-
2
0
2
1
9.
0
8
Ro
o
f
-
2
0
0
0
Pw
x
B
x
L
=
0.
0
0
0
.
0
0
0.
0
0
0
.
0
0
Cs
x
W
=
0.
0
0
0
.
0
0
0
.
0
0
0.
0
0
Ba
s
e
s
h
e
a
r
>
P
w
x
B
x
L
=
9.
1
6
1
1
.
5
1
Cs
x
W
=
13
.
3
7
1
3
.
3
7
Su
m
m
a
r
y
De
s
i
g
n
b
a
s
e
s
h
e
a
r
(
A
S
D
)
>
x
0
.
6
5.
5
0
6.
9
1
ki
p
s
x
ρ
x
0
.
7
12
.
1
7
12
.
1
7
ki
p
s
ch
e
c
k
:
OK
SH
E
A
R
W
A
L
L
S
AS
D
A
S
D
De
m
a
n
d
WI
N
D
S
E
I
S
M
I
C
F
l
e
x
i
b
l
e
F
l
e
x
i
b
l
e
Fu
l
l
h
e
i
g
h
t
w
a
l
l
s
e
g
m
e
n
t
s
w
i
t
h
A
.
R
.
<
=
3
.
5
:
1
(
e
x
c
e
p
t
p
o
r
t
a
l
f
r
a
m
e
s
-
P
F
X
X
)
Fl
e
x
i
b
l
e
R
i
g
i
d
F
l
e
x
i
b
l
e
R
i
g
i
d
Ro
o
f
N
-
S
l
o
a
d
s
Gr
i
d
t
r
i
b
.
w
i
d
t
h
t
r
i
b
.
a
r
e
a
F
w
i
n
d
F
s
e
i
s
m
i
c
L
1
L
2
L
3
L
4
L
5
L
6
V
wi
n
d
(
p
l
f
)
V
w
i
n
d
(
p
l
f
)
V
s
e
i
s
m
i
c
(
p
l
f
)
V
s
e
i
s
m
i
c
(
p
l
f
)
<
H
'
(
i
f
a
p
p
l
i
e
s
)
8
<
H
'
(
i
f
a
p
p
l
i
e
s
)
7
<
H
'
(
i
f
a
p
p
l
i
e
s
)
6
<
H
'
(
i
f
a
p
p
l
i
e
s
)
5
<
H
'
(
i
f
a
p
p
l
i
e
s
)
4
<
H
'
(
i
f
a
p
p
l
i
e
s
)
3
<
H
'
(
i
f
a
p
p
l
i
e
s
)
2
31
.
0
0
6
0
0
1.
3
7
3
.
0
7
21
.
4
2
1
5
.
0
0
37
8
4
<
H
'
(
i
f
a
p
p
l
i
e
s
)
1
10
.
0
0
6
0
0
0.
4
4
3
.
0
7
23
.
1
7
9
.
0
0
14
9
5
mi
n
L
i
=
2.
3
0
9
OK
41
1
2
0
0
OK
1.
8
1
6.
1
4
E-
W
l
o
a
d
s
Gr
i
d
t
r
i
b
.
w
i
d
t
h
t
r
i
b
.
a
r
e
a
F
w
i
n
d
F
s
e
i
s
m
i
c
L
1
L
2
L
3
L
4
L
5
L
6
V
wi
n
d
(
p
l
f
)
V
w
i
n
d
(
p
l
f
)
V
s
e
i
s
m
i
c
(
p
l
f
)
V
s
e
i
s
m
i
c
(
p
l
f
)
<
H
'
(
i
f
a
p
p
l
i
e
s
)
H
<
H
'
(
i
f
a
p
p
l
i
e
s
)
G
<
H
'
(
i
f
a
p
p
l
i
e
s
)
F
<
H
'
(
i
f
a
p
p
l
i
e
s
)
E
<
H
'
(
i
f
a
p
p
l
i
e
s
)
D
<
H
'
(
i
f
a
p
p
l
i
e
s
)
C
15
.
0
0
3
3
8
0.
6
6
1
.
7
3
19
.
9
2
33
8
7
<
H
'
(
i
f
a
p
p
l
i
e
s
)
B
25
.
0
0
5
6
6
1.
1
0
2
.
9
0
13
.
3
3
82
2
1
7
<
H
'
(
i
f
a
p
p
l
i
e
s
)
A
12
.
0
0
2
9
6
0.
5
3
1
.
5
2
13
.
2
5
3
.
7
9
31
8
9
mi
n
L
i
=
2.
3
0
9
OK
52
.
0
0
12
0
0
B
E
l
e
v
B
E
l
e
v
OK
2.
2
9
6
.
1
4
Ro
o
f
-
1
N
-
S
l
o
a
d
s
Gr
i
d
t
r
i
b
.
w
i
d
t
h
t
r
i
b
.
a
r
e
a
F
w
i
n
d
F
s
e
i
s
m
i
c
L
1
L
2
L
3
L
4
L
5
L
6
V
wi
n
d
(
p
l
f
)
V
w
i
n
d
(
p
l
f
)
V
s
e
i
s
m
i
c
(
p
l
f
)
V
s
e
i
s
m
i
c
(
p
l
f
)
<
H
'
(
i
f
a
p
p
l
i
e
s
)
8
<
H
'
(
i
f
a
p
p
l
i
e
s
)
7
<
H
'
(
i
f
a
p
p
l
i
e
s
)
6
<
H
'
(
i
f
a
p
p
l
i
e
s
)
5
<
H
'
(
i
f
a
p
p
l
i
e
s
)
4
<
H
'
(
i
f
a
p
p
l
i
e
s
)
3
11
.
