Loading...
SF_ELREngCalcs_MTB, Inc._RHD-1482B-902B_GL_9512 Solberg Ct. SE_053125 (1) STRUCTURAL CALCULATIONS for the PROPOSED RUEPPELL HOME DESIGN 1482B-902B GARAGE LEFT May 31, 2025 Client: Mountain Terrace Builders, Inc. Site: 9512 Solberg Ct. SE Yelm, WA 98597 Lat. = 46.947454, Long. = -122.607708, Elevation = 350 ft. Calculated by: Eric L. Rice, PE ELR Engineering 10508 32nd Ave SW Unit B Seattle, WA 98146 Phone: (206) 200-8764 Email: elreng33@gmail.com ERIC L. RICE05/31/2025 ELR Engineering Project: Mountain Terrace Builders, Inc./RHD-1482B-902B/GL 10508 32nd Ave SW Unit B Job No. Figured by: ELR Seattle, WA 98146 Checked by: Date: 5/31/2025 Sheet: 2 phone: (206) 200-8764 email: elreng33@gmail.com Scope of Work: ELR Engineering was asked to provide permit submittal structural calculations and the supporting structural sheets for the proposed RHD-1482B-902B/GL for Mountain Terrace Builders, Inc. Our structural engineering information is shown in these calculations and on the submitted structural sheets. The information in these calculations conforms to the 2021 International Building & Residential Codes as amended by the local jurisdiction. These calculations and associated S-sheets are applicable and valid only for the site stated on the cover sheet of these calculations. Questions should be addressed to the undersigned. Eric L. Rice, PE ELR Engineering z O F- Q w J w H LL. w J z O Q w J w Q w af z O Q w J w S C� m N O O I m N 00 Z O Q w J w Z O LL GENERAL STRUCTURAL NOTES (Unless noted otherwise on plans and details) CODES AND SPECIFICATIONS 1. International Building Code(IBC)/International Residential Code(IRC) - 2021 edition with local jurisdiction amendments as applicable 2. ASCE/SEI 7-16 w/supplement 1 - Minimum Design Loads for Buildings and Other Structures 3. AWC NDS-2018/AWC SPDWS 2021/AWC WFCM 2018 - National Design Specification for Wood Construction with 2018 NDS Supplement/Special Design Provisions for Wind & Seismic/Wood Frame Construction Manual for One- and Two-Family Dwellings 4. ACI 318-19 - Building Code Requirements for Structural Concrete 5. AISC 360-16/341-16 - Specification for Structural Steel Buildings/Seismic Provisions for Structural Steel Buildings 6. AWS D1.4/D1.4M-2018 - Structural Welding Code 7. TMS 402-2016 - Building Code Requirements for Masonry Structures DESIGN CRITERIA 1. Wind - Risk category = II, Basic wind speed (V) = 100 mph, Wind directionality factor = 0.85, Exposure category = B, Topographic factor Kzt = 1.00, Gust effect factor = 0.85, Enclosure classification = Enclosed, Internal pressure coefficient (GCpi) = ± 0.18 2. Seismic - Risk category = II, Seismic importance factor (Ie) = 1.00, Site Class = D (default per 11.4.3), Ss = 1.293, S1 = 0.451, SDS = 1.034, SD1 = 0.556 Seismic Design Category = D, Basic seismic-force-resisting system = A.15 per ASCE 7- 16 Table 12.2-1, Seismic response coefficient (CS) = 0.159(orthogonal 1) & 0.159(orthogonal 2), Response modification factor (R) = 6.5(orthogonal 1) & 6.5(orthogonal 2), Design procedure used = Equivalent Lateral Force Procedure. 3. Roof - Dead: 17 psf Live: 20 psf Snow: Ps=25 psf 4. Floor - Dead: 12 psf (non-truss floor), 20 psf (truss floor) Live: 40 psf, 60 psf (deck) 5. Soils - Vertical bearing pressure (capacity): 1500 psf Lateral bearing pressure (capacity): 150 psf/ft of depth Coefficient of friction (capacity): 0.25 (multiplied by dead load) Active design lateral load: 40 psf/ft of depth At-rest design lateral load: 60 psf/ft of depth STRUCTURAL OBSERVATION 1. Structural observation is required only when specifically designated as being required by the registered design professional or the building official. SOIL CONSTRUCTION 1. Extend footings to undisturbed soil or fill compacted to 95% Modified Proctor (ASTM D1557). All construction on fill soils shall be reviewed by a registered geotechnical engineer. All footings shall be 18 inches minimum below adjacent finish grade. It is the contractor's responsibility to verify that the site soils provide the minimum vertical bearing pressure capacity stated above. PIPE PILES 1. Pipe shall conform to ASTM A53 Grade B. Unless noted otherwise, pipe is not required to be galvanized. 2. Pipe shall be driven to refusal and tested (as required) per Geotechnical Engineer’s requirements. REINFORCED CONCRETE 1. f'c = 3000 psi(*) at 28 days. Min 5-½ sacks of cement per cubic yard of concrete and maximum of 6-3/4 gallons of water per 94 lb. sack of cement. (*) Special inspection is not required - 3000 psi compressive strength is specified for weathering protection only - structural design is based on f'c = 2500 psi. 2. Maximum aggregate size is 7/8”. Maximum slump = 4 inches. 3. All concrete shall be air entrained - 5% minimum / 7% maximum (percent by volume of concrete). 4. Mixing and placement of all concrete shall be in accordance with the IBC and ACI 318. Proportions of aggregate to cement shall be such as to produce a dense, workable mix which can be placed without segregation or excess free surface water. Provide 3/4 inch chamfer on all exposed concrete edges unless otherwise indicated on architectural drawings. 5. No special inspection is required. 6. Vibrate all concrete walls. Segregation of materials shall be prevented. REINFORCING STEEL 1. Concrete reinforcement shall be detailed, fabricated and placed in accordance with ACI 318. 2. Reinforcing steel shall be grade 40 minimum and deformed billet steel conforming to ASTM A615. 1.291 0.466 1.033 0.570 3. Welded wire mesh shall conform to ASTM A185. 4. Reinforcing steel shall be accurately placed and adequately secured in position. The following protection for reinforcement shall be provided: Min Cover Cast against and permanently exposed to earth - 3" Exposed to earth or weather - 1.5" for #5 bar and smaller 2" for #6 bar and larger Slabs and walls at interior face - 1.5" 5. Lap continuous reinforcing bars 32 bar diameters (1’-6” min) in concrete. Corner bars consisting of 32 bar diameter (1’-6” min) bend shall be provided for all horizontal reinforcement. Lap welded wire mesh edges 1.5 mesh minimum. This criteria applies unless noted otherwise. RETAINING WALLS 1. Concrete floor slabs to be poured and cured and floor framing above shall be complete before backfilling behind retaining walls. TIMBER 1. Unless noted otherwise, all sawn lumber shall be kiln dried and graded/marked in conformance with WCLIB standard grading for west coast lumber. Lumber shall meet the following minimum criteria: 4x and larger: DF #2 (Fb=875 psi) 3x and smaller: HF #2 (Fb=850 psi) or SPF #2 (Fb=875 psi) 2. Wall studs shall be: Bearing walls with 10'-0" maximum stud length 2x4 HF stud grade or btr at 24" (max) oc - carrying only roof and ceiling 2x4 HF stud grade or btr at 16" (max) oc - carrying only one floor, roof and ceiling 2x6 HF stud grade or btr at 24" (max) oc - carrying only one floor, roof and ceiling 2x6 HF stud grade or btr at 16" (max) oc - carrying only two floors, roof and ceiling Non-Bearing walls with maximum stud length noted 2x4 HF stud grade or btr at 24" (max) oc - 10'-0" maximum stud length 2x6 HF stud grade or btr at 24" (max) oc - 15'-0" maximum stud length 3. Provide 4x6 DF2 header over openings not noted otherwise. Provide (1)2x trimmer and (1)2x king header support for clear spans 5'-0" or less. Provide (2)2x trimmer and (1)2x king header support for clear spans exceeding 5'-0". 4. Provide solid blocking in floor space under all posts and wall members connected to holdowns. Orient blocking such that wood grain in blocking is oriented vertically. 5. Provide double floor joists under all partition walls parallel to floor joists and along the perimeter of all diaphragm openings. 6. Provide double blocking between floor joists under all partition walls perpendicular to floor joists. WOOD CONNECTORS, FASTENERS AND PRESSURE TREATED WOOD 1. All wood connectors shall be Simpson or approved equal. 2. All nails shall be common wire nails unless noted otherwise. 3. All nailing shall meet the minimum nailing requirements of Table 2304.10.1 of the International Building Code. 4. All wood in contact with ground or concrete to be pressure-treated with a wood preservative. 5. Wood used above ground shall be pressure treated in accordance with AWPA U1 for the following conditions: a) Joists, girders, and subfloors that are closer than 18" to exposed ground in crawl spaces or unexcavated areas located within the perimeter of the building foundation. b) Wood framing including sheathing that rest on exterior foundation walls and are less than 8 inches from exposed earth. c) Sleepers, sills, ledgers, posts and columns in direct contact with concrete or masonry – except post and columns with code-approved post-base connector with 1 inch standoff. 6. All field-cut ends, notches, and drilled holes of preservative-treated wood shall be treated, for use category UC4A per AWPA U1-07, in the field using a 9.08% Copper Naphthenate (CuN) solution such as "End cut Solution" (Cunapsol-1) in accordance with the directions of the product manufacturer. 7. All wood connectors and associated steel fasteners (except anchor bolts and holdown anchors, 1/2" diameter and larger) in contact with any preservative-treated wood shall conform to one of the following corrosion protection configuration options: a) All wood connectors and associated steel fasteners shall be Type 303, 304, 306 or 316 stainless steel when actual wood preservative retention levels exceed the following levels: Treatment Retention level (pcf) ACQ (Alkaline Copper Quat) Greater than 0.40 MCQ (Micronized Copper Quat) Greater than 0.34 CA-B (Copper Azole) Greater than 0.21 CA-C & MCA (Copper Azole & Azole Biocide) Greater than 0.15 µCA-C (Azole Biocide) Greater than 0.14 b) When actual wood preservative retention levels do not exceed the levels in 7.a) above, all wood connectors and fasteners shall, at a minimum, be hot-dipped galvanized by one of the following methods: i) Continuous hot-dipped galvanizing per ASTM A653, type G185. ii) Batch or Post hot-dipped galvanizing per ASTM 123 for individual connectors and as per ASTM A153 for fasteners. Fasteners, other than nails, timber rivets, wood screws and lag screws, may be hot-dipped galvanized as per ASTM B695, Class 55 minimum. c) Plain carbon steel fasteners in SBX/DOT and zinc borate preservative treated wood in an interior, dry environment shall be permitted. 8. Do not mix stainless steel and hot-dipped galvanized wood connectors and fasteners. 9. All anchor bolts shall be as specified in the general notes on the shearwall schedule. 10. Where a connector strap connects two wood members, install one half of the total required nails or bolts in each member. 11. All bolts in wood members shall conform to ASTM A307. 12. Provide standard cut washers under the head of all bolts and lag screws bearing on wood. ANCHORAGE 1. All mudsill anchor bolts embedded in concrete or masonry shall be A307 unless noted otherwise. Retro-fit anchor bolts shall be Simpson Strong-Bolt 2 wedge anchors per ICC-ES ESR-3037 or Simpson Titen HD screw anchors per ICC-ES ESR-2713. 