0
0
5
8
2
0.
9
9
1
.
6
3
14
.
2
5
2
0
.
6
7
28
4
7
<
H
'
(
i
f
a
p
p
l
i
e
s
)
2
20
.
0
0
1
0
4
2
3.
1
7
5
.
9
9
19
.
1
7
2
7
.
1
7
1
8
.
2
5
2
1
.
4
2
37
7
0
<
H
'
(
i
f
a
p
p
l
i
e
s
)
1
10
.
0
0
5
2
4
1.
3
4
4
.
5
4
23
.
1
7
2
0
.
8
3
30
1
0
3
mi
n
L
i
=
2.
5
9
5
OK
41
2
1
4
8
OK
5.
5
0
12
.
1
7
E-
W
l
o
a
d
s
Gr
i
d
t
r
i
b
.
w
i
d
t
h
t
r
i
b
.
a
r
e
a
F
w
i
n
d
F
s
e
i
s
m
i
c
L
1
L
2
L
3
L
4
L
5
L
6
V
wi
n
d
(
p
l
f
)
V
w
i
n
d
(
p
l
f
)
V
s
e
i
s
m
i
c
(
p
l
f
)
V
s
e
i
s
m
i
c
(
p
l
f
)
<
H
'
(
i
f
a
p
p
l
i
e
s
)
H
<
H
'
(
i
f
a
p
p
l
i
e
s
)
G
<
H
'
(
i
f
a
p
p
l
i
e
s
)
F
<
H
'
(
i
f
a
p
p
l
i
e
s
)
E
<
H
'
(
i
f
a
p
p
l
i
e
s
)
D
<
H
'
(
i
f
a
p
p
l
i
e
s
)
C
14
.
9
6
6
0
1
2.
0
1
3
.
4
2
3.
0
0
6
.
0
0
3
.
0
0
16
7
2
8
5
<
H
'
(
i
f
a
p
p
l
i
e
s
)
B
25
.
0
0
1
0
2
5
3.
3
5
5
.
7
7
16
.
5
8
20
2
3
4
8
8
<
H
'
(
i
f
a
p
p
l
i
e
s
)
A
11
.
3
7
5
2
2
1.
5
5
2
.
9
8
2.
3
3
2
.
7
5
2
.
3
3
1
0
.
0
0
89
1
7
1
mi
n
L
i
=
2.
5
9
5
OK
51
.
3
3
21
4
8
OK
6.
9
1
1
2
.
1
7
EL
R
E
n
g
i
n
e
e
r
i
n
g
10
5
0
8
3
2
n
d
A
v
e
S
W
U
n
i
t
B
Se
a
t
t
l
e
,
W
A
9
8
1
4
6
20
6
.
2
0
0
.
8
7
6
4
el
r
e
n
g
3
3
@
g
m
a
i
l
.
c
o
m
E D
As
s
u
m
e
d
o
r
i
e
n
t
a
t
i
o
n
"E
-
W
"
g
r
i
d
s
C
>
B
Y
+
A 0,
0
1
2
3
4
X
+
>
"N
-
S
"
g
r
i
d
s
To
t
a
l
l
a
t
e
r
a
l
c
a
p
a
c
i
t
y
o
f
s
h
e
a
r
l
i
n
e
-
I
n
d
i
v
i
d
u
a
l
s
eg
m
e
n
t
c
a
p
a
c
i
t
i
e
s
w
i
t
h
i
n
t
h
e
s
h
e
a
r
l
i
n
e
w
i
t
h
A
.
R
.
i
>
2
:
1
r
e
d
u
c
e
d
by
2
L
i
/
H
p
e
r
2
0
2
1
S
D
P
W
S
4
.
3
.
5
.
5
.
1
e
x
c
e
p
t
i
o
n
1
f
o
r
s
h
e
a
r
l
i
n
es
w
i
t
h
m
o
r
e
t
h
a
n
o
n
e
s
h
e
a
r
w
a
l
l
a
n
d
b
y
1.
2
5
-
0
.
1
2
5
(
H
/
L
i
)
pe
r
2
0
2
1
S
D
P
W
S
4
.
3
.
3
.
2
fo
r
s
h
e
a
r
l
i
n
e
s
w
i
t
h
o
n
e
w
a
l
l
o
n
l
y
Go
v
e
r
n
s
W6
W
4
W
3
W
2
2
W
3
2
W
2
Fl
e
x
i
b
l
e
R
i
g
i
d
W
o
r
E
Q
8.
8
3
1
1
2
.
8
8
3
1
6
.
5
7
2
2
1
.
6
5
3
3
3
.
1
4
5
4
9
.
6
0
9
W
6
E
Q
7.
8
0
0
1
1
.
3
8
0
1
4
.
6
3
8
1
9
.
1
2
6
2
9
.
2
7
7
4
3
.
8
2
0
W
6
E
Q
W6
W
4
W
3
W
2
2
W
3
2
W
2
Fl
e
x
i
b
l
e
R
i
g
i
d
W
o
r
E
Q
4.
8
3
0
7
.
0
4
6
9
.
0
6
4
1
1
.
8
4
3
1
8
.
1
2
9
2
7
.
1
3
4
W
6
E
Q
3.
2
3
2
4
.
7
1
5
6
.
0
6
6
7
.
9
2
5
1
2
.
1
3
1
1
8
.
1
5
7
W
6
E
Q
4.
0
7
5
5
.
9
4
5
7
.
6
4
8
9
.
9
9
3
1
5
.
2
9
6
2
2
.
8
9
4
W
6
E
Q
W6
W
4
W
3
W
2
2
W
3
2
W
2
Fl
e
x
i
b
l
e
R
i
g
i
d
W
o
r
E
Q
8.
4
6
7
1
2
.
3
5
2
1
5
.
8
9
0
2
0
.
7
6
1
3
1
.
7
8
0
4
7
.
5
6
6
W
6
E
Q
20
.
8
5
4
3
0
.
4
2
5
3
9
.
1
3
8
5
1
.
1
3
6
7
8
.
2
7
5
1
1
7
.
1
5
7
W
6
E
Q
10
.
6
6
8
1
5
.
5
6
4
2
0
.
0
2
2
2
6
.
1
6
0
4
0
.
0
4
3
5
9
.
9
3
4
W
6
E
Q
W6
W
4
W
3
W
2
2
W
3
2
W
2
Fl
e
x
i
b
l
e
R
i
g
i
d
W
o
r
E
Q
2.
4
1
6
3
.
5
2
4
4
.
5
3
4
5
.
9
2
4
9
.
0
6
7
1
3
.
5
7
2
W
4
E
Q
4.
0
2
0
5
.
8
6
5
7
.
5
4
4
9
.
8
5
7
1
5
.
0
8
9
2
2
.
5
8
4
W
4
E
Q
3.
5
4
1
5
.
1
6
6
6
.
6
4
6
8
.
6
8
3
1
3
.
2
9
2
1
9
.
8
9
4
W
6
E
Q
EL
R
E
n
g
i
n
e
e
r
i
n
g
10
5
0
8
3
2
n
d
A
v
e
S
W
U
n
i
t
B
Se
a
t
t
l
e
,
W
A
9
8
1
4
6
20
6
.
2
0
0
.
8
7
6
4
el
r
e
n
g
3
3
@
g
m
a
i
l
.
c
o
m
Co
n
t
r
o
l
l
i
n
g
0.
6
D
+
0
.
6
W
0
.
6
D
+
0
.
7
ρ
E
HO
L
D
O
W
N
S
Fl
e
x
i
b
l
e
R
i
g
i
d
F
l
e
x
i
b
l
e
R
i
g
i
d
M
A
X
v
h
d
s
h
e
a
r
A
v
a
i
l
a
b
l
e
r
e
si
s
t
i
n
g
D
W
I
N
D
S
E
I
S
M
I
C
0.
6
WI
N
D
S
E
I
S
M
I
C
Ro
o
f
N-
S
l
o
a
d
s
G
r
i
d
L
1
L
2
L
3
L
4
L
5
L
6
V
w
i
n
d
(
p
l
f
)
V
w
i
n
d
(
p
l
f
)
V
s
e
i
s
m
ic
(
p
l
f
)
V
s
e
i
s
m
i
c
(
p
l
f
)
(
p
l
f
)
W
/
E
?
u
n
i
.
(
p
l
f
)
c
o
n
c
.
(
l
b
s
)
o
/t
T
(
l
b
s
)
o
/
t
T
(
l
b
s
)
re
s
i
s
t
C
(
l
b
s
)
n
e
t
o
/
t
(
l
b
s
)
n
e
t
o
/
t
(
l
b
s
)
8.
0
8
<
H
w
8
8.
0
8
<
H
w
7
8.
0
8
<
H
w
6
8.
0
8
<
H
w
5
8.
0
8
<
H
w
4
8.
0
8
<
H
w
3
8.
0
8
<
H
w
2
21
.
4
2
1
5
.
0
0
37
8
4
8
4
E
27
4
30
3
6
8
2
1
7
5
8
-
1
4
5
5
-
1
0
7
6
8.
0
8
<
H
w
1
23
.
1
7
9.
0
0
14
95
95
E
27
4
11
1
77
2
19
0
1
-1
7
9
1
-1
1
3
0
E-
W
l
o
a
d
s
G
r
i
d
L
1
L
2
L
3
L
4
L
5
L
6
8.
0
8
<
H
w
H
8.
0
8
<
H
w
G
8.
0
8
<
H
w
F
8.
0
8
<
H
w
E
8.
0
8
<
H
w
D
8.
0
8
<
H
w
C
19
.
9
2
33
8
7
8
7
E
14
9
26
8
7
0
2
8
8
9
-
6
2
2
-
1
8
7
8.
0
8
<
H
w
B
13
.
3
3
82
2
1
7
2
1
7
E
21
7
66
6
1
7
5
7
8
6
7
-
2
0
1
8
9
0
8.
0
8
<
H
w
A
13
.
2
5
3.