2. All shear wall holdown bolts embedded in concrete or masonry shall be A307 unless noted otherwise. Retro-fit holdown bolts shall be epoxied using Simpson SET-3G with embedment per plan, installed per manufacturer’s requirements. NAILS 1. Nailing of wood framed members to be in accordance with IBC table 2304.10.1 unless otherwise noted. Connection designs are based on nails with the following properties: PENNY WEIGHT DIAMETER (INCHES) LENGTH (INCHES) 8d sinker 0.113 2-3/8 8d common 0.131 2-1/2 10d box 0.131 3 16d sinker 0.148 3-1/4 16d common 0.162 3-1/2 SHEARWALLS 1. All shearwall plywood nailing and anchors shall be as detailed on the drawings and noted in the shearwall schedule. All exterior walls shall be sheathed with 7/16” APA rated sheathing (24/16) - blocked - with minimum nailing 0.131" diameter x 2.5" nails @ 6” OC edges/12” oc field unless noted otherwise. 2. All headers shall have strap connectors to the top plate each end when the header interrupts the continuous (2)2x top plate. Use (1)Simpson MSTA24 connector each end unless noted otherwise. 3. All shearwall holdowns shall be as noted on the plans and shall be Simpson or approved equal. 4. All holdown anchors shall be installed as shown on plans and as per manufacturer's requirements. Holdown anchors may be wet-set or drilled and epoxied (Simpson "SET-3G" epoxy or approved equal) with prior approval from the Engineer of Record. Provide the full embedment into concrete as stated on the plans. FLOOR AND ROOF DIAPHRAGMS 1. Apply 23/32” APA rated Sturd-I-Floor(24” oc) nailed to floor framing members with 0.131" diameter x 2.5" nails at 6” OC at all supported edges and at 12” OC at interior supports unless noted otherwise on the plans. Offset panel joints between parallel adjacent runs of sheathing. 2. Apply 7/16” APA rated sheathing(24/16) nailed to roof framing members with 0.113" diameter x 2.5" nails at 6” OC at supported edges and at 12” OC at interior supports unless noted otherwise on the plans. Offset panel joints between parallel adjacent runs of sheathing. 3. Blocking of interior edges is not required unless noted otherwise on the plans. BUILT-UP WOOD COLUMNS 1. All columns not specified or otherwise noted on the plans shall be (2)2x studs gang fastened per standard detail. 2. All columns not specified or otherwise noted on the plans supporting girder trusses or beams shall be (3)2x studs gang fastened per standard detail. MANUFACTURED WOOD TRUSSES 1. Trusses shall be designed, fabricated, and installed in accordance with the “Design Specifications for Light Metal Plate Connected Wood Trusses” by the Truss Plate Institute. 2. All trusses shall be designed and stamped by a professional engineer licensed in the State of Washington. 3. Roof trusses shall be fabricated of Douglas Fir-Larch or Hem-Fir. 4. All mechanical connectors shall be IBC approved. 5. Submit design calculations, shop drawings and installation drawings stamped by a licensed engineer of all trusses to the owner's representative for review and Building Department approval. 6. Truss members and components shall not be cut, notched, drilled, spliced or otherwise altered in any way without written approval of the registered design professional. 7. Where trusses align with shearwalls, a special truss shall be provided that has been designed to transfer the load between the roof sheathing and the shearwall below. This truss shall be designed to transfer a minimum of 100 plf along the full length of the truss. 8. All temporary and permanent bracing required for the stability of the truss under gravity loads and in-plane wind or seismic loads shall be designed by the truss engineer. Any bracing loads transferred to the main building system shall be identified and submitted to the engineer of record for review. PARALLEL STRAND LUMBER (PSL) 1. Parallel strand lumber shall be manufactured as per NER-292 and meet the requirements of ASTM D2559 - Fb=2900 psi, E=2.2E6 psi for beams and Fb=2400 psi, E=1.8E6 psi for columns. LAMINATED VENEER LUMBER (LVL) 1. Laminated veneer lumber shall be Doug Fir meeting the requirements of ASTM D2559 - Fb=2600 psi, E=2.0E6 psi. 2. For top loaded multiple member beams only, fasten with two rows of 0.148" diameter x 3" nails at 12” OC. Use three rows of 0.148" diameter x 3" nails for beams with depths of 14” or more. 3. Provide full depth blocking for lateral support at bearing points. LAMINATED STRAND LUMBER (LSL) 1. Laminated strand lumber shall be manufactured as per NER-292 and meet the requirements of ASTM D2559 - Fb=2325 psi, E=1.55E6 psi for beams and Fb=1700 psi, E=1.3E6 psi for beams/columns and Fb=1900 psi, E=1.3E6 psi for planks. GLUED LAMINATED WOOD MEMBERS (GLB) 1. Glued laminated wood beams shall be Douglas Fir, kiln-dried, stress grade combination 24F-V4 (Fb=2400 psi, E=1.8E6 psi) unless otherwise noted on the plans. 2. Fabrication shall be in conformance with ANSI/APA 190.1-2017 and ASTM D3737-2018E1. 3. AITC stamp and certification required on each and every member. WOOD I-JOISTS 1. Joists by Truss Joists/MacMillan or approved equal. 2. Joists to be erected in accordance with the plans and any Manufacturers drawings and installation drawings. 3. Construction loads in excess of the design loads are not permitted. 4. Provide erection bracing until sheathing material has been installed. 5. See manufacturer's references for limitations on the cutting of webs and/or flanges. STEEL CONSTRUCTION 1. Structural steel shall be ASTM A992 (wide flange shapes) or A53-Grade B (pipe) or A36 (other shapes and plate) unless noted otherwise. 2. All fabrication and erection shall comply with AISC specifications and codes. 3. All welding shall be as shown on the drawings and in accordance with AWS and AISC standards. Welding shall be performed by WABO certified welders using E70XX electrodes. Only pre-qualified welds (as defined by AWS) shall be used. MASONRY 1. Construction shall meet the requirements of IBC Chapter 21. 2. Special inspection is not required. 3. All concrete block masonry shall be laid up in running bond and shall have a minimum compressive strength of f’m = 1500 psi, using Type “S” mortar, f’c = 1800 psi. 4. All cells containing reinforcing bars shall be filled with concrete grout with an f’c = 2000 psi in maximum lifts of 4’-0”. 5. Bond beams with two #5 horizontally shall be provided at all floor and roof elevations and at the top of the wall. 6. Provide a lintel beam with two #5 horizontally over all openings and extend these two bars 2’-0” past the opening at each side or as far as possible and hook. 7. Provide two #5 vertically for the full story height of the wall at wall ends, intersections, corners and at each side of all openings unless otherwise shown. 8. Dowels to masonry walls shall be embedded a minimum of 1’-6” or hooked into the supporting structure and of the same size and spacing as the vertical wall reinforcing. 9. Provide corner bars to match the horizontal walls reinforcing at all wall intersections. 10. Reinforcing steel shall be specified under “REINFORCING STEEL”. Lap all reinforcing bars 40 bar diameters with a minimum of 1’-6”. 11. Masonry walls shall be reinforced as shown on the plans and details and if not shown, shall have (1) #5 @ 48” OC horizontally and (1) #5 @ 48” OC vertically. 12. Embed anchor bolts a minimum of 5”. GENERAL CONSTRUCTION 1. All materials, workmanship, design, and construction shall conform to the project drawings, specifications, and the International Building Code. 2. Structural drawings shall be used in conjunction with architectural drawings for bidding and construction. Contractor shall verify dimensions and conditions for compatibility and shall notify the architect of any discrepancies prior to construction. Discrepancies: The contractor shall inform the engineer in writing, during the bidding period, of any and all discrepancies or omissions noted on the drawings and specifications or of any variations needed in order to conform to codes, rules and regulations. Upon receipt of such information, the engineer will send written instructions to all concerned. Any such discrepancy, omission, or variation not reported shall be the responsibility of the contractor. 3. The contractor shall provide temporary bracing as required until all permanent framing and connections have been completed. 4. The contractor shall coordinate with the building department for all permits and building department required inspections. 5. Do not scale drawings. Use only written dimensions. 6. Drawings indicate general and typical details of construction. Where conditions are not specifically indicated but are of similar character to details shown, similar details of construction shall be used, subject to review and approval by the architect and the structural engineer. 7. Contractor initiated changes shall be submitted in writing to the architect and structural engineer for approval prior to fabrication or construction. 8. All structural systems which are to be composed of field erected components shall be supervised by the supplier during manufacturing, delivery, handling, storage, and erection in accordance with instructions prepared by the supplier. 9. Contractor shall be responsible for all safety precautions and the methods, techniques, sequences, or procedures required to perform the work. 10. Shop drawing review: Dimensions and quantities are not reviewed by the engineer of record, therefore, must be reviewed by the contractor. Contractor shall review and stamp all shop drawings prior to submitting for review by the engineer of record. Submissions shall include a reproducible and one copy. Reproducible will be marked and returned. Re-submittals of previously submitted shop drawings shall have all changes clouded and dated with a sequential revision number. Contractor shall review and stamp all revised and resubmitted shop drawings prior to submittal and review by the engineer of record. In the event of conflict between the shop drawings and design drawings/specifications, the design drawings/specifications shall control and be followed. Sh e a r w a l l S c h e d u l e GE N E R A L N O T E S : ( U N L E S S N O T E D O T H E R W I S E ) (1 ) W a l l s t u d f r a m i n g i s a s s u m e d t o b e a s p e r t h e g en e r a l s t r u c t u r a l n o t e s . (2 ) A l l p a n e l e d g e s a r e t o b e s u p p o r t e d b y f r a m i n g me m b e r s - s t u d s , p l a t e s a n d b l o c k i n g ( u n l e s s n o t e d ot h e r w i s e i n t h e t a b l e a b o v e ) . (3 ) A l l o w a b l e s h e a r s i n t h e t a b l e a b o v e a s s u m e e i t h er 1 ) w a l l s t u d s a t 1 6 " o c ( m a x . ) w i t h p a n e l l o n g - a x is o r i e n t e d v e r t i c a l l y o r h o r i z o n t a l l y o r 2 ) w a l l s tu d s a t 2 4 " o c ( m a x . ) w i t h p a n e l l o n g - a x i s o r i e n t e d ho r i z o n t a l l y . (4 ) W h e r e t h e f u l l t h i c k n e s s o f ( 2 ) 2 x o r 3 x m u d s i l l s a r e d i r e c t l y c o n n e c t e d t o w a l l s t u d s , u s e ( 2 ) 0 . 1 4 8" d i a . x 4 . 