7
9
31
89
89
E
14
9
25
0
71
9
59
2
-3
4
1
12
7
Ro
o
f
-
1
N-
S
l
o
a
d
s
G
r
i
d
L
1
L
2
L
3
L
4
L
5
L
6
9.
0
8
<
H
w
8
9.
0
8
<
H
w
7
9.
0
8
<
H
w
6
9.
0
8
<
H
w
5
9.
0
8
<
H
w
4
9.
0
8
<
H
w
3
14
.
2
5
2
0
.
6
7
28
4
7
4
7
E
15
9
25
8
4
2
5
9
8
5
-
7
2
7
-
5
6
0
9.
0
8
<
H
w
2
19
.
1
7
2
7
.
1
7
1
8
.
2
5
2
1
.
4
2
37
7
0
7
0
E
48
4
33
4
6
3
3
3
9
4
8
-
3
6
1
4
-
3
3
1
5
9.
0
8
<
H
w
1
23
.
1
7
20
.
8
3
30
10
3
10
3
E
48
4
27
7
93
7
33
6
7
-3
0
9
0
-2
4
2
9
E-
W
l
o
a
d
s
G
r
i
d
L
1
L
2
L
3
L
4
L
5
L
6
9.
0
8
<
H
w
H
9.
0
8
<
H
w
G
9.
0
8
<
H
w
F
9.
0
8
<
H
w
E
9.
0
8
<
H
w
D
9.
0
8
<
H
w
C
3.
0
0
6
.
0
0
3
.
0
0
16
7
2
8
5
2
8
5
E
28
8
15
1
8
2
5
8
5
5
1
8
1
0
0
0
2
0
6
8
h
o
l
d
o
w
n
9.
0
8
<
H
w
B
16
.
5
8
20
2
3
4
8
3
4
8
E
35
6
18
3
5
3
1
6
2
1
7
6
9
6
6
1
3
9
3
h
o
l
d
o
w
n
8.
0
0
<
H
w
A
2.
3
3
2.
7
5
2.
3
3
10
.
0
0
89
17
1
17
1
E
27
7
71
3
13
6
9
83
0
-1
1
8
53
8
Project Information
Code:Date:
Designer:
Client:
Project:
Wall Line:
> 0.6W > 0.7ρE
- V (lb) =410 1179
- Apply Ωo per 12.3.3.3?Y
- Overstrength factor (Ωo) =2.5
- ASCE 7-10 12.4.3.3 ASD
stress increase w/Ωo =1.2
- Sds =1.033
- ρ =1.3
V 1179 lbf Seismic controls Opening 1 2bs/h
L1 2.67 ft ha1 1.08 ft Adj. Factor
L2 2.67 ft ho1 4.00 ft P1=ho1/L1=1.50 N/A
hwall 8.08 ft hb1 3.00 ft P2=ho2/L2=1.50 N/A
Lwall 13.25 ft Lo1 7.91 ft
1. Hold-down forces: H = Vhwall/Lwall 719 lbf 6. Unit shear beside opening
221 plf
2. Unit shear above + below opening 221 plf
176 plf 1179 lbf OK
3. Total boundary force above + below openings 7. Resistance to corner forces
First opening: O1 = va1 x (Lo1) =1393 lbf R1 = V1*L1 =589 lbf
R2 = V2*L2 =589 lbf
4. Corner forces
F1 = O1(L1)/(L1+L2) =697 lbf 8. Difference corner force + resistance
F2 = O1(L2)/(L1+L2) =697 lbf R1-F1 =-107 lbf
R2-F2 =-107 lbf
5. Tributary length of openings
T1 = (L1*Lo1)/(L1+L2) =3.96 ft 9. Unit shear in corner zones
T2 = (L2*Lo1)/(L1+L2) =3.96 ft vc1 = (R1-F1)/L1 =-40 plf
vc2 = (R2-F2)/L2 =-40 plf
10. Net hold-down forces
Holdowns (overturning)
Hwind =250 lbf < (0.6W)
Hseismic =1383 lbf < (0.7ΩoE/ρ)
Holdowns (Dead resisting)
Uniform =149 plf
Conc. =0 lbf
Hwind (net) =-341 lbf < (0.6D+0.6W)
Hseismic (net) =485 lbf < (0.6-0.14Sds)D+(0.7ΩoE/ρ)
Check Summary of Shear Values for One Opening
Line 1: vc1(ha1+hb1)+V1(ho1)=H?-164 883 719 lbf
Line 2: va1(ha1+hb1)-vc1(ha1+hb1)-V1(ho1)=0?719 -164 883 0
Line 3: va1(ha1+hb1)-vc2(ha1+hb1)-V1(ho1)=0?719 -164 883 0
Line 4: vc2(ha1+hb1)+V2(ho1)=H?-164 883 719 lbf
221 plf Seismic controls W6 4-Term Deflection 3-Term Deflection
697 lbf One side > CS16
x 30 inches 4-Term Story Drift % 3-Term Story Drift %
485 lbf NONE
89 plf
*The Design Summary assumes that the shear wall is designed as blocked.
V2 = (V/L)(T2+L2)/L2 =
First opening: va1 = vb1 = H/(ha1+hb1) = Check V1*L1+V2*L2=V?
Design Summary*
Req. Sheathing Capacity
Req. Strap Force
Req. HD Force - H(net)
Req. Shear Wall Anchorage Force (vmax)
V1 = (V/L)(L1+T1)/L1 =
Expire
IBC > SDPWS > APA 5/31/2025
ELR
Mountain Terrace Builders, Inc.
RHD 1482B-902B-GL
Upper Grid A - 13'-3" - ELEVATION B
Shear Wall Calculation Variables
Adj. Factor Method =
Wall Pier Aspect Ratio
Project Information
Code:Date:
Designer:
Client:
Project:
Wall Line:
> 0.6W > 0.7ρE
- V (lb) =659 1730
- Apply Ωo per 12.3.3.3?N
- Overstrength factor (Ωo) =N.A.
- ASCE 7-10 12.4.3.3 ASD
stress increase w/Ωo =N.A.
- Sds =1.033
- ρ =1.3
V 1730 lbf Seismic controls Opening 1 Opening 2 2bs/h
18" min per APA >L1 2.63 ft ha1 1.08 ft ha2 1.08 ft Adj. Factor
18" min per APA >L2 4.71 ft ho1 4.00 ft ho2 4.00 ft P1=ho1/L1=1.52 N/A
L3 2.67 ft hb1 3.00 hb2 3.00 ft P2=ho2/L2=0.85 N/A
hwall 8.08 ft Lo1 5.00 Lo2 5.00 ft P3=ho3/L3=1.50 N/A
Lwall 19.96 ft
1. Hold-down forces: H = Vhwall/Lwall 701 lbf 6. Unit shear beside opening
2. Unit shear above + below opening 146 plf
172 plf 205 plf
172 plf 145 plf
1734 lbf OK
3. Total boundary force above + below openings
First opening: O1 = va1 x (Lo1) =858 lbf 7. Resistance to corner forces
Second opening: O2 = va2 x (Lo2) =858 lbf R1 = V1*L1 =383 lbf
R2 = V2*L2 =963 lbf
4. Corner forces R3 = V3*L3 =388 lbf
F1 = O1(L1)/(L1+L2) =307 lbf
F2 = O1(L2)/(L1+L2) =551 lbf 8. Difference corner force + resistance
F3 = O2(L2)/(L2+L3) =548 lbf R1-F1 =76 lbf
F4 = O2(L3)/(L2+L3) =311 lbf R2-F2-F3 =-135 lbf
R3-F4 =78 lbf
5. Tributary length of openings
T1 = (L1*Lo1)/(L1+L2) =1.79 ft 9. Unit shear in corner zones
T2 = (L2*Lo1)/(L1+L2) =3.21 ft vc1 = (R1-F1)/L1 =29 plf
T3 = (L2*Lo2)/(L2+L3) =3.19 ft vc2 = (R2-F2-F3)/L2 =-29 plf
T4 = (L3*Lo2)/(L2+L3) =1.81 ft vc3 = (R3-F4)/L3 =29 plf
10. Net hold-down forces
Holdowns (overturning)
Hwind =267 lbf < (0.6W)
Hseismic =701 lbf < (0.7ρE)
Holdowns (Dead resisting)
Uniform =149 plf
Conc. =0 lbf
Hwind (net) =-624 lbf < (0.6D+0.6W)
Hseismic (net) =-652 lbf < (0.6-0.14Sds)D+(0.7ρE)
Check Summary of Shear Values for Two Openings
Line 1: vc1(ha1+hb1)+V1(ho1)=H?118 583 701 lbf
Line 2: va1(ha1+hb1)-vc1(ha1+hb1)-V1(ho1)=0?701 118 583 0
Line 3: vc2(ha1+hb1)+V2(ho1)-va1(ha1+hb1)=0?-117 818 701 0
Line 4: va2(ha2+hb2)-V2(ho2)-vc2(ha2+hb2)=0?701 818 -117 0
Line 5: va2(ha2+hb2)-vc3(ha2+hb2)-V3(ho2)=0?701 119 582 0
Line 6: vc3(ha2+hb2)+ V3(ho2) = H?119 582 701 lbf
205 plf Seismic controls W6 4-Term Deflection 3-Term Deflection
551 lbf One side >CS16 x 30 inches 4-Term Story Drift % 3-Term Story Drift %
-652 lbf NONE
87 plf
V1 = (V/L)(L1+T1)/L1 =
Expireopen
AWC-SDPWS-2021 5/31/2025
ELR
Mountain Terrace Builders, Inc.
RHD 1482B-902B-GL
Upper Grid C - 19'-11"
Shear Wall Calculation Variables
Adj. Factor Method =
Wall Pier Aspect Ratio
First opening: va1 = vb1 = H/(ha1+hb1) = V2 = (V/L)(T2+L2+T3)/L2 =
Second opening: va2 = vb2 = H/(ha2+hb2) = V3 = (V/L)(T4+L3)/L3 =
Check V1*L1+V2*L2+V3*L3=V?
*The Design Summary assumes that the shear wall is designed as blocked.
Design Summary*
Req. Sheathing Capacity
Req. Strap Force
Req. HD Force - H(net)
Req. Shear Wall Anchorage Force (vmax)
Project Information
Code:Date:
Designer:
Client:
Project:
Wall Line:
> 0.6W > 0.7ρE
- V (lb) =891 1711
- Apply Ωo per 12.3.3.3?N
- Overstrength factor (Ωo) =N.A.
- ASCE 7-10 12.4.3.3 ASD
stress increase w/Ωo =N.A.
- Sds =1.033
- ρ =1.3
V 1711 lbf Seismic controls Opening 1 1.25-0.125h/bs
L1 2.50 ft ha1 1.08 ft Adj. Factor
L2 2.50 ft ho1 5.00 ft P1=ho1/L1=2.00 N/A
hwall 9.08 ft hb1 3.00 ft P2=ho2/L2=2.00 N/A
Lwall 10.00 ft Lo1 5.00 ft
1. Hold-down forces: H = Vhwall/Lwall 1554 lbf 6. Unit shear beside opening
342 plf
2. Unit shear above + below opening 342 plf
381 plf 1711 lbf OK
3. Total boundary force above + below openings 7. Resistance to corner forces
First opening: O1 = va1 x (Lo1) =1904 lbf R1 = V1*L1 =856 lbf
R2 = V2*L2 =856 lbf
4. Corner forces
F1 = O1(L1)/(L1+L2) =952 lbf 8. Difference corner force + resistance
F2 = O1(L2)/(L1+L2) =952 lbf R1-F1 =-96 lbf
R2-F2 =-96 lbf
5. Tributary length of openings
T1 = (L1*Lo1)/(L1+L2) =2.50 ft 9. Unit shear in corner zones
T2 = (L2*Lo1)/(L1+L2) =2.50 ft vc1 = (R1-F1)/L1 =-39 plf
vc2 = (R2-F2)/L2 =-39 plf
10. Net hold-down forces
Holdowns (overturning)
Hwind =809 lbf < (0.6W)
Hseismic =1554 lbf < (0.7ρE)
Holdowns (Dead resisting)
Uniform =533 plf
Conc. =0 lbf
Hwind (net) =-790 lbf < (0.6D+0.6W)
Hseismic (net) =-873 lbf < (0.6-0.14Sds)D+(0.7ρE)
Check Summary of Shear Values for One Opening
Line 1: vc1(ha1+hb1)+V1(ho1)=H?-157 1711 1554 lbf
Line 2: va1(ha1+hb1)-vc1(ha1+hb1)-V1(ho1)=0?1554 -157 1711 0
Line 3: va1(ha1+hb1)-vc2(ha1+hb1)-V1(ho1)=0?1554 -157 1711 0
Line 4: vc2(ha1+hb1)+V2(ho1)=H?-157 1711 1554 lbf
381 plf Seismic controls W3 4-Term Deflection 3-Term Deflection
952 lbf One side > CS16
x 30 inches 4-Term Story Drift % 3-Term Story Drift %
-873 lbf NONE
171 plf
V1 = (V/L)(L1+T1)/L1 =
Expire
IBC > SDPWS > APA 5/31/2025
ELR
Mountain Terrace Builders, Inc.
RHD 1482B-902B-GL
Lower Grid A - 10'-0"
Shear Wall Calculation Variables
Adj. Factor Method =
Wall Pier Aspect Ratio
V2 = (V/L)(T2+L2)/L2 =
First opening: va1 = vb1 = H/(ha1+hb1) = Check V1*L1+V2*L2=V?
Design Summary*
Req. Sheathing Capacity
Req. Strap Force
Req. HD Force - H(net)
Req. Shear Wall Anchorage Force (vmax)
*The Design Summary assumes that the shear wall is designed as blocked.
ELR Engineering
10508 32nd Ave SW Unit B
Seattle, WA 98146
phone: (206) 200-8764
email: elreng33@gmail.com
Foundation Calculations
Th
i
s
s
p
r
e
a
d
s
h
e
e
t
c
a
l
c
u
l
a
t
e
s
s
o
i
l
p
r
e
s
s
u
r
e
s
a
n
d
V
u
/
φV
n
&
M
u
/
φ
Mn
f
o
r
a
c
o
n
t
i
n
u
o
u
s
p
l
a
i
n
c
o
n
c
r
e
t
e
f
o
o
t
i
n
g
u
n
d
e
r
a
c
o
n
c
r
e
t
e
s
t
e
m
w
a
l
l
(
a
s
s
u
m
e
a
l
l
t
o
b
e
m
i
n
i
m
a
l
l
y
r
e
i
n
f
o
r
c
e
d
)
Pr
o
j
e
c
t
:
14
8
2
-
B
-
9
0
2
B
/
G
L
Da
t
e
:
5/
3
1
/
2
0
2
5
Co
d
e
:
AC
I
3
1
8
R
-
1
9
C
h
a
p
t
e
r
1
9
-
"
P
l
a
i
n
C
o
n
c
r
e
t
e
"
Fo
o
t
i
n
g
I
D
:
Ty
p
i
c
a
l
-
[
Ta
b
l
e
R
4
0
3
.
1
(
1
)
-
2
-
s
t
o
r
y
w
i
t
h
c
r
a
w
l
s
p
a
c
e
]
ft
g
.
(
w
)
=
16
ft
g
.
(
h
)
=
8
st
e
m
(
w
)
=
8
st
e
m
(
h
)
=
24
f'
c
=
25
0
0
φ
=
0.
6
Al
l
o
w
.
S
P
=
15
0
0
P
=
4
in
c
h
e
s
<
O
K
1)
D
e
t
e
r
m
i
n
e
a
n
d
i
n
p
u
t
u
n
f
a
c
t
o
r
e
d
d
e
s
i
g
n
l
o
a
d
s
a
p
p
l
i
e
d
t
o
f
o
o
t
i
n
g
D
(
p
s
f
)
tr
i
b
-
1
(
f
t
)
tr
i
b
-
2
(
f
t
)
D
(
p
l
f
)
L
(
p
s
f
)
L
(
p
l
f
)
S
(
p
s
f
)
S
(
p
l
f
)
Ro
o
f
17
25
42
5
0
25
62
5
Wa
l
l
10
8.
0
8
81
0
0
Fl
o
o
r
(
R
o
o
f
-
1
)
12
10
12
0
40
40
0
0
Wa
l
l
10
9.
0
8
91
0
0
Fl
o
o
r
(
R
o
o
f
-
2
)
12
4
48
40
16
0
0
Wa
l
l
10
0
0
0
0
Fl
o
o
r
(
R
o
o
f
-
3
)
12
0
0
40
0
0
St
e
m
w
a
l
l
15
0
8
24
20
0
0
0
Fo
o
t
i
n
g
15
0
16
8
13
3
0
0
10
9
8
5
6
0
6
2
5
Fa
c
t
o
r
e
d
d
e
s
i
g
n
s
o
i
l
p
r
e
s
s
u
r
e
s
Su
m
t
o
t
a
l
f
o
r
L
.
C
.
1.
2
D
+
1
.
6
L
+
0
.
5
0
S
+
1
.
6
0
H
13
1
8
89
6
31
3
18
9
5
ps
f
1.
2
D
+
1
.
0
L
+
1
.
6
0
S
+
1
.
6
0
H
13
1
8
56
0
10
0
0
21
5
8
ps
f
Un
f
a
c
t
o
r
e
d
s
o
i
l
p
r
e
s
s
u
r
e
s
D
+
L
10
9
8
56
0
0
OK
>
12
4
3
ps
f
D
+
0
.
7
5
(
L
+
S
)
10
9
8
42
0
46
9
OK
>
14
9
0
ps
f
D
+
S
10
9
8
0
62
5
OK
>
12
9
2
ps
f
2)
S
h
e
a
r
(
i
n
f
o
o
t
i
n
g
)
Ca
p
a
c
i
t
y
-
T
a
b
l
e
1
4
.
5
.
5
.
1
(
a
)
De
m
a
n
d
De
m
a
n
d
/
C
a
p
a
c
i
t
y
r
a
t
i
o
s
φV
n
=
28
8
0
lb
s
p
e
r
f
t
Vu
=
71
9
lb
s
p
e
r
f
t
D/
C
=
0.
2
5
0
<
O
K
φ
=
0.
6
f'
c
=
25
0
0
h
=
8
h
(
1
4
.
5
.
1
.
7
)
=
6
3)
B
e
n
d
i
n
g
(
i
n
f
o
o
t
i
n
g
)
Ca
p
a
c
i
t
y
-
1
4
.
5
.
2
.
1
a
-
b
De
m
a
n
d
φM
n
=
90
0
ft
l
b
s
p
e
r
f
t
Mu
=
12
0
ft
l
b
s
p
e
r
f
t
D/
C
=
0.
1
3
3
<
O
K
φ
=
0.
6
f'
c
=
25
0
0
h
=
8
h
(
1
4
.
5
.
1
.
7
)
=
6
Wall Footing
LIC# : KW-06019101, Build:20.25.05.28 ELR Engineering (c) ENERCALC, LLC 1982-2025
DESCRIPTION:1482B-902B)>Typical foundation "design" - 2-story + crawl space
ELR Engineering
10508 32nd Ave SW Unit B
Seattle, WA 98146
Phone: 206.200.8764
Email: elreng33@gmail.com
Project File: 1482B-902B-GL.ec6
Project Title:1482B-902B_GL for MTB, Inc.
Engineer:ELR
Project ID:
Printed: 31 MAY 2025, 9:19AM
Project Descr:
Code References
Calculations per ACI 318-19, IBC 2021
Load Combinations Used : ASCE 7-16
General Information
Material Properties Soil Design Values
1.50
Analysis Settings
150.0ksi
No
ksfAllowable Soil Bearing =
=
2.50
60.0
2,850.0
150.0 = 0.250
Flexure = 0.60
Shear =
Values
0.0018
Soil Passive Resistance (for Sliding)
1.0
1.0
=
Increases based on footing Width
Allow. Pressure Increase per foot of width = ksf
when footing is wider than = ft
:
=
AutoCalc Footing Weight as DL No
Adjusted Allowable Bearing Pressure ksf= 1.50
when base footing is below ft
pcf
Increase Bearing By Footing Weight
= pcf
Min. Overturning Safety Factor
=
: 1
Increases based on footing Depth0.60 =
Soil/Concrete Friction Coeff.
Ec : Concrete Elastic Modulus
Min. Sliding Safety Factor
=
=
: 1
Reference Depth below Surface ft
=Allow. Pressure Increase per foot of depth ksf
=
=
=
Concrete Density
= ksif'c : Concrete 28 day strength
fy : Rebar Yield ksi
Min Steel % Bending Reinf.
Dimensions
Footing Width 1.333ft=
Wall center offset
from center of footing 0in
=
=
Wall Thickness 8.0in
Footing Thickness 8.0in=
Rebar Centerline to Edge of Concrete...
= inat Bottom of footing 4.250
Reinforcing
#
Bars along X-X Axis
Reinforcing Bar Size
=
4
Bar spacing
=
13.00
Applied Loads
1.098 0.560 0.6250
D Lr
ksf
L S
P : Column Load
OB : Overburden =
k
W E
M-zz
V-x =k
k-ft
Vx applied = in above top of footing
=
H
=
Wall Footing
LIC# : KW-06019101, Build:20.25.05.28 ELR Engineering (c) ENERCALC, LLC 1982-2025
DESCRIPTION:1482B-902B)>Typical foundation "design" - 2-story + crawl space
ELR Engineering
10508 32nd Ave SW Unit B
Seattle, WA 98146
Phone: 206.200.8764
Email: elreng33@gmail.com
Project File: 1482B-902B-GL.ec6
Project Title:1482B-902B_GL for MTB, Inc.
Engineer:ELR
Project ID:
Printed: 31 MAY 2025, 9:19AM
Project Descr:
DESIGN SUMMARY Design OK
Governing Load CombinationFactor of Safety Item Applied Capacity
PASS 0.9936 Soil Bearing 1.490 ksf 1.50 ksf +D+0.750L+0.750S
PASS n/a Overturning - Z-Z 0.0 k-ft 0.0 k-ft No Overturning
PASS n/a Sliding - X-X 0.0 k 0.0 k No Sliding
PASS n/a Uplift 0.0 k 0.0 k No Uplift
Utilization Ratio Item Applied Capacity Governing Load Combination
PASS 0.06123 Z Flexure (+X) 0.1198 k-ft 1.957 k-ft +1.20D+L+1.60S
PASS 0.04261 Z Flexure (-X) 0.08338 k-ft 1.957 k-ft +1.20D+L+0.20S
PASS 0.03329 1-way Shear (+X) 1.3 psi 38.421 psi +1.20D+L+1.60S
PASS 0.03329 1-way Shear (-X)1.3 psi 38.421 psi +1.20D+L+1.60S
Detailed Results
Rotation Axis &
Xecc
Actual Soil Bearing Stress Actual / Allowable
Soil Bearing
Gross Allowable -X +X RatioLoad Combination...
D Only 1.50 ksf 0.8237 ksf 0.8237 ksf 0.5490.0 in
+D+L 1.50 ksf 1.244 ksf 1.244 ksf 0.8290.0 in
+D+S 1.50 ksf 1.293 ksf 1.293 ksf 0.8620.0 in
+D+0.750L 1.50 ksf 1.139 ksf 1.139 ksf 0.7590.0 in
+D+0.750L+0.750S 1.50 ksf 1.490 ksf 1.490 ksf 0.9940.0 in
+0.60D 1.50 ksf 0.4942 ksf 0.4942 ksf 0.3300.0 in
Flexure Axis & Load Combination k-ft
As Req'd
Footing Flexure
Tension @ Bot.Which Actual As
Statusk-ft
Mu
Side ? or Top ?in^2in^2 in^2
Gvrn. As Phi*Mn
+1.40D 0.064 -X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK
+1.40D 0.064 +X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK
+1.20D+1.60L 0.09216 -X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK
+1.20D+1.60L 0.09216 +X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK
+1.20D+1.60L+0.50S 0.1052 -X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK
+1.20D+1.60L+0.50S 0.1052 +X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK
+1.20D+L 0.07818 -X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK
+1.20D+L 0.07818 +X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK
+1.20D 0.05486 -X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK
+1.20D 0.05486 +X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK
+1.20D+L+1.60S 0.1198 -X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK
+1.20D+L+1.60S 0.1198 +X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK
+1.20D+1.60S 0.09649 -X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK
+1.20D+1.60S 0.09649 +X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK
+1.20D+L+0.50S 0.09119 -X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK
+1.20D+L+0.50S 0.09119 +X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK
+0.90D 0.04114 -X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK
+0.90D 0.04114 +X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK
+1.20D+L+0.20S 0.08338 -X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK
+1.20D+L+0.20S 0.08338 +X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK
One Way Shear Units : k
vu @ +XLoad Combination... vu @ -X vu:Max vu / Φ vnΦ vn Status
+1.40D 0.7 0.7 0.7 38.4 0.018psipsipsipsi OK
+1.20D+1.60L 1.0 1.0 1.0 38.4 0.026psipsipsipsi OK
+1.20D+1.60L+0.50S 1.1 1.1 1.1 38.4 0.029psipsipsipsi OK
+1.20D+L 0.8 0.8 0.8 38.4 0.022psipsipsipsi OK
+1.20D 0.6 0.6 0.6 38.4 0.015psipsipsipsi OK
+1.20D+L+1.60S 1.3 1.3 1.3 38.4 0.033psipsipsipsi OK
+1.20D+1.60S 1.0 1.0 1.0 38.4 0.027psipsipsipsi OK
+1.20D+L+0.50S 1.0 1.0 1.0 38.4 0.025psipsipsipsi OK
+0.90D 0.4 0.4 0.4 38.4 0.011psipsipsipsi OK
+1.20D+L+0.20S 0.9 0.9 0.9 38.4 0.023psipsipsipsi OK