5 " e n d n a i l s ( 3 0 d b o x ) p e r s t u d . (5 ) ( 2 ) 2 x m a t e r i a l c a n b e u s e d i n l i e u o f 3 x m a t e r i al p r o v i d e d t h e ( 2 ) 2 x i s g a n g n a i l e d a s p e r t h e a s s oc i a t e d s h e a r w a l l b o t t o m p l a t e n a i l i n g . (6 ) W h e r e b o t t o m p l a t e a t t a c h m e n t s p e c i f i e s 2 o r m o re r o w s o f n a i l s i n t o t h e w o o d f l o o r b e l o w , p r o v i d e r i m j o i s t ( s ) , j o i s t ( s ) , o r b l o c k i n g t h a t h a s a m i n im u m t o t a l w i d t h o f 2 . 5 i n c h e s . (7 ) U n l e s s n o t e d o t h e r w i s e , p r o v i d e ( 1 ) 2 x t r e a t e d m ud s i l l w i t h 5 / 8 " d i a m e t e r a n c h o r b o l t s a t 7 2 " o c a n d l o c a t e d w i t h i n 4 " t o 1 2 " f r o m t h e c u t e n d s o f t h e s i l l p l a t e . p r o v i d e a m i n i m u m o f t w o a n c h o r b o l t s pe r m u d s i l l se c t i o n . (8 ) P r o v i d e . 2 2 9 " x 3 " x 3 " p l a t e w a s h e r s a t a l l a n c h o r b o l t s i n 2 x 4 / 3 x 4 m u d s i l l s a n d . 2 2 9 " x 3 " x 4 - 1 / 2 " p l a t e w a s h e r s a t a l l a n c h o r b o l t s i n 2 x 6 / 3 x 6 m u d s i l l s . th e d i s t a n c e f r o m t h e i n s i d e f a c e o f a n y s t r u c t u r a l s h e a t h i n g t o th e n e a r e s t e d g e o f t h e n e a r e s t p l a t e w a s h e r s h a l l no t e x c e e d 1 / 2 " . e m b e d a n c h o r b o l t s 7 i n c h e s m i n . i nt o c o n c r e t e . m i n . a n c h o r b o l t c o n c r e t e e d g e d i s t . (p e r p . t o m u d s i l l ) i s 1 - 3 / 4 ” . m i n . a n c h o r b o l t c o n c re t e e n d di s t . ( p a r a l l e l t o m u d s i l l ) i s 8 " . (9 ) U s e 0 . 1 3 1 " d i a . x 1 - 1 / 2 " l o n g n a i l s i f c o n n e c t o r i s i n c o n t a c t w i t h f r a m i n g . u s e 0 . 1 3 1 " d i a . x 2 - 1 / 2 " l o ng n a i l s i f c o n n e c t o r i s i n s t a l l e d o v e r s h e a t h i n g . (1 0 ) F o r t w o a n d t h r e e s t o r y c o n s t r u c t i o n , a t f l o o r j o i s t / f l o o r t r u s s e l e v a t i o n , a d j o i n i n g h o r z . p a n e l j o i n t s m a y b e l o c a t e d a s p e r d e t a i l 1 0 / 1 0 A / 1 0 B . (1 1 ) S p a c i n g s h o w n a s s u m e s t o p p l a t e c o n n e c t o r s a r e i n s t a l l e d o n o n e s i d e o f w a l l . i f i n s t a l l e d o n b o th s i d e s o f w a l l , r e q u i r e d s p a c i n g m a y b e m u l t i p l i e d b y t w o ( 2 ) . (1 2 ) T a b l e a b o v e s h o w s A S D a l l o w a b l e u n i t s h e a r c a p ac i t y . L R F D f a c t o r e d u n i t s h e a r r e s i s t a n c e i s c a l c ul a t e d b y m u l t i p l y i n g A S D v a l u e s a b o v e b y 1 . 4 f o r s ei s m i c a n d b y 1 . 6 f o r w i n d . (1 3 ) S h e a r w a l l s d e s i g n a t e d a s F T A O ( f o r c e t r a n s f e r ar o u n d o p e n i n g s ) o r p e r f o r a t e d r e q u i r e s h e a t h i n g a n d s h e a r n a i l i n g a b o v e a n d b e l o w a l l o p e n i n g s f o r t h e f u l l e x t e n t o f t h e s h e a r w a l l . (1 4 ) S h e a r w a l l e d g e n a i l i n g i s r e q u i r e d a l o n g f u l l he i g h t o f a l l h o l d o w n m e m b e r s . A t b u i l t - u p h o l d o w n m e m b e r s , d i s t r i b u t e e d g e n a i l i n g i n t o a l l l a m i n a t i on s . (1 5 ) F o r t w o a n d t h r e e s t o r y c o n s t r u c t i o n , a t f l o o r j o i s t / f l o o r t r u s s e l e v a t i o n , L T P 4 ' s a n d / o r A 3 5 ' s a re n o t r e q u i r e d a t t h e t o p o f t h e s h e a r w a l l w h e n / w he r e t h e s h e a r w a l l i s s h e a t h e d o n o n e s i d e o n l y a n d w h e n / w h e r e t h e lo c a t i o n o f a d j o i n i n g h o r z . p a n e l j o i n t s m e e t s f o o t no t e ( 1 0 ) r e q u i r e m e n t s . (1 6 ) V e r t i c a l a n d h o r i z o n t a l p a n e l j o i n t s ( w h e r e o c cu r ) o n o p p o s i t e s i d e s o f t h e w a l l s h a l l n o t o c c u r on t h e s a m e f r a m i n g m e m b e r ( s t u d , p l a t e , o r b l o c k i n g) u n l e s s t h a t f r a m i n g m e m b e r i s a 3 x m e m b e r ( m i n . ) w i t h p a n e l ed g e n a i l i n g s t a g g e r e d o r t h a t f r a m i n g m e m b e r i s a (2 ) 2 x ( m i n . ) a s p e r f o o t n o t e ( 5 ) a b o v e . (1 7 ) H o t - d i p p e d o r m e c h a n i c a l l y d e p o s i t e d g a l v a n i z e d b o x n a i l s ( 2 . 5 " l o n g x 0 . 1 1 3 " s h a n k d i a . x 0 . 2 9 7 " h e a d d i a . ) m a y b e s u b s t i t u t e d f o r t h e s h e a t h i n g n a il s i n t h e t a b l e a b o v e . re v . 0 6 . 1 4 . 2 0 2 3 Ma r k pe r pl a n Sh e a t h i n g No . s i d e s sh e a t h e d Sh e a t h i n g na i l s i z e (L e n g t h x Sh a n k x H e a d ) (1 7 ) Ed g e fa s t e n e r sp a c i n g (1 4 ) Fi e l d fa s t e n e r sp a c i n g Fr a m i n g me m b e r a t ad j o i n i n g pa n e l s ( 2 ) Bot t o m pl a t e wh e n di r e c t l y on w o o d (4 ) , ( 5 ) Bo t t o m pl a t e na i l s i z e (L e n g t h x S h a n k x H e a d ) Bo t t o m pl a t e na i l sp a c i n g in e a c h ro w Bot t o m pl a t e wh e n di r e c t l y o n co n c r e t e (4 ) , ( 5 ) An c h o r bo l t di a . (7 ) , ( 8 ) An c h o r bo l t sp a c i n g , (2 x s i l l ) (3 x s i l l ) To p p l a t e co n n e c t o r (9 ) , ( 1 5 ) To p p l a t e co n n e c t o r sp a c i n g (1 1 ) , ( 1 5 ) AS D Vs e i s m i c (1 2 ) AS D Vw i n d (+ 4 0 % ) (1 2 ) W6 A 7/ 1 6 ” PL Y / O S B 1 2. 5 " L x 0. 1 3 1 " D x 0. 2 8 1 " H 6” 1 2 ” 2x st u d & un b l o c k e d ho r z . j o i n t s 2x o r 3 x 3. 2 5 " L x 0. 1 4 8 " D x 0. 3 4 4 " H 1- r o w 12 ” 2x o r 3 x 5/ 8 ” 48 ” ( 2 x ) 72 " ( 3 x ) A3 5 o r LT P 4 50 ” 14 5 pl f 20 3 pl f W6 B 7/ 1 6 ” PL Y / O S B 1 2. 5 " L x 0. 1 3 1 " D x 0. 2 8 1 " H 6” 6 ” 2x st u d & un b l o c k e d ho r z . j o i n t s 2x o r 3 x 3. 2 5 " L x 0. 1 4 8 " D x 0. 3 4 4 " H 1- r o w 9” 2x o r 3 x 5/ 8 ” 48 ” ( 2 x ) 72 " ( 3 x ) A3 5 o r LT P 4 36 ” 19 4 pl f 27 1 pl f W6 7/ 1 6 ” PL Y / O S B 1 2. 5 " L x 0. 1 3 1 " D x 0. 2 8 1 " H 6” 1 2 ” (3 ) 2 x 2 x o r 3 x 3. 2 5 " L x 0. 1 4 8 " D x 0. 3 4 4 " H 1- r o w 7” 2x o r 3 x 5/ 8 ” 48 ” ( 2 x ) 72 " ( 3 x ) A3 5 o r LT P 4 30 ” 24 2 pl f 33 9 pl f W4 7/ 1 6 ” PL Y / O S B 1 2. 5 " L x 0. 1 3 1 " D x 0. 2 8 1 " H 4” 1 2 ” (3 ) 3x (5 ) 2x o r 3 x 3. 2 5 " L x 0. 1 4 8 " D x 0. 3 4 4 " H 2- r o w 10 " (6 ) 2x o r 3 x 5/ 8 ” 42 ” ( 2 x ) 58 " ( 3 x ) A3 5 o r LT P 4 20 ” 35 4 pl f 49 5 pl f W3 7/ 1 6 ” PL Y / O S B 1 2. 5 " L x 0. 1 3 1 " D x 0. 2 8 1 " H 3” 1 2 ” (3 ) 3x (5 ) 2x o r 3 x 3. 2 5 " L x 0. 1 4 8 " D x 0. 3 4 4 " H 2- r o w 8" (6 ) 2x o r 3 x 5 / 8 ” 36 ” ( 2 x ) 45 " ( 3 x ) A3 5 o r LT P 4 16 ” 45 5 pl f 63 7 pl f W2 7/ 1 6 ” PL Y / O S B 1 2. 5 " L x 0. 1 3 1 " D x 0. 2 8 1 " H 2” 1 2 ” (3 ) 3x (5 ) 2x o r 3 x 3. 2 5 " L x 0. 1 4 8 " D x 0. 3 4 4 " H 2- r o w s 6" (6 ) 2x o r 3 x 5 / 8 ” 28 " ( 2 x ) 34 " ( 3 x ) A3 5 o r LT P 4 12 ” 59 5 pl f 83 2 pl f 2W 3 7/ 1 6 ” PL Y / O S B 2 2. 5 " L x 0. 1 3 1 " D x 0. 2 8 1 " H 3” 1 2 ” (3 ) 3x (5 , 1 6 ) 2x o r 3 x 3. 2 5 " L x 0. 1 4 8 " D x 0. 3 4 4 " H 3- r o w s 6" (6 ) 2x o r 3x ( 1 6 ) 5/ 8 ” 18 " ( 2 x ) 22 " ( 3 x ) A3 5 o r LT P 4 8” 91 0 pl f 12 7 4 pl f 2W 2 19 / 3 2 ” PL Y / O S B 2 2. 5 " L x 0. 1 3 1 " D x 0. 2 8 1 " H 2” 1 2 ” (3 ) 3x (5 , 1 6 ) 2x o r 3 x 3. 2 5 " L x 0. 1 4 8 " D x 0. 3 4 4 " H 3- r o w s 4" (6 ) 2x o r 3x ( 1 6 ) 5/ 8 ” 12 " ( 2 x ) 15 " ( 3 x ) A3 5 o r LT P 4 5” 13 6 2 pl f 19 0 7 pl f ELR Engineering 10508 32nd Ave SW Unit B Seattle, WA 98146 phone: (206) 200-8764 email: elreng33@gmail.com Vertical Calculations 8SSHU 5RRI 0HPEHU 1DPH 5HVXOWV 0D[ 87,/  &XUUHQW 6ROXWLRQ &RPPHQWV 3DVVHG  0  SLHFH V  [  ') 1R /RZHU 5RRI8SSHU )ORRU 0HPEHU 1DPH 5HVXOWV 0D[ 87,/  &XUUHQW 6ROXWLRQ &RPPHQWV D 3DVVHG  Δ/  SLHFH V   7-,Š  #  2& E 3DVVHG  5  SLHFH V   7-,Š  #  2& F 3DVVHG  5  SLHFH V   7-,Š  #  2&:HE 6WLIIHQHUV 5HTXLUHG G 3DVVHG  5  SLHFH V   7-,Š  #  2& 3DVVHG  5  SLHFH V   [  )9 ') *OXODP 3DVVHG  5  SLHFH V  [  ') 1R 3DVVHG  5  SLHFH V  [  ') 1R 3DVVHG  Δ7  SLHFH V   [  ( 3DUDOODPŠ 36/ $%3DVVHG  9  SLHFH V   [  )9 ') *OXODP $%3DVVHG  0  SLHFH V   [  )9 ') *OXODP 3DVVHG  5  SLHFH V   [   ( 0LFUROODPŠ /9/ 3DVVHG  Δ/  SLHFH V   [   ( 3DUDOODPŠ 36/ 3DVVHG  5  SLHFH V   [   ( 3DUDOODPŠ 36/ 0DLQ )ORRU 0HPEHU 1DPH 5HVXOWV 0D[ 87,/  &XUUHQW 6ROXWLRQ &RPPHQWV 3DVVHG  5  SLHFH V   [   ( 0LFUROODPŠ /9/ 3DVVHG  5  SLHFH V   [   ( 0LFUROODPŠ /9/ 3DVVHG  5  SLHFH V  [  ') 1R %%*/ IRU 07% ,QF -2% 6800$5< 5(3257 )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87& (ULF 5LFH (/5 (QJLQHHULQJ   HOUHQJ#JPDLOFRP )RUWH:(% Y )LOH 1DPH %%*/ IRU 07% ,QF &OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF 3URMHFW %%*/ Page 1 / 27 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #   3DVVHG   '   6 $OO 6SDQV 6KHDU OEV  #  3DVVHG   '   6 $OO 6SDQV 0RPHQW )WOEV  #   3DVVHG   '   6 $OO 6SDQV /LYH /RDG 'HIO LQ  #   3DVVHG /  '   6 $OO 6SDQV 7RWDO /RDG 'HIO LQ  #   3DVVHG /  '   6 $OO 6SDQV 0HPEHU /HQJWK    6\VWHP  :DOO 0HPEHU 7\SH  +HDGHU %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU ‡$SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6 %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG 6QRZ )DFWRUHG $FFHVVRULHV   7ULPPHU  +)1RQH   7ULPPHU  +)1RQH ‡0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X   RF %RWWRP (GJH /X   RF 'HDG 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 7ULEXWDU\ :LGWK   &RPPHQWV   6HOI :HLJKW 3/)  WR  1$   8QLIRUP 36)  WR   'HIDXOW /RDG :H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHV UHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW :H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65 DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV GRFXPHQWOLEUDU\ 7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ $UFKLWHFW'HVLJQHU 5+' :H\HUKDHXVHU 1RWHV 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' 8SSHU 5RRI   SLHFH V  [  ') 1R )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87& (ULF 5LFH (/5 (QJLQHHULQJ   HOUHQJ#JPDLOFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH %%*/ IRU 07% ,QF &OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF 3URMHFW %%*/ Page 3 / 27 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #     3DVVHG   '   / $OO 6SDQV 6KHDU OEV  #  3DVVHG   '   / $OO 6SDQV 0RPHQW )WOEV  #  3DVVHG   '   / $OO 6SDQV /LYH /RDG 'HIO LQ  #  3DVVHG /  '   / $OO 6SDQV 7RWDO /RDG 'HIO LQ  #  3DVVHG /  '   / $OO 6SDQV 7-3URŒ 5DWLQJ $Q\3DVVHG  0HPEHU /HQJWK     6\VWHP  )ORRU 0HPEHU 7\SH  -RLVW %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU ‡$ VWUXFWXUDO DQDO\VLV RI WKH GHFN KDV QRW EHHQ SHUIRUPHG ‡'HIOHFWLRQ DQDO\VLV LV EDVHG RQ FRPSRVLWH DFWLRQ ZLWK D VLQJOH OD\HU RI  3DQHO  6SDQ 5DWLQJ WKDW LV JOXHG DQG QDLOHG GRZQ ‡$GGLWLRQDO FRQVLGHUDWLRQV IRU WKH 7-3URŒ 5DWLQJ LQFOXGH  *\SVXP FHLOLQJ ‡ 5LP %RDUG LV DVVXPHG WR FDUU\ DOO ORDGV DSSOLHG GLUHFWO\ DERYH LW E\SDVVLQJ WKH PHPEHU EHLQJ GHVLJQHG %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH )DFWRUHG $FFHVVRULHV 'HWDLOV   6WXG ZDOO  +)  5LP %RDUG $   6WXG ZDOO  +)  5LP %RDUG $ ‡7-, MRLVWV DUH RQO\ DQDO\]HG XVLQJ 0D[LPXP $OORZDEOH EUDFLQJ VROXWLRQV ‡0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X   RF %RWWRP (GJH /X   RF 'HDG )ORRU /LYH 9HUWLFDO /RDG /RFDWLRQ 6SDFLQJ   &RPPHQWV   8QLIRUP 36)  WR  'HIDXOW /RDG :H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHV UHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW :H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65 DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV GRFXPHQWOLEUDU\ 7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ $UFKLWHFW'HVLJQHU 5+' :H\HUKDHXVHU 1RWHV 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' /RZHU 5RRI8SSHU )ORRU D  SLHFH V   7-,Š  #  2& )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87& (ULF 5LFH (/5 (QJLQHHULQJ   HOUHQJ#JPDLOFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH %%*/ IRU 07% ,QF &OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF 3URMHFW %%*/ Page 4 / 27 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #    3DVVHG   '   / $OO 6SDQV 6KHDU OEV  #   3DVVHG   '   / $OO 6SDQV 0RPHQW )WOEV  #  3DVVHG   '   / $OO 6SDQV /LYH /RDG 'HIO LQ  #   3DVVHG /  '   / $OW 6SDQV 7RWDO /RDG 'HIO LQ  #   3DVVHG /  '   / $OW 6SDQV 7-3URŒ 5DWLQJ $Q\3DVVHG  0HPEHU /HQJWK    6\VWHP  )ORRU 0HPEHU 7\SH  -RLVW %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU ‡$ VWUXFWXUDO DQDO\VLV RI WKH GHFN KDV QRW EHHQ SHUIRUPHG ‡'HIOHFWLRQ DQDO\VLV LV EDVHG RQ FRPSRVLWH DFWLRQ ZLWK D VLQJOH OD\HU RI  3DQHO  6SDQ 5DWLQJ WKDW LV JOXHG DQG QDLOHG GRZQ ‡$GGLWLRQDO FRQVLGHUDWLRQV IRU WKH 7-3URŒ 5DWLQJ LQFOXGH  *\SVXP FHLOLQJ ‡ 5LP %RDUG LV DVVXPHG WR FDUU\ DOO ORDGV DSSOLHG GLUHFWO\ DERYH LW E\SDVVLQJ WKH PHPEHU EHLQJ GHVLJQHG ‡ %ORFNLQJ 3DQHOV DUH DVVXPHG WR FDUU\ QR ORDGV DSSOLHG GLUHFWO\ DERYH WKHP DQG WKH IXOO ORDG LV DSSOLHG WR WKH PHPEHU EHLQJ GHVLJQHG ‡ $W KDQJHU VXSSRUWV WKH 7RWDO %HDULQJ GLPHQVLRQ LV HTXDO WR WKH ZLGWK RI WKH PDWHULDO WKDW LV VXSSRUWLQJ WKH KDQJHU ‡ ï 6HH &RQQHFWRU JULG EHORZ IRU DGGLWLRQDO LQIRUPDWLRQ DQGRU UHTXLUHPHQWV ‡ ð 5HTXLUHG %HDULQJ /HQJWK  5HTXLUHG %HDULQJ /HQJWK ZLWK :HE 6WLIIHQHUV %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH )DFWRUHG $FFHVVRULHV 'HWDLOV   6WXG ZDOO  +)  5LP %RDUG $   6WXG ZDOO  +)%ORFNLQJ %   +DQJHU RQ   36/ EHDP +DQJHUï    ð 6HH QRWH ï  ‡7-, MRLVWV DUH RQO\ DQDO\]HG XVLQJ 0D[LPXP $OORZDEOH EUDFLQJ VROXWLRQV ‡0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X   RF %RWWRP (GJH /X  RF &RQQHFWRU 6LPSVRQ 6WURQJ7LH 6XSSRUW 0RGHO 6HDW /HQJWK 7RS )DVWHQHUV )DFH )DVWHQHUV 0HPEHU )DVWHQHUV $FFHVVRULHV   )DFH 0RXQW +DQJHU ,861$G[6WURQJ*ULS ‡5HIHU WR PDQXIDFWXUHU QRWHV DQG LQVWUXFWLRQV IRU SURSHU LQVWDOODWLRQ DQG XVH RI DOO FRQQHFWRUV 'HDG )ORRU /LYH 9HUWLFDO /RDG /RFDWLRQ 6SDFLQJ   &RPPHQWV   8QLIRUP 36)  WR   'HIDXOW /RDG 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' /RZHU 5RRI8SSHU )ORRU E  SLHFH V   7-,Š  #  2& )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87& (ULF 5LFH (/5 (QJLQHHULQJ   HOUHQJ#JPDLOFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH %%*/ IRU 07% ,QF &OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF 3URMHFW %%*/ Page 5 / 27 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #     3DVVHG   '   / $OO 6SDQV 6KHDU OEV  #  3DVVHG   '   / $OO 6SDQV 0RPHQW )WOEV  #   3DVVHG   '   /   6 $OO 6SDQV /LYH /RDG 'HIO LQ  #   3DVVHG /  '   / $OW 6SDQV 7RWDO /RDG 'HIO LQ  # 3DVVHG /  '   /   6 $OW 6SDQV 7-3URŒ 5DWLQJ $Q\3DVVHG  0HPEHU /HQJWK     6\VWHP  )ORRU 0HPEHU 7\SH  -RLVW %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡2YHUKDQJ GHIOHFWLRQ FULWHULD // / DQG 7/   ‡$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU ‡$ VWUXFWXUDO DQDO\VLV RI WKH GHFN KDV QRW EHHQ SHUIRUPHG ‡'HIOHFWLRQ DQDO\VLV LV EDVHG RQ FRPSRVLWH DFWLRQ ZLWK D VLQJOH OD\HU RI  3DQHO  6SDQ 5DWLQJ WKDW LV JOXHG DQG QDLOHG GRZQ ‡$GGLWLRQDO FRQVLGHUDWLRQV IRU WKH 7-3URŒ 5DWLQJ LQFOXGH  *\SVXP FHLOLQJ ‡ %ORFNLQJ 3DQHOV DUH DVVXPHG WR FDUU\ QR ORDGV DSSOLHG GLUHFWO\ DERYH WKHP DQG WKH IXOO ORDG LV DSSOLHG WR WKH PHPEHU EHLQJ GHVLJQHG ‡ $W KDQJHU VXSSRUWV WKH 7RWDO %HDULQJ GLPHQVLRQ LV HTXDO WR WKH ZLGWK RI WKH PDWHULDO WKDW LV VXSSRUWLQJ WKH KDQJHU ‡ ï 6HH &RQQHFWRU JULG EHORZ IRU DGGLWLRQDO LQIRUPDWLRQ DQGRU UHTXLUHPHQWV ‡ ð 5HTXLUHG %HDULQJ /HQJWK  5HTXLUHG %HDULQJ /HQJWK ZLWK :HE 6WLIIHQHUV %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV 'HWDLOV   6WXG ZDOO  +)%ORFNLQJ (   +DQJHU RQ   36/ EHDP +DQJHUï    ð 6HH QRWH ï : ‡7-, MRLVWV DUH RQO\ DQDO\]HG XVLQJ 0D[LPXP $OORZDEOH EUDFLQJ VROXWLRQV ‡0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X   RF %RWWRP (GJH /X   RF &RQQHFWRU 6LPSVRQ 6WURQJ7LH 6XSSRUW 0RGHO 6HDW /HQJWK 7RS )DVWHQHUV )DFH )DVWHQHUV 0HPEHU )DVWHQHUV $FFHVVRULHV   )DFH 0RXQW +DQJHU ,861$G[G[:HE 6WLIIHQHUV ‡5HIHU WR PDQXIDFWXUHU QRWHV DQG LQVWUXFWLRQV IRU SURSHU LQVWDOODWLRQ DQG XVH RI DOO FRQQHFWRUV 'HDG )ORRU /LYH 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 6SDFLQJ    &RPPHQWV   8QLIRUP 36)  WR  'HIDXOW /RDG   3RLQW 3/)     3RLQW 3/)   'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' /RZHU 5RRI8SSHU )ORRU F  SLHFH V   7-,Š  #  2& )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87& (ULF 5LFH (/5 (QJLQHHULQJ   HOUHQJ#JPDLOFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH %%*/ IRU 07% ,QF &OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF 3URMHFW %%*/ Page 7 / 27 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #    3DVVHG   '   / $OO 6SDQV 6KHDU OEV  #  3DVVHG   '   / $OO 6SDQV 0RPHQW )WOEV  #   3DVVHG   '   / $OO 6SDQV /LYH /RDG 'HIO LQ  #   3DVVHG /  '   / $OO 6SDQV 7RWDO /RDG 'HIO LQ  #   3DVVHG /  '   / $OO 6SDQV 7-3URŒ 5DWLQJ $Q\3DVVHG  0HPEHU /HQJWK     6\VWHP  )ORRU 0HPEHU 7\SH  -RLVW %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU ‡$ VWUXFWXUDO DQDO\VLV RI WKH GHFN KDV QRW EHHQ SHUIRUPHG ‡'HIOHFWLRQ DQDO\VLV LV EDVHG RQ FRPSRVLWH DFWLRQ ZLWK D VLQJOH OD\HU RI  3DQHO  6SDQ 5DWLQJ WKDW LV JOXHG DQG QDLOHG GRZQ ‡$GGLWLRQDO FRQVLGHUDWLRQV IRU WKH 7-3URŒ 5DWLQJ LQFOXGH  *\SVXP FHLOLQJ ‡ $W KDQJHU VXSSRUWV WKH 7RWDO %HDULQJ GLPHQVLRQ LV HTXDO WR WKH ZLGWK RI WKH PDWHULDO WKDW LV VXSSRUWLQJ WKH KDQJHU ‡ ï 6HH &RQQHFWRU JULG EHORZ IRU DGGLWLRQDO LQIRUPDWLRQ DQGRU UHTXLUHPHQWV ‡ ð 5HTXLUHG %HDULQJ /HQJWK  5HTXLUHG %HDULQJ /HQJWK ZLWK :HE 6WLIIHQHUV %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH )DFWRUHG $FFHVVRULHV   +DQJHU RQ   /9/ EHDP +DQJHUï    ð 6HH QRWH ï   +DQJHU RQ   /9/ EHDP +DQJHUï    ð 6HH QRWH ï ‡7-, MRLVWV DUH RQO\ DQDO\]HG XVLQJ 0D[LPXP $OORZDEOH EUDFLQJ VROXWLRQV ‡0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X   RF %RWWRP (GJH /X   RF &RQQHFWRU 6LPSVRQ 6WURQJ7LH 6XSSRUW 0RGHO 6HDW /HQJWK 7RS )DVWHQHUV )DFH )DVWHQHUV 0HPEHU )DVWHQHUV $FFHVVRULHV   )DFH 0RXQW +DQJHU ,861$G[6WURQJ*ULS   )DFH 0RXQW +DQJHU ,861$G[6WURQJ*ULS ‡5HIHU WR PDQXIDFWXUHU QRWHV DQG LQVWUXFWLRQV IRU SURSHU LQVWDOODWLRQ DQG XVH RI DOO FRQQHFWRUV 'HDG )ORRU /LYH 9HUWLFDO /RDG /RFDWLRQ 6SDFLQJ   &RPPHQWV   8QLIRUP 36)  WR  'HIDXOW /RDG 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' /RZHU 5RRI8SSHU )ORRU G  SLHFH V   7-,Š  #  2& )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87& (ULF 5LFH (/5 (QJLQHHULQJ   HOUHQJ#JPDLOFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH %%*/ IRU 07% ,QF &OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF 3URMHFW %%*/ Page 9 / 27 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #    3DVVHG   '   6 $GM 6SDQV 6KHDU OEV  #  3DVVHG   '   6 $GM 6SDQV 3RV 0RPHQW )WOEV  #   3DVVHG   '   6 $OW 6SDQV 1HJ 0RPHQW )WOEV  #  3DVVHG   '   6 $GM 6SDQV /LYH /RDG 'HIO LQ  #   3DVVHG /  '   6 $OW 6SDQV 7RWDO /RDG 'HIO LQ  #   3DVVHG /  '   6 $OW 6SDQV 0HPEHU /HQJWK     6\VWHP  :DOO 0HPEHU 7\SH  +HDGHU %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU ‡9ROXPH IDFWRU RI  ZDV FDOFXODWHG IRU SRVLWLYH EHQGLQJ XVLQJ OHQJWK /    ‡9ROXPH IDFWRU RI  ZDV FDOFXODWHG IRU QHJDWLYH EHQGLQJ XVLQJ OHQJWK /    ‡ OEV XSOLIW DW VXSSRUW ORFDWHG DW    6WUDSSLQJ RU RWKHU UHVWUDLQW PD\ EH UHTXLUHG ‡ OEV XSOLIW DW VXSSRUW ORFDWHG DW   6WUDSSLQJ RU RWKHU UHVWUDLQW PD\ EH UHTXLUHG ‡7KH HIIHFWV RI SRVLWLYH RU QHJDWLYH FDPEHU KDYH QRW EHHQ DFFRXQWHG IRU ZKHQ FDOFXODWLQJ GHIOHFWLRQ ‡7KH VSHFLILHG JOXODP LV DVVXPHG WR KDYH LWV VWURQJ ODPLQDWLRQV DW WKH ERWWRP RI WKH EHDP ,QVWDOO ZLWK SURSHU VLGH XS DV LQGLFDWHG E\ WKH PDQXIDFWXUHU ‡$SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6 %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG 6QRZ )DFWRUHG $FFHVVRULHV   7ULPPHU  +)1RQH   7ULPPHU  +) 1RQH   7ULPPHU  +)1RQH   7ULPPHU  +)1RQH   7ULPPHU  +) 1RQH   7ULPPHU  +)1RQH ‡0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X   RF %RWWRP (GJH /X   RF 'HDG 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 7ULEXWDU\ :LGWK   &RPPHQWV   6HOI :HLJKW 3/)  WR   1$   8QLIRUP 36)  WR    'HIDXOW /RDG   3RLQW OE   1$   3RLQW OE  1$ 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' /RZHU 5RRI8SSHU )ORRU   SLHFH V   [  )9 ') *OXODP )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87& (ULF 5LFH (/5 (QJLQHHULQJ   HOUHQJ#JPDLOFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH %%*/ IRU 07% ,QF &OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF 3URMHFW %%*/ Page 11 / 27 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #   3DVVHG   '   6 $OO 6SDQV 6KHDU OEV  #  3DVVHG   '   6 $OO 6SDQV 0RPHQW )WOEV  #   3DVVHG   '   6 $OO 6SDQV /LYH /RDG 'HIO LQ  #   3DVVHG /  '   6 $OO 6SDQV 7RWDO /RDG 'HIO LQ  #   3DVVHG /  '   6 $OO 6SDQV 0HPEHU /HQJWK    6\VWHP  :DOO 0HPEHU 7\SH  +HDGHU %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU ‡$SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6 %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG 6QRZ )DFWRUHG $FFHVVRULHV   7ULPPHU  +)1RQH   7ULPPHU  +)1RQH ‡0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X   RF %RWWRP (GJH /X   RF 'HDG 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 7ULEXWDU\ :LGWK   &RPPHQWV   6HOI :HLJKW 3/)  WR  1$   8QLIRUP 36)  WR   'HIDXOW /RDG :H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHV UHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW :H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65 DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV GRFXPHQWOLEUDU\ 7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ $UFKLWHFW'HVLJQHU 5+' :H\HUKDHXVHU 1RWHV 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' /RZHU 5RRI8SSHU )ORRU   SLHFH V  [  ') 1R )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87& (ULF 5LFH (/5 (QJLQHHULQJ   HOUHQJ#JPDLOFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH %%*/ IRU 07% ,QF &OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF 3URMHFW %%*/ Page 13 / 27 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #    3DVVHG   '   /   6 $GM 6SDQV 6KHDU OEV  #   3DVVHG   '   / $GM 6SDQV 0RPHQW )WOEV  #  3DVVHG   '   / $GM 6SDQV /LYH /RDG 'HIO LQ  #   3DVVHG /  '   /   6 $OW 6SDQV 7RWDO /RDG 'HIO LQ  #   3DVVHG /  '   /   6 $OW 6SDQV 0HPEHU /HQJWK     6\VWHP  :DOO 0HPEHU 7\SH  +HDGHU %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU ‡ OEV XSOLIW DW VXSSRUW ORFDWHG DW    6WUDSSLQJ RU RWKHU UHVWUDLQW PD\ EH UHTXLUHG ‡ OEV XSOLIW DW VXSSRUW ORFDWHG DW   6WUDSSLQJ RU RWKHU UHVWUDLQW PD\ EH UHTXLUHG ‡$SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6 %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV   7ULPPHU  +)1RQH   7ULPPHU  +)1RQH   7ULPPHU  +)1RQH   7ULPPHU  +)1RQH   7ULPPHU  +)1RQH   7ULPPHU  +)1RQH ‡0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X   RF %RWWRP (GJH /X   RF 'HDG )ORRU /LYH 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 7ULEXWDU\ :LGWK    &RPPHQWV   6HOI :HLJKW 3/)  WR   1$   8QLIRUP 36)  WR    'HIDXOW /RDG   8QLIRUP 36)  WR    'HIDXOW /RDG   8QLIRUP 36)  WR    'HIDXOW /RDG :H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHV UHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW :H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65 DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV GRFXPHQWOLEUDU\ 7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ $UFKLWHFW'HVLJQHU 5+' :H\HUKDHXVHU 1RWHV 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' /RZHU 5RRI8SSHU )ORRU   SLHFH V  [  ') 1R )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87& (ULF 5LFH (/5 (QJLQHHULQJ   HOUHQJ#JPDLOFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH %%*/ IRU 07% ,QF &OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF 3URMHFW %%*/ Page 14 / 27 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ >*URXS@ 0HPEHU 5HDFWLRQ OEV  #   3DVVHG   '   /   6 $OO 6SDQV >@ 6KHDU OEV  #   3DVVHG   '   /   6 $OO 6SDQV >@ 0RPHQW )WOEV  #  3DVVHG   '   /   6 $OO 6SDQV >@ /LYH /RDG 'HIO LQ  #  3DVVHG /  '   /   6 $OO 6SDQV >@ 7RWDO /RDG 'HIO LQ  #  3DVVHG /  '   /   6 $OO 6SDQV >@ 0HPEHU /HQJWK    6\VWHP  )ORRU 0HPEHU 7\SH  )OXVK %HDP %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU ‡ %ORFNLQJ 3DQHOV DUH DVVXPHG WR FDUU\ QR ORDGV DSSOLHG GLUHFWO\ DERYH WKHP DQG WKH IXOO ORDG LV DSSOLHG WR WKH PHPEHU EHLQJ GHVLJQHG %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV   6WXG ZDOO  +)%ORFNLQJ   6WXG ZDOO  +)%ORFNLQJ ‡0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X   RF %RWWRP (GJH /X   RF ‡ 6LGH ORDGV DUH DVVXPHG WR QRW LQGXFH FURVVJUDLQ WHQVLRQ 'HDG )ORRU /LYH 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 6LGH 7ULEXWDU\ :LGWK    &RPPHQWV   6HOI :HLJKW 3/)  WR  1$   8QLIRUP 36)  WR   7RS     8QLIRUP 36)  WR   7RS     8QLIRUP 3/)  WR   %DFN 1$/LQNHG IURP E 6XSSRUW  :H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHV UHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW :H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65 DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV GRFXPHQWOLEUDU\ 7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ $UFKLWHFW'HVLJQHU 5+' :H\HUKDHXVHU 1RWHV 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' /RZHU 5RRI8SSHU )ORRU   SLHFH V   [  ( 3DUDOODPŠ 36/ )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87& (ULF 5LFH (/5 (QJLQHHULQJ   HOUHQJ#JPDLOFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH %%*/ IRU 07% ,QF &OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF 3URMHFW %%*/ Page 15 / 27 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ >*URXS@ 0HPEHU 5HDFWLRQ OEV  #    3DVVHG   '   /   6 $OO 6SDQV >@ 6KHDU OEV  #   3DVVHG   '   /   6 $OO 6SDQV >@ 3RV 0RPHQW )WOEV  #  3DVVHG   '   /   6 $OO 6SDQV >@ /LYH /RDG 'HIO LQ  #  3DVVHG /  '   /   6 $OO 6SDQV >@ 7RWDO /RDG 'HIO LQ  #   3DVVHG /  '   /   6 $OO 6SDQV >@ 0HPEHU /HQJWK    6\VWHP  :DOO 0HPEHU 7\SH  +HDGHU %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU ‡9ROXPH IDFWRU RI  ZDV FDOFXODWHG IRU SRVLWLYH EHQGLQJ XVLQJ OHQJWK /   ‡7KH HIIHFWV RI SRVLWLYH RU QHJDWLYH FDPEHU KDYH QRW EHHQ DFFRXQWHG IRU ZKHQ FDOFXODWLQJ GHIOHFWLRQ ‡7KH VSHFLILHG JOXODP LV DVVXPHG WR KDYH LWV VWURQJ ODPLQDWLRQV DW WKH ERWWRP RI WKH EHDP ,QVWDOO ZLWK SURSHU VLGH XS DV LQGLFDWHG E\ WKH PDQXIDFWXUHU ‡$SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6 %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV   7ULPPHU  ')1RQH   7ULPPHU  ')1RQH ‡0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X   RF %RWWRP (GJH /X   RF 'HDG )ORRU /LYH 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 7ULEXWDU\ :LGWK    &RPPHQWV   6HOI :HLJKW 3/)  WR  1$   8QLIRUP 36)   WR      8QLIRUP 36)  WR     8QLIRUP 36)  WR      8QLIRUP 36)  WR      3RLQW OE  1$/LQNHG IURP  6XSSRUW  :H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHV UHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW :H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65 DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV GRFXPHQWOLEUDU\ 7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ $UFKLWHFW'HVLJQHU 5+' :H\HUKDHXVHU 1RWHV 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' /RZHU 5RRI8SSHU )ORRU $%  SLHFH V   [  )9 ') *OXODP )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87& (ULF 5LFH (/5 (QJLQHHULQJ   HOUHQJ#JPDLOFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH %%*/ IRU 07% ,QF &OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF 3URMHFW %%*/ Page 16 / 27 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #   3DVVHG   '   /   6 $OO 6SDQV 6KHDU OEV  #   3DVVHG   '   / $OO 6SDQV 3RV 0RPHQW )WOEV  #  3DVVHG   '   / $OO 6SDQV /LYH /RDG 'HIO LQ  #  3DVVHG /  '   /   6 $OO 6SDQV 7RWDO /RDG 'HIO LQ  #  3DVVHG /  '   /   6 $OO 6SDQV 0HPEHU /HQJWK    6\VWHP  :DOO 0HPEHU 7\SH  +HDGHU %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU ‡9ROXPH IDFWRU RI  ZDV FDOFXODWHG IRU SRVLWLYH EHQGLQJ XVLQJ OHQJWK /   ‡7KH HIIHFWV RI SRVLWLYH RU QHJDWLYH FDPEHU KDYH QRW EHHQ DFFRXQWHG IRU ZKHQ FDOFXODWLQJ GHIOHFWLRQ ‡7KH VSHFLILHG JOXODP LV DVVXPHG WR KDYH LWV VWURQJ ODPLQDWLRQV DW WKH ERWWRP RI WKH EHDP ,QVWDOO ZLWK SURSHU VLGH XS DV LQGLFDWHG E\ WKH PDQXIDFWXUHU ‡$SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6 %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV   7ULPPHU  ')1RQH   7ULPPHU  ')1RQH ‡0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X   RF %RWWRP (GJH /X   RF 'HDG )ORRU /LYH 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 7ULEXWDU\ :LGWK    &RPPHQWV   6HOI :HLJKW 3/)  WR  1$   8QLIRUP 36)  WR     8QLIRUP 36)  WR      8QLIRUP 36)  WR      8QLIRUP 3/)  WR  1$/LQNHG IURP F 6XSSRUW  :H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHV UHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW :H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65 DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV GRFXPHQWOLEUDU\ 7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ $UFKLWHFW'HVLJQHU 5+' :H\HUKDHXVHU 1RWHV 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' /RZHU 5RRI8SSHU )ORRU $%  SLHFH V   [  )9 ') *OXODP )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87& (ULF 5LFH (/5 (QJLQHHULQJ   HOUHQJ#JPDLOFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH %%*/ IRU 07% ,QF &OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF 3URMHFW %%*/ Page 17 / 27 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #     3DVVHG   '   / $OO 6SDQV 6KHDU OEV  #   3DVVHG   '   / $OO 6SDQV 0RPHQW )WOEV  #   3DVVHG   '   / $OO 6SDQV /LYH /RDG 'HIO LQ  #   3DVVHG /  '   / $OO 6SDQV 7RWDO /RDG 'HIO LQ  #   3DVVHG /  '   / $OO 6SDQV 0HPEHU /HQJWK     6\VWHP  )ORRU 0HPEHU 7\SH  )OXVK %HDP %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU ‡ %ORFNLQJ 3DQHOV DUH DVVXPHG WR FDUU\ QR ORDGV DSSOLHG GLUHFWO\ DERYH WKHP DQG WKH IXOO ORDG LV DSSOLHG WR WKH PHPEHU EHLQJ GHVLJQHG ‡ $W KDQJHU VXSSRUWV WKH 7RWDO %HDULQJ GLPHQVLRQ LV HTXDO WR WKH ZLGWK RI WKH PDWHULDO WKDW LV VXSSRUWLQJ WKH KDQJHU ‡ ï 6HH &RQQHFWRU JULG EHORZ IRU DGGLWLRQDO LQIRUPDWLRQ DQGRU UHTXLUHPHQWV %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH )DFWRUHG $FFHVVRULHV   6WXG ZDOO  +)%ORFNLQJ   +DQJHU RQ   36/ EHDP +DQJHUï 6HH QRWH ï ‡0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X   RF %RWWRP (GJH /X   RF &RQQHFWRU 6LPSVRQ 6WURQJ7LH 6XSSRUW 0RGHO 6HDW /HQJWK 7RS )DVWHQHUV )DFH )DVWHQHUV 0HPEHU )DVWHQHUV $FFHVVRULHV   )DFH 0RXQW +DQJHU /861$G G ‡5HIHU WR PDQXIDFWXUHU QRWHV DQG LQVWUXFWLRQV IRU SURSHU LQVWDOODWLRQ DQG XVH RI DOO FRQQHFWRUV 0XOWLSOH 0HPEHU &RQQHFWLRQV 7\SH /RFDWLRQ )DVWHQHU 3ODFHPHQW 5RZV 2& RI )DVWHQHUV 'HWDLOV 8QLIRUP  WR   G  [  RU  [  1DLO 2QH )DFH / ‡ 6LGH ORDGV DUH DVVXPHG WR QRW LQGXFH FURVVJUDLQ WHQVLRQ 'HDG )ORRU /LYH 9HUWLFDO /RDGV /RFDWLRQ 6LGH 7ULEXWDU\ :LGWK   &RPPHQWV   6HOI :HLJKW 3/)  WR   1$   8QLIRUP 36)  WR   %DFN  'HIDXOW /RDG   8QLIRUP 36)  WR   )URQW  'HIDXOW /RDG 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' /RZHU 5RRI8SSHU )ORRU   SLHFH V   [   ( 0LFUROODPŠ /9/ )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87& (ULF 5LFH (/5 (QJLQHHULQJ   HOUHQJ#JPDLOFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH %%*/ IRU 07% ,QF &OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF 3URMHFW %%*/ Page 18 / 27 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #    3DVVHG   '   / $OO 6SDQV 6KHDU OEV  #   3DVVHG   '   / $OO 6SDQV 0RPHQW )WOEV  #   3DVVHG   '   / $OO 6SDQV /LYH /RDG 'HIO LQ  #   3DVVHG /  '   / $OO 6SDQV 7RWDO /RDG 'HIO LQ  #   3DVVHG /  '   / $OO 6SDQV 0HPEHU /HQJWK     6\VWHP  )ORRU 0HPEHU 7\SH  )OXVK %HDP %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU ‡ 5LP %RDUG LV DVVXPHG WR FDUU\ DOO ORDGV DSSOLHG GLUHFWO\ DERYH LW E\SDVVLQJ WKH PHPEHU EHLQJ GHVLJQHG %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH )DFWRUHG $FFHVVRULHV   6WXG ZDOO  +)  5LP %RDUG   6WXG ZDOO  +)  5LP %RDUG ‡0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X   RF %RWWRP (GJH /X   RF ‡ 6LGH ORDGV DUH DVVXPHG WR QRW LQGXFH FURVVJUDLQ WHQVLRQ 'HDG )ORRU /LYH 9HUWLFDO /RDGV /RFDWLRQ 6LGH 7ULEXWDU\ :LGWK   &RPPHQWV   6HOI :HLJKW 3/)   WR   1$   8QLIRUP 36)  WR  7RS    8QLIRUP 36)  WR    7RS    3RLQW OE    )URQW 1$   3RLQW OE    )URQW 1$/LQNHG IURP  6XSSRUW  :H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHV UHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW :H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65 DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV GRFXPHQWOLEUDU\ 7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ $UFKLWHFW'HVLJQHU 5+' :H\HUKDHXVHU 1RWHV 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' /RZHU 5RRI8SSHU )ORRU   SLHFH V   [   ( 3DUDOODPŠ 36/ )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87& (ULF 5LFH (/5 (QJLQHHULQJ   HOUHQJ#JPDLOFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH %%*/ IRU 07% ,QF &OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF 3URMHFW %%*/ Page 20 / 27 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ >*URXS@ 0HPEHU 5HDFWLRQ OEV  #    3DVVHG   '   / $OO 6SDQV >@ 6KHDU OEV  #   3DVVHG   '   / $OO 6SDQV >@ 0RPHQW )WOEV  #  3DVVHG   '   / $OO 6SDQV >@ /LYH /RDG 'HIO LQ  #   3DVVHG /  '   / $OW 6SDQV >@ 7RWDO /RDG 'HIO LQ  #   3DVVHG /  '   / $OW 6SDQV >@ 0HPEHU /HQJWK     6\VWHP  )ORRU 0HPEHU 7\SH  )OXVK %HDP %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU ‡ 5LP %RDUG LV DVVXPHG WR FDUU\ DOO ORDGV DSSOLHG GLUHFWO\ DERYH LW E\SDVVLQJ WKH PHPEHU EHLQJ GHVLJQHG ‡ %ORFNLQJ 3DQHOV DUH DVVXPHG WR FDUU\ QR ORDGV DSSOLHG GLUHFWO\ DERYH WKHP DQG WKH IXOO ORDG LV DSSOLHG WR WKH PHPEHU EHLQJ GHVLJQHG ‡ $W KDQJHU VXSSRUWV WKH 7RWDO %HDULQJ GLPHQVLRQ LV HTXDO WR WKH ZLGWK RI WKH PDWHULDO WKDW LV VXSSRUWLQJ WKH KDQJHU ‡ ï 6HH &RQQHFWRU JULG EHORZ IRU DGGLWLRQDO LQIRUPDWLRQ DQGRU UHTXLUHPHQWV %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV   6WXG ZDOO  +)  5LP %RDUG   6WXG ZDOO  +)%ORFNLQJ   +DQJHU RQ  /9/ EHDP +DQJHUï 6HH QRWH ï ‡0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X   RF %RWWRP (GJH /X   RF &RQQHFWRU 6LPSVRQ 6WURQJ7LH 6XSSRUW 0RGHO 6HDW /HQJWK 7RS )DVWHQHUV )DFH )DVWHQHUV 0HPEHU )DVWHQHUV $FFHVVRULHV   )DFH 0RXQW +DQJHU /861$G[G ‡5HIHU WR PDQXIDFWXUHU QRWHV DQG LQVWUXFWLRQV IRU SURSHU LQVWDOODWLRQ DQG XVH RI DOO FRQQHFWRUV ‡ 6LGH ORDGV DUH DVVXPHG WR QRW LQGXFH FURVVJUDLQ WHQVLRQ 'HDG )ORRU /LYH 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 6LGH 7ULEXWDU\ :LGWK    &RPPHQWV   6HOI :HLJKW 3/)   WR   1$   8QLIRUP 36)  WR    7RS    3RLQW OE   )URQW 1$   8QLIRUP 36)   WR    7RS    8QLIRUP 3/)  WR   )URQW 1$/LQNHG IURP F 6XSSRUW  'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' /RZHU 5RRI8SSHU )ORRU   SLHFH V   [   ( 3DUDOODPŠ 36/ )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87& (ULF 5LFH (/5 (QJLQHHULQJ   HOUHQJ#JPDLOFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH %%*/ IRU 07% ,QF &OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF 3URMHFW %%*/ Page 21 / 27 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #    3DVVHG   '   /   6 $GM 6SDQV 6KHDU OEV  #  3DVVHG   '   / $GM 6SDQV 0RPHQW )WOEV  #  3DVVHG   '   / $GM 6SDQV /LYH /RDG 'HIO LQ  #   3DVVHG /  '   /   6 $OW 6SDQV 7RWDO /RDG 'HIO LQ  #   3DVVHG /  '   /   6 $OW 6SDQV 0HPEHU /HQJWK    6\VWHP  )ORRU 0HPEHU 7\SH  )OXVK %HDP %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU ‡ 5LP %RDUG LV DVVXPHG WR FDUU\ DOO ORDGV DSSOLHG GLUHFWO\ DERYH LW E\SDVVLQJ WKH PHPEHU EHLQJ GHVLJQHG ‡ %ORFNLQJ 3DQHOV DUH DVVXPHG WR FDUU\ QR ORDGV DSSOLHG GLUHFWO\ DERYH WKHP DQG WKH IXOO ORDG LV DSSOLHG WR WKH PHPEHU EHLQJ GHVLJQHG ‡ 8SOLIW FRQVWUDLQW KDV EHHQ UHOHDVHG DW VXSSRUW ORFDWLRQ  %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV   3ODWH RQ FRQFUHWH  +)  5LP %RDUG   %HDP  ')%ORFNLQJ   %HDP  ')%ORFNLQJ   %HDP  ')%ORFNLQJ   3ODWH RQ FRQFUHWH  +)  5LP %RDUG ‡0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X   RF %RWWRP (GJH /X   RF 0XOWLSOH 0HPEHU &RQQHFWLRQV 7\SH /RFDWLRQ )DVWHQHU 3ODFHPHQW 5RZV 2& RI )DVWHQHUV 'HWDLOV 8QLIRUP   WR  G  [  RU  [  1DLO %RWK )DFHV / ‡ 6LGH ORDGV DUH DVVXPHG WR QRW LQGXFH FURVVJUDLQ WHQVLRQ 'HDG )ORRU /LYH 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 6LGH 7ULEXWDU\ :LGWK    &RPPHQWV   6HOI :HLJKW 3/)   WR  1$   8QLIRUP 36)  WR   7RS     8QLIRUP 36)  WR   7RS     8QLIRUP 36)  WR    7RS     8QLIRUP 36)  WR   7RS     8QLIRUP 3/)    WR   7RS 1$/LQNHG IURP D 6XSSRUW    3RLQW OE    7RS 1$/LQNHG IURP  6XSSRUW  'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' 0DLQ )ORRU   SLHFH V   [   ( 0LFUROODPŠ /9/ )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87& (ULF 5LFH (/5 (QJLQHHULQJ   HOUHQJ#JPDLOFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH %%*/ IRU 07% ,QF &OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF 3URMHFW %%*/ Page 23 / 27 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #    3DVVHG   '   6 $GM 6SDQV 6KHDU OEV  #  3DVVHG   '   6 $GM 6SDQV 0RPHQW )WOEV  #  3DVVHG   '   6 $GM 6SDQV /LYH /RDG 'HIO LQ  #   3DVVHG /  '   6 $OW 6SDQV 7RWDO /RDG 'HIO LQ  #   3DVVHG /  '   6 $OW 6SDQV 0HPEHU /HQJWK    6\VWHP  )ORRU 0HPEHU 7\SH  )OXVK %HDP %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU ‡ 5LP %RDUG LV DVVXPHG WR FDUU\ DOO ORDGV DSSOLHG GLUHFWO\ DERYH LW E\SDVVLQJ WKH PHPEHU EHLQJ GHVLJQHG ‡ %ORFNLQJ 3DQHOV DUH DVVXPHG WR FDUU\ QR ORDGV DSSOLHG GLUHFWO\ DERYH WKHP DQG WKH IXOO ORDG LV DSSOLHG WR WKH PHPEHU EHLQJ GHVLJQHG %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG 6QRZ )DFWRUHG $FFHVVRULHV   3ODWH RQ FRQFUHWH  +)  5LP %RDUG   %HDP  ')%ORFNLQJ   %HDP  ')%ORFNLQJ   %HDP  ')%ORFNLQJ   3ODWH RQ FRQFUHWH  +)  5LP %RDUG ‡0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X   RF %RWWRP (GJH /X   RF 0XOWLSOH 0HPEHU &RQQHFWLRQV 7\SH /RFDWLRQ )DVWHQHU 3ODFHPHQW 5RZV 2& RI )DVWHQHUV 'HWDLOV 8QLIRUP   WR  G  [  RU  [  1DLO 2QH )DFH / ‡ 6LGH ORDGV DUH DVVXPHG WR QRW LQGXFH FURVVJUDLQ WHQVLRQ 'HDG 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 6LGH 7ULEXWDU\ :LGWK   &RPPHQWV   6HOI :HLJKW 3/)   WR  1$   8QLIRUP 36)  WR   7RS     8QLIRUP 36)  WR   7RS   :H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHV UHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW :H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65 DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV GRFXPHQWOLEUDU\ 7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ $UFKLWHFW'HVLJQHU 5+' :H\HUKDHXVHU 1RWHV 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' 0DLQ )ORRU   SLHFH V   [   ( 0LFUROODPŠ /9/ )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87& (ULF 5LFH (/5 (QJLQHHULQJ   HOUHQJ#JPDLOFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH %%*/ IRU 07% ,QF &OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF 3URMHFW %%*/ Page 25 / 27 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #    3DVVHG   '   /   6 $GM 6SDQV 6KHDU OEV  #  3DVVHG   '   / $GM 6SDQV 0RPHQW )WOEV  #  3DVVHG   '   / $GM 6SDQV /LYH /RDG 'HIO LQ  #   3DVVHG /  '   / $OW 6SDQV 7RWDO /RDG 'HIO LQ  # 3DVVHG /  '   / $OW 6SDQV 0HPEHU /HQJWK    6\VWHP  )ORRU 0HPEHU 7\SH  'URS %HDP %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡2YHUKDQJ GHIOHFWLRQ FULWHULD // / DQG 7/   ‡$OORZHG PRPHQW GRHV QRW UHIOHFW WKH DGMXVWPHQW IRU WKH EHDP VWDELOLW\ IDFWRU ‡$SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6 ‡ %ORFNLQJ 3DQHOV DUH DVVXPHG WR FDUU\ QR ORDGV DSSOLHG GLUHFWO\ DERYH WKHP DQG WKH IXOO ORDG LV DSSOLHG WR WKH PHPEHU EHLQJ GHVLJQHG %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV   &ROXPQ  +)%ORFNLQJ   &ROXPQ  +)%ORFNLQJ   &ROXPQ  +)%ORFNLQJ   &ROXPQ  +)%ORFNLQJ   &ROXPQ  +)%ORFNLQJ   &ROXPQ  +)%ORFNLQJ   &ROXPQ  +)%ORFNLQJ   &ROXPQ  +)%ORFNLQJ   &ROXPQ  +)%ORFNLQJ   &ROXPQ  +)%ORFNLQJ ‡0D[LPXP DOORZDEOH EUDFLQJ LQWHUYDOV EDVHG RQ DSSOLHG ORDG /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X   RF %RWWRP (GJH /X   RF ‡ 6LGH ORDGV DUH DVVXPHG WR QRW LQGXFH FURVVJUDLQ WHQVLRQ 'HDG )ORRU /LYH 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 6LGH 7ULEXWDU\ :LGWK    &RPPHQWV   6HOI :HLJKW 3/)  WR  1$   8QLIRUP 36)  WR   7RS  'HIDXOW /RDG   3RLQW OE  7RS 1$/LQNHG IURP  6XSSRUW    3RLQW OE    7RS 1$/LQNHG IURP  6XSSRUW  'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' 0DLQ )ORRU   SLHFH V  [  ') 1R )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87& (ULF 5LFH (/5 (QJLQHHULQJ   HOUHQJ#JPDLOFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH %%*/ IRU 07% ,QF &OLHQW 0RXQWDLQ 7HUUDFH %XLOGHUV ,QF 3URMHFW %%*/ Page 26 / 27 ELR Engineering 10508 32nd Ave SW Unit B Seattle, WA 98146 phone: (206) 200-8764 email: elreng33@gmail.com Lateral Calculations ASCE Hazards Report Address: No Address at This Location Standard:ASCE/SEI 7-16 Latitude:46.947454 Risk Category:II Longitude:-122.607708 Soil Class:D - Default (see Section 11.4.3) Elevation:350.0811120654561 ft (NAVD 88) Wind Results: Wind Speed 97 Vmph 10-year MRI 67 Vmph 25-year MRI 73 Vmph 50-year MRI 77 Vmph 100-year MRI 83 Vmph Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2 Date Accessed: Sat May 31 2025 Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years). Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Page 1 of 3https://ascehazardtool.org/Sat May 31 2025 SS : 1.291 S1 : 0.466 F a : 1.2 F v : N/A SMS : 1.549 SM1 : N/A SDS : 1.033 SD1 : N/A T L : 16 PGA : 0.51 PGA M : 0.612 F PGA : 1.2 Ie : 1 C v : 1.358 Seismic Site Soil Class: Results: Data Accessed: Date Source: D - Default (see Section 11.4.3) USGS Seismic Design Maps Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8. Sat May 31 2025 Page 2 of 3https://ascehazardtool.org/Sat May 31 2025 ASCE 7-16 Seismic Base Shear LIC# : KW-06019101, Build:20.25.05.28 ELR Engineering (c) ENERCALC, LLC 1982-2025 DESCRIPTION:Seismic Base Shear Analysis ELR Engineering 10508 32nd Ave SW Unit B Seattle, WA 98146 Phone: 206.200.8764 Email: elreng33@gmail.com Project File: 1482B-902B-GL.ec6 Project Title:1482B-902B_GL for MTB, Inc. Engineer:ELR Project ID: Printed: 31 MAY 2025, 8:57AM Project Descr: Risk Category ASCE 7-16, Page 4, Table 1.5-1 Calculations per ASCE 7-16 "II" : All Buildings and other structures except those listed as Category I, III, and IV Risk Category of Building or Other Structure : Seismic Importance Factor = 1 ASCE 7-16, Page 5, Table 1.5-2 Specific Description: RHD 1482B-902B/GL - 9512 Solberg Ct. SE, Yelm, WA 98597 USER DEFINED Ground Motion ASCE 7-16 11.4.2 Max. Ground Motions, 5% Damping : S =1.291 Longitude = 0.000 deg West S Latitude = 0.000 g, 0.2 sec response deg North S 0.46601 g, 1.0 sec response= For the closest datapoint grid location . . . Site Class, Site Coeff. and Design Category Classification:ASCE 7-16 Table 20.3-1"D" : Shear Wave Velocity 600 to 1,200 ft/sec =D Site Coefficients Fa & Fv ASCE 7-16 Table 11.4-1 & 11.4-2 (using straight-line interpolation from table values) Fa =1.20 Fv =1.83 Maximum Considered Earthquake Acceleration ASCE 7-16 Eq. 11.4-1S = Fa * Ss 1.549=MS S = Fv * S1 =0.855M1 ASCE 7-16 Eq. 11.4-2 Design Spectral Acceleration ASCE 7-16 Eq. 11.4-3S = S * 2/3 =1.033DS MS =0.570 ASCE 7-16 Eq. 11.4-4S = S * 2/3D1 M1 Seismic Design Category ASCE 7-16 Table 11.6-1 & -2=D (By Default per 11.4.3) Resisting System ASCE 7-16 Table 12.2-1 Basic Seismic Force Resisting System . . .Bearing Wall Systems 15.Light-frame (wood) walls sheathed w/wood structural panels rated for shear resistance. NOTE! See ASCE 7-16 for all applicable footnotes. Building height Limits :Response Modification Coefficient " R "= 6.50 Category "A & B" Limit: No LimitSystem Overstrength Factor " Wo " = 2.50 Category "C" Limit: No LimitDeflection Amplification Factor " Cd "= 4.00 Category "D" Limit: Limit = 65 Category "E" Limit: Limit = 65 Category "F" Limit: Limit = 65 Lateral Force Procedure ASCE 7-16 Section 12.8.2 Equivalent Lateral Force Procedure The "Equivalent Lateral Force Procedure" is being used according to the provisions of ASCE 7-16 12.8 Use ASCE 12.8-7Determine Building Period Structure Type for Building Period Calculation :All Other Structural Systems " Ct " value 0.020= " x " value " hn " : Height from base to highest level =21.0 ft " Ta " Approximate fundemental period using Eq. 12.8-7 : 16.000"TL" : Long-period transition period per ASCE 7-16 Maps 22-14 -> 22-17 sec Ta = Ct * (hn ^ x) =0.196 0.75 sec = Building Period " Ta " Calculated from Approximate Method selected= 0.196 ASCE 7-16 Seismic Base Shear LIC# : KW-06019101, Build:20.25.05.28 ELR Engineering (c) ENERCALC, LLC 1982-2025 DESCRIPTION:Seismic Base Shear Analysis ELR Engineering 10508 32nd Ave SW Unit B Seattle, WA 98146 Phone: 206.200.8764 Email: elreng33@gmail.com Project File: 1482B-902B-GL.ec6 Project Title:1482B-902B_GL for MTB, Inc. Engineer:ELR Project ID: Printed: 31 MAY 2025, 8:57AM Project Descr: " Cs " Response Coefficient ASCE 7-16 Section 12.8.1.1 S : Short Period Design Spectral ResponseDS =1.0331.033 From Eq. 12.8-2, Preliminary Cs =0.159 Upper limit on SDS =0.000 SDS used for CS calc =1.033 " R " : Response Modification Factor =6.500 From Eq. 12.8-3 & 12.8-4 , Cs need not exceed 0.447= " I " : Seismic Importance Factor =1 From Eq. 12.8-5 & 12.8-6, Cs not be less than =0.045 =Cs : Seismic Response Coefficient 0.1589 Seismic Base Shear ASCE 7-16 Section 12.8.1 W ( see Sum Wi below ) =84.16 kCs = 0.1589 from 12.8.1.1 Seismic Base Shear V = Cs * W =13.37 k Vertical Distribution of Seismic Forces ASCE 7-16 Section 12.8.3 " k " : hx exponent based on Ta =1.00 Table of building Weights by Floor Level... Wi : Weight Hi : Height (Wi * Hi^k) Cvx Fx=Cvx * V Sum Story Shear Sum Story MomentLevel # 2 28.85 18.75 540.94 0.5051 6.75 6.75 0.00 1 55.31 9.58 530.04 0.4949 6.62 13.37 61.92 Sum Wi = 84.16 k Total Base Shear =13.37 k Base Moment = 1,070.97 k-ftSum Wi * Hi = 190.1k-ft Diaphragm Forces : Seismic Design Category "B" to "F"ASCE 7-16 12.10.1.1 Level # Wi Fi Fpx : MaxFpx : CalcdSum Fi Sum Wi Fpx Dsgn. ForceFpx : Min 2 28.85 6.75 6.75 28.85 6.75 5.96 11.92 6.75 6.75 1 55.31 6.62 13.37 84.16 8.79 11.42 22.85 11.42 11.42 Wpx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Weight at level of diaphragm and other structure elements attached to it. Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Design Lateral Force applied at the level. Sum Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Sum of "Lat. Force" of current level plus all levels above 0.20 * S * I * WpxMIN Req'd Force @ Level . . . . . . . . . .DS DSMAX Req'd Force @ Level . . . . . . . . . .0.40 * S * I * Wpx Fpx : Design Force @ Level . . . . . . . . . .Wpx * SUM(x->n) Fi / SUM(x->n) wi, x = Current level, n = Top Level ASCE 7-16 Wind Forces, Chapter 27, Part 1 LIC# : KW-06019101, Build:20.25.05.28 ELR Engineering (c) ENERCALC, LLC 1982-2025 DESCRIPTION:ASCE 7-16 wind loads ELR Engineering 10508 32nd Ave SW Unit B Seattle, WA 98146 Phone: 206.200.8764 Email: elreng33@gmail.com Project File: 1482B-902B-GL.ec6 Project Title:1482B-902B_GL for MTB, Inc. Engineer:ELR Project ID: Printed: 31 MAY 2025, 8:58AM Project Descr: RHD 1482B-902B/9512 Solberg Ct. SE, Yelm, WA 98597 Basic Values 2 100.0 0.850 Exposure B Exposure B Exposure B Exposure B 52.0 41.0 21.0 Risk Category V : Basic Wind Speed per ASCE 7-16 Table 1.5-1 Horizontal Dim. in North-South Direction (B or L) = Exposure Category per ASCE 7-16 Section 26.7 h : Mean Roof height =ftKd : Directionality Factor per ASCE 7-16 Table 26.6-1 Horizontal Dim. in East-West Direction (B or L) =ft North : East : South : West : Topographic Factor per ASCE 7-16 Sec 26.8 & Figure 26.8-1 North : K1 = K2 = K3 = Kzt = East : K1 = K2 = K3 = West : K1 = K2 = K3 = Kzt = 1.000 Kzt = 1.000 User has specified the building frequency is >= 1 Hz, therefore considered RIGID for both North-South and East-West directions. Building Period & Flexibility Category 1.000 ft South : K1 = K2 = K3 = Kzt = 1.000 per ASCE 7-16 Fig. 26.5-1 & 26.5-2 Building Story Data Level Description hi E : XStory Ht E : XR ft ft R ftft Upper 9.1718.75 0.000 0.000 Lower 9.589.58 0.000 0.000 Gust Factor For wind coming from direction indicated North = East =0.850 West =0.850 0.850 South =0.850 ASCE 7-16 Wind Forces, Chapter 27, Part 1 LIC# : KW-06019101, Build:20.25.05.28 ELR Engineering (c) ENERCALC, LLC 1982-2025 DESCRIPTION:ASCE 7-16 wind loads ELR Engineering 10508 32nd Ave SW Unit B Seattle, WA 98146 Phone: 206.200.8764 Email: elreng33@gmail.com Project File: 1482B-902B-GL.ec6 Project Title:1482B-902B_GL for MTB, Inc. Engineer:ELR Project ID: Printed: 31 MAY 2025, 8:58AM Project Descr: Check that Building Qualifies as "OPEN" Roof Total ft^2 5,806.0 ft^2 ft^2 2,328.0 0.0 ft^20.0 759.0 0.0 769.0 0.0 975.0 0.0 975.0 ft^2 0.0 North Wall South Wall East Wall ft^2 ft^2 West Wall ft^2ft^2 ft^2 ft^2 ft^2 Agross Aopenings Aopenings >= 0.8 * Agross ?No No Building does NOT qualify as OPEN NoNo Enclosure North Wall . . . . Building qualifies as "ENCLOSED" when the North wall receives positive external pressure. Reference Area = Smaller of 4 sq. ft. or 1% of Agross 4.0 ft^2 Is Ao < Reference Area ?Yes Continue to check this direction for ENCLOSED South Wall . . . . Building qualifies as "ENCLOSED" when the South wall receives positive external pressure. Reference Area = Smaller of 4 sq. ft. or 1% of Agross 4.0 ft^2 Is Ao < Reference Area ?Yes Continue to check this direction for ENCLOSED East Wall . . . . Building qualifies as "ENCLOSED" when the East wall receives positive external pressure. Reference Area = Smaller of 4 sq. ft. or 1% of Agross 4.0 ft^2 Is Ao < Reference Area ?Yes Continue to check this direction for ENCLOSED West Wall . . . . Building qualifies as "ENCLOSED" when the West wall receives positive external pressure. Reference Area = Smaller of 4 sq. ft. or 1% of Agross 4.0 ft^2 Is Ao < Reference Area ?Yes Continue to check this direction for ENCLOSED Velocity Pressures psf When the following walls experience leeward or sidewall pressures, the value of Kh shall be (per Table 26.10-1) : North Wall =0.6327 South Wall =0.6327 psf East Wall = 0.6327 psf West Wall =0.6327 psf When the following walls experience leeward or sidewall pressures, the value of qh shall be (per Eq 26.10-1) : North Wall =13.768 psf South Wall =13.768 psf East Wall = 13.768 psf West Wall =13.768 psf qz : Windward Wall Velocity Pressures at various heights per Eq. 27.3-1 Height Above Base (ft) North Elevation East Elevation West Elevation Kz qz Kz qzKz qz Kz qz South Elevation 0.575 12.510.00 0.57512.51 12.51 12.510.5750.575 0.575 12.514.00 0.57512.51 12.51 12.510.5750.575 0.575 12.518.00 0.57512.51 12.51 12.510.5750.575 0.575 12.5112.00 0.57512.51 12.51 12.510.5750.575 0.585 12.7416.00 0.58512.74 12.74 12.740.5850.585 0.624 13.5820.00 0.62413.58 13.58 13.580.6240.624 0.633 13.7721.00 0.63313.77 13.77 13.770.6330.633 ASCE 7-16 Wind Forces, Chapter 27, Part 1 LIC# : KW-06019101, Build:20.25.05.28 ELR Engineering (c) ENERCALC, LLC 1982-2025 DESCRIPTION:ASCE 7-16 wind loads ELR Engineering 10508 32nd Ave SW Unit B Seattle, WA 98146 Phone: 206.200.8764 Email: elreng33@gmail.com Project File: 1482B-902B-GL.ec6 Project Title:1482B-902B_GL for MTB, Inc. Engineer:ELR Project ID: Printed: 31 MAY 2025, 8:58AM Project Descr: Pressure Coefficients GCpi Values when elevation receives positive external pressure 0.80 0.80 0.80 0.80 -0.450 -0.450 -0.50 -0.50 -0.70 -0.70 -0.70 -0.70 GCpi : Internal pressure coefficient, per sec. 26.13 and Table 26.13-1 North South East West 0.180+/- 0.180 0.180 0.180+/- Specify Cp Values from Figure 27.3-1 for Windward, Leeward & Side Walls Cp Values when elevation receives positive external pressure Windward Wall East WestSouth Leeward Wall Side Walls North +/-+/- User Defined Roof locations and Net Directional Pressure Coefficients : Cp or Cn Cp or Cn Values when the indicated building elevation receives positive external pressure Description North South East West Perp: windward -0.350 -0.350 Perp: leeward -0.60 -0.60 Perp: windward 0.10 0.10 -0.90Parallel: 0 to h/2 -0.90 -0.90Parallel: h/2 to h -0.90 -0.50Parallel: h to 2h -0.50 -0.30Parallel: > 2h -0.30 -0.180Parallel: 0 to > 2h -0.180 Wind Pressures Wind Pressures when NORTH Elevation receives positive external wind pressure psf Windward Wall Pressures . . . Height Above Base (ft) Positive Internal Negative Internal Pressure (psf) Pressure (psf) Positive Internal Negative Internal Leeward Wall Pressures -7.744 -2.788 Side Wall Pressures -10.670 -5.714 psf psf psf 0.00 6.03 10.98 4.00 6.03 10.98 8.00 6.03 10.98 12.00 6.03 10.98 16.00 6.18 11.14 20.00 6.75 11.71 21.00 6.88 11.84 Roof Pressures . . .Positive Internal Negative Internal Description Pressure (psf) Pressure (psf) Parallel: 0 to h/2 -13.01 -8.05 Parallel: h/2 to h -13.01 -8.05 Parallel: h to 2h -8.33 -3.37 Parallel: > 2h -5.99 -1.03 Parallel: 0 to > 2h -4.58 0.37 ASCE 7-16 Wind Forces, Chapter 27, Part 1 LIC# : KW-06019101, Build:20.25.05.28 ELR Engineering (c) ENERCALC, LLC 1982-2025 DESCRIPTION:ASCE 7-16 wind loads ELR Engineering 10508 32nd Ave SW Unit B Seattle, WA 98146 Phone: 206.200.8764 Email: elreng33@gmail.com Project File: 1482B-902B-GL.ec6 Project Title:1482B-902B_GL for MTB, Inc. Engineer:ELR Project ID: Printed: 31 MAY 2025, 8:58AM Project Descr: Wind Pressures when SOUTH Elevation receives positive external wind pressure psf Windward Wall Pressures . . . Height Above Base (ft) Positive Internal Negative Internal Pressure (psf) Pressure (psf) Positive Internal Negative Internal Leeward Wall Pressures -7.744 -2.788 Side Wall Pressures -10.670 -5.714 psf psf psf 0.00 6.03 10.98 4.00 6.03 10.98 8.00 6.03 10.98 12.00 6.03 10.98 16.00 6.18 11.14 20.00 6.75 11.71 21.00 6.88 11.84 Roof Pressures . . .Positive Internal Negative Internal Description Pressure (psf) Pressure (psf) Parallel: 0 to h/2 -13.01 -8.05 Parallel: h/2 to h -13.01 -8.05 Parallel: h to 2h -8.33 -3.37 Parallel: > 2h -5.99 -1.03 Parallel: 0 to > 2h -4.58 0.37 Wind Pressures when EAST Elevation receives positive external wind pressure psf Windward Wall Pressures . . . Height Above Base (ft) Positive Internal Negative Internal Pressure (psf) Pressure (psf) Positive Internal Negative Internal Leeward Wall Pressures -8.330 -3.373 Side Wall Pressures -10.670 -5.714 psf psf psf 0.00 6.03 10.98 4.00 6.03 10.98 8.00 6.03 10.98 12.00 6.03 10.98 16.00 6.18 11.14 20.00 6.75 11.71 21.00 6.88 11.84 Roof Pressures . . .Positive Internal Negative Internal Description Pressure (psf) Pressure (psf) Perp: windward -6.57 -1.62 Perp: leeward -9.50 -4.54 Perp: windward -1.31 3.65 Wind Pressures when WEST Elevation receives positive external wind pressure psf Windward Wall Pressures . . . Height Above Base (ft) Positive Internal Negative Internal Pressure (psf) Pressure (psf) Positive Internal Negative Internal Leeward Wall Pressures -8.330 -3.373 Side Wall Pressures -10.670 -5.714 psf psf psf 0.00 6.03 10.98 4.00 6.03 10.98 8.00 6.03 10.98 12.00 6.03 10.98 ASCE 7-16 Wind Forces, Chapter 27, Part 1 LIC# : KW-06019101, Build:20.25.05.28 ELR Engineering (c) ENERCALC, LLC 1982-2025 DESCRIPTION:ASCE 7-16 wind loads ELR Engineering 10508 32nd Ave SW Unit B Seattle, WA 98146 Phone: 206.200.8764 Email: elreng33@gmail.com Project File: 1482B-902B-GL.ec6 Project Title:1482B-902B_GL for MTB, Inc. Engineer:ELR Project ID: Printed: 31 MAY 2025, 8:58AM Project Descr: 16.00 6.18 11.14 20.00 6.75 11.71 21.00 6.88 11.84 Roof Pressures . . .Positive Internal Negative Internal Description Pressure (psf) Pressure (psf) Perp: windward -6.57 -1.62 Perp: leeward -9.50 -4.54 Perp: windward -1.31 3.65 Story Forces for Design Wind Load Cases Values below are calculated based on a building with dimensions B x L x h as defined on the "Basic Values" tab. Load Case Windward Wall Eccentricity for (ft)Wind Shear Components (k) In "Y" Direction In "X" Direction Mt, (ft-k) Ht. Range "Y" Shear "X" Shear Building level Trib. Height CASE 1 ---Level 2 -2.63 ------4.5814.17' -> 18.75'---North CASE 1 ---Level 1 -5.29 ------9.384.79' -> 14.17'---North CASE 1 ---Level 2 2.63 ------4.5814.17' -> 18.75'---South CASE 1 ---Level 1 5.29 ------9.384.79' -> 14.17'---South CASE 1 ---Level 2 --- -3.48 ---4.5814.17' -> 18.75'---East CASE 1 ---Level 1 --- -7.00 ---9.384.79' -> 14.17'---East CASE 1 ---Level 2 --- 3.48 ---4.5814.17' -> 18.75'---West CASE 1 ---Level 1 --- 7.00 ---9.384.79' -> 14.17'---West CASE 2 +/- 12.1Level 2 -1.97 ---6.154.5814.17' -> 18.75'---North CASE 2 +/- 24.4Level 1 -3.97 ---6.159.384.79' -> 14.17'---North CASE 2 +/- 12.1Level 2 1.97 ---6.154.5814.17' -> 18.75'---South CASE 2 +/- 24.4Level 1 3.97 ---6.159.384.79' -> 14.17'---South CASE 2 +/- 20.3Level 2 --- -2.61 ---4.5814.17' -> 18.75'7.80East CASE 2 +/- 40.9Level 1 --- -5.25 ---9.384.79' -> 14.17'7.80East CASE 2 +/- 20.3Level 2 --- 2.61 ---4.5814.17' -> 18.75'7.80West CASE 2 +/- 40.9Level 1 --- 5.25 ---9.384.79' -> 14.17'7.80West CASE 3 ---Level 2 -1.97 -2.61 ---4.5814.17' -> 18.75'---North & East CASE 3 ---Level 1 -3.97 -5.25 ---9.384.79' -> 14.17'---North & East CASE 3 ---Level 2 -1.97 2.61 ---4.5814.17' -> 18.75'---North & West CASE 3 ---Level 1 -3.97 5.25 ---9.384.79' -> 14.17'---North & West CASE 3 ---Level 2 1.97 2.61 ---4.5814.17' -> 18.75'---South & West CASE 3 ---Level 1 3.97 5.25 ---9.384.79' -> 14.17'---South & West CASE 3 ---Level 2 1.97 -2.61 ---4.5814.17' -> 18.75'---South & East CASE 3 ---Level 1 3.97 -5.25 ---9.384.79' -> 14.17'---South & East CASE 4 +/- 24.4Level 2 -1.48 -1.96 6.154.5814.17' -> 18.75'7.80North & East CASE 4 +/- 49.1Level 1 -2.98 -3.94 6.159.384.79' -> 14.17'7.80North & East CASE 4 +/- 24.4Level 2 -1.48 1.96 6.154.5814.17' -> 18.75'7.80North & West CASE 4 +/- 49.1Level 1 -2.98 3.94 6.159.384.79' -> 14.17'7.80North & West CASE 4 +/- 24.4Level 2 1.48 1.96 6.154.5814.17' -> 18.75'7.80South & West CASE 4 +/- 49.1Level 1 2.98 3.94 6.159.384.79' -> 14.17'7.80South & West CASE 4 +/- 24.4Level 2 1.48 -1.96 6.154.5814.17' -> 18.75'7.80South & East CASE 4 +/- 49.1Level 1 2.98 -3.94 6.159.384.79' -> 14.17'7.80South & East ASCE 7-16 Wind Forces, Chapter 27, Part 1 LIC# : KW-06019101, Build:20.25.05.28 ELR Engineering (c) ENERCALC, LLC 1982-2025 DESCRIPTION:ASCE 7-16 wind loads ELR Engineering 10508 32nd Ave SW Unit B Seattle, WA 98146 Phone: 206.200.8764 Email: elreng33@gmail.com Project File: 1482B-902B-GL.ec6 Project Title:1482B-902B_GL for MTB, Inc. Engineer:ELR Project ID: Printed: 31 MAY 2025, 8:58AM Project Descr: Min per ASCE 27.1.5 ---Level 2 -3.01 ------4.5814.17' -> 18.75'---North Min per ASCE 27.1.5 ---Level 1 -6.15 ------9.384.79' -> 14.17'---North Min per ASCE 27.1.5 ---Level 2 3.01 ------4.5814.17' -> 18.75'---South Min per ASCE 27.1.5 ---Level 1 6.15 ------9.384.79' -> 14.17'---South Min per ASCE 27.1.5 ---Level 2 --- -3.81 ---4.5814.17' -> 18.75'---East Min per ASCE 27.1.5 ---Level 1 --- -7.80 ---9.384.79' -> 14.17'---East Min per ASCE 27.1.5 ---Level 2 --- 3.81 ---4.5814.17' -> 18.75'---West Min per ASCE 27.1.5 ---Level 1 --- 7.80 ---9.384.79' -> 14.17'---West Base Shear for Design Wind Load Cases North +Y Values below are calculated based on a building with dimensions B x L x h as defined on the "General" tab. Load Case Windward Wall Leeward Wall Wind Base Shear Components (k)West +X In "Y" Direction In "X" Direction Mt, (ft-k) Case 1 ---South -7.92 ---North Case 1 ---North 7.92 ---South Case 1 ---West --- -10.48East Case 1 ---East --- 10.48West Case 2 +/- 36.6South -5.94 ---North Case 2 +/- 36.6North 5.94 ---South Case 2 +/- 61.3West --- -7.86East Case 2 +/- 61.3East --- 7.86West Case 3 ---South & West -5.94 -7.86North & East Case 3 ---South & East -5.94 7.86North & West Case 3 ---North & East 5.94 7.86South & West Case 3 ---North & West 5.94 -7.86South & East Case 4 +/- 73.4South & West -4.46 -5.90North & East Case 4 +/- 73.4South & East -4.46 5.90North & West Case 4 +/- 73.4North & East 4.46 5.90South & West Case 4 +/- 73.4North & West 4.46 -5.90South & East Min per ASCE 27.1.5 ---South -9.16 ---North Min per ASCE 27.1.5 ---North 9.16 ---South Min per ASCE 27.1.5 ---West --- -11.61East Min per ASCE 27.1.5 ---East --- 11.61West EL R E n g i n e e r i n g 10 5 0 8 3 2 n d A v e S W U n i t B Se a t t l e , W A 9 8 1 4 6 20 6 . 2 0 0 . 8 7 6 4 el r e n g 3 3 @ g m a i l . c o m LA T E R A L L O A D I N G St o r y / b a s e s h e a r a n d d i a p h r a g m f o r c e s rh o ( ρ ) Cl i e n t : Mo u n t a i n T e r r a c e B u i l d e r s , I n c . Wi n d ( E - W l o a d s ) Wi n d ( N - S l o a d s ) Se i s m i c WI N D 0. 6 Sd s SE I S M I C 0. 7 1. 3 Pr o j e c t : RH D 1 4 8 2 B - 9 0 2 B - G L Hs t o r y B ( < N - S > ) L ( < E - W > ) Al e v e l N- S l o a d s E- W l o a d s Fp y ( N - S ) Fp x ( E - W ) 1. 0 3 3 N- S l o a d s E- W l o a d s Fp x y ( b o t h ) Da t e : 5/ 3 1 / 2 0 2 5 Ro o f 52 4 1 1 2 0 0 Pw x B x L = 3. 0 1 3 . 8 1 3. 0 1 3 . 8 1 Cs x W = 6. 7 5 6 . 7 5 6 . 7 5 Re v i s e d : 8. 0 8 De s c r i p t i o n : Wi n d / E Q D e s i g n Ro o f - 1 51 . 3 3 4 1 2 1 4 8 Pw x B x L = 6. 1 5 7 . 7 0 6. 1 5 7 . 7 0 Cs x W = 6. 6 2 6 . 6 2 1 1 . 4 3 Co d e : A W C - S D P W S - 2 0 2 1 9. 0 8 Ro o f - 2 0 0 0 Pw x B x L = 0. 0 0 0 . 0 0 0. 0 0 0 . 0 0 Cs x W = 0. 0 0 0 . 0 0 0 . 0 0 0. 0 0 Ba s e s h e a r > P w x B x L = 9. 1 6 1 1 . 5 1 Cs x W = 13 . 3 7 1 3 . 3 7 Su m m a r y De s i g n b a s e s h e a r ( A S D ) > x 0 . 6 5. 5 0 6. 9 1 ki p s x ρ x 0 . 7 12 . 1 7 12 . 1 7 ki p s ch e c k : OK SH E A R W A L L S AS D A S D De m a n d WI N D S E I S M I C F l e x i b l e F l e x i b l e Fu l l h e i g h t w a l l s e g m e n t s w i t h A . R . < = 3 . 5 : 1 ( e x c e p t p o r t a l f r a m e s - P F X X ) Fl e x i b l e R i g i d F l e x i b l e R i g i d Ro o f N - S l o a d s Gr i d t r i b . w i d t h t r i b . a r e a F w i n d F s e i s m i c L 1 L 2 L 3 L 4 L 5 L 6 V wi n d ( p l f ) V w i n d ( p l f ) V s e i s m i c ( p l f ) V s e i s m i c ( p l f ) < H ' ( i f a p p l i e s ) 8 < H ' ( i f a p p l i e s ) 7 < H ' ( i f a p p l i e s ) 6 < H ' ( i f a p p l i e s ) 5 < H ' ( i f a p p l i e s ) 4 < H ' ( i f a p p l i e s ) 3 < H ' ( i f a p p l i e s ) 2 31 . 0 0 6 0 0 1. 3 7 3 . 0 7 21 . 4 2 1 5 . 0 0 37 8 4 < H ' ( i f a p p l i e s ) 1 10 . 0 0 6 0 0 0. 4 4 3 . 0 7 23 . 1 7 9 . 0 0 14 9 5 mi n L i = 2. 3 0 9 OK 41 1 2 0 0 OK 1. 8 1 6. 1 4 E- W l o a d s Gr i d t r i b . w i d t h t r i b . a r e a F w i n d F s e i s m i c L 1 L 2 L 3 L 4 L 5 L 6 V wi n d ( p l f ) V w i n d ( p l f ) V s e i s m i c ( p l f ) V s e i s m i c ( p l f ) < H ' ( i f a p p l i e s ) H < H ' ( i f a p p l i e s ) G < H ' ( i f a p p l i e s ) F < H ' ( i f a p p l i e s ) E < H ' ( i f a p p l i e s ) D < H ' ( i f a p p l i e s ) C 15 . 0 0 3 3 8 0. 6 6 1 . 7 3 19 . 9 2 33 8 7 < H ' ( i f a p p l i e s ) B 25 . 0 0 5 6 6 1. 1 0 2 . 9 0 13 . 3 3 82 2 1 7 < H ' ( i f a p p l i e s ) A 12 . 0 0 2 9 6 0. 5 3 1 . 5 2 13 . 2 5 3 . 7 9 31 8 9 mi n L i = 2. 3 0 9 OK 52 . 0 0 12 0 0 B E l e v B E l e v OK 2. 2 9 6 . 1 4 Ro o f - 1 N - S l o a d s Gr i d t r i b . w i d t h t r i b . a r e a F w i n d F s e i s m i c L 1 L 2 L 3 L 4 L 5 L 6 V wi n d ( p l f ) V w i n d ( p l f ) V s e i s m i c ( p l f ) V s e i s m i c ( p l f ) < H ' ( i f a p p l i e s ) 8 < H ' ( i f a p p l i e s ) 7 < H ' ( i f a p p l i e s ) 6 < H ' ( i f a p p l i e s ) 5 < H ' ( i f a p p l i e s ) 4 < H ' ( i f a p p l i e s ) 3 11 . 0 0 5 8 2 0. 9 9 1 . 6 3 14 . 2 5 2 0 . 6 7 28 4 7 < H ' ( i f a p p l i e s ) 2 20 . 0 0 1 0 4 2 3. 1 7 5 . 9 9 19 . 1 7 2 7 . 1 7 1 8 . 2 5 2 1 . 4 2 37 7 0 < H ' ( i f a p p l i e s ) 1 10 . 0 0 5 2 4 1. 3 4 4 . 5 4 23 . 1 7 2 0 . 8 3 30 1 0 3 mi n L i = 2. 5 9 5 OK 41 2 1 4 8 OK 5. 5 0 12 . 1 7 E- W l o a d s Gr i d t r i b . w i d t h t r i b . a r e a F w i n d F s e i s m i c L 1 L 2 L 3 L 4 L 5 L 6 V wi n d ( p l f ) V w i n d ( p l f ) V s e i s m i c ( p l f ) V s e i s m i c ( p l f ) < H ' ( i f a p p l i e s ) H < H ' ( i f a p p l i e s ) G < H ' ( i f a p p l i e s ) F < H ' ( i f a p p l i e s ) E < H ' ( i f a p p l i e s ) D < H ' ( i f a p p l i e s ) C 14 . 9 6 6 0 1 2. 0 1 3 . 4 2 3. 0 0 6 . 0 0 3 . 0 0 16 7 2 8 5 < H ' ( i f a p p l i e s ) B 25 . 0 0 1 0 2 5 3. 3 5 5 . 7 7 16 . 5 8 20 2 3 4 8 8 < H ' ( i f a p p l i e s ) A 11 . 3 7 5 2 2 1. 5 5 2 . 9 8 2. 3 3 2 . 7 5 2 . 3 3 1 0 . 0 0 89 1 7 1 mi n L i = 2. 5 9 5 OK 51 . 3 3 21 4 8 OK 6. 9 1 1 2 . 1 7 EL R E n g i n e e r i n g 10 5 0 8 3 2 n d A v e S W U n i t B Se a t t l e , W A 9 8 1 4 6 20 6 . 2 0 0 . 8 7 6 4 el r e n g 3 3 @ g m a i l . c o m E D As s u m e d o r i e n t a t i o n "E - W " g r i d s C > B Y + A 0, 0 1 2 3 4 X + > "N - S " g r i d s To t a l l a t e r a l c a p a c i t y o f s h e a r l i n e - I n d i v i d u a l s eg m e n t c a p a c i t i e s w i t h i n t h e s h e a r l i n e w i t h A . R . i > 2 : 1 r e d u c e d by 2 L i / H p e r 2 0 2 1 S D P W S 4 . 3 . 5 . 5 . 1 e x c e p t i o n 1 f o r s h e a r l i n es w i t h m o r e t h a n o n e s h e a r w a l l a n d b y 1. 2 5 - 0 . 1 2 5 ( H / L i ) pe r 2 0 2 1 S D P W S 4 . 3 . 3 . 2 fo r s h e a r l i n e s w i t h o n e w a l l o n l y Go v e r n s W6 W 4 W 3 W 2 2 W 3 2 W 2 Fl e x i b l e R i g i d W o r E Q 8. 8 3 1 1 2 . 8 8 3 1 6 . 5 7 2 2 1 . 6 5 3 3 3 . 1 4 5 4 9 . 6 0 9 W 6 E Q 7. 8 0 0 1 1 . 3 8 0 1 4 . 6 3 8 1 9 . 1 2 6 2 9 . 2 7 7 4 3 . 8 2 0 W 6 E Q W6 W 4 W 3 W 2 2 W 3 2 W 2 Fl e x i b l e R i g i d W o r E Q 4. 8 3 0 7 . 0 4 6 9 . 0 6 4 1 1 . 8 4 3 1 8 . 1 2 9 2 7 . 1 3 4 W 6 E Q 3. 2 3 2 4 . 7 1 5 6 . 0 6 6 7 . 9 2 5 1 2 . 1 3 1 1 8 . 1 5 7 W 6 E Q 4. 0 7 5 5 . 9 4 5 7 . 6 4 8 9 . 9 9 3 1 5 . 2 9 6 2 2 . 8 9 4 W 6 E Q W6 W 4 W 3 W 2 2 W 3 2 W 2 Fl e x i b l e R i g i d W o r E Q 8. 4 6 7 1 2 . 3 5 2 1 5 . 8 9 0 2 0 . 7 6 1 3 1 . 7 8 0 4 7 . 5 6 6 W 6 E Q 20 . 8 5 4 3 0 . 4 2 5 3 9 . 1 3 8 5 1 . 1 3 6 7 8 . 2 7 5 1 1 7 . 1 5 7 W 6 E Q 10 . 6 6 8 1 5 . 5 6 4 2 0 . 0 2 2 2 6 . 1 6 0 4 0 . 0 4 3 5 9 . 9 3 4 W 6 E Q W6 W 4 W 3 W 2 2 W 3 2 W 2 Fl e x i b l e R i g i d W o r E Q 2. 4 1 6 3 . 5 2 4 4 . 5 3 4 5 . 9 2 4 9 . 0 6 7 1 3 . 5 7 2 W 4 E Q 4. 0 2 0 5 . 8 6 5 7 . 5 4 4 9 . 8 5 7 1 5 . 0 8 9 2 2 . 5 8 4 W 4 E Q 3. 5 4 1 5 . 1 6 6 6 . 6 4 6 8 . 6 8 3 1 3 . 2 9 2 1 9 . 8 9 4 W 6 E Q EL R E n g i n e e r i n g 10 5 0 8 3 2 n d A v e S W U n i t B Se a t t l e , W A 9 8 1 4 6 20 6 . 2 0 0 . 8 7 6 4 el r e n g 3 3 @ g m a i l . c o m Co n t r o l l i n g 0. 6 D + 0 . 6 W 0 . 6 D + 0 . 7 ρ E HO L D O W N S Fl e x i b l e R i g i d F l e x i b l e R i g i d M A X v h d s h e a r A v a i l a b l e r e si s t i n g D W I N D S E I S M I C 0. 6 WI N D S E I S M I C Ro o f N- S l o a d s G r i d L 1 L 2 L 3 L 4 L 5 L 6 V w i n d ( p l f ) V w i n d ( p l f ) V s e i s m ic ( p l f ) V s e i s m i c ( p l f ) ( p l f ) W / E ? u n i . ( p l f ) c o n c . ( l b s ) o /t T ( l b s ) o / t T ( l b s ) re s i s t C ( l b s ) n e t o / t ( l b s ) n e t o / t ( l b s ) 8. 0 8 < H w 8 8. 0 8 < H w 7 8. 0 8 < H w 6 8. 0 8 < H w 5 8. 0 8 < H w 4 8. 0 8 < H w 3 8. 0 8 < H w 2 21 . 4 2 1 5 . 0 0 37 8 4 8 4 E 27 4 30 3 6 8 2 1 7 5 8 - 1 4 5 5 - 1 0 7 6 8. 0 8 < H w 1 23 . 1 7 9. 0 0 14 95 95 E 27 4 11 1 77 2 19 0 1 -1 7 9 1 -1 1 3 0 E- W l o a d s G r i d L 1 L 2 L 3 L 4 L 5 L 6 8. 0 8 < H w H 8. 0 8 < H w G 8. 0 8 < H w F 8. 0 8 < H w E 8. 0 8 < H w D 8. 0 8 < H w C 19 . 9 2 33 8 7 8 7 E 14 9 26 8 7 0 2 8 8 9 - 6 2 2 - 1 8 7 8. 0 8 < H w B 13 . 3 3 82 2 1 7 2 1 7 E 21 7 66 6 1 7 5 7 8 6 7 - 2 0 1 8 9 0 8. 0 8 < H w A 13 . 2 5 3. 7 9 31 89 89 E 14 9 25 0 71 9 59 2 -3 4 1 12 7 Ro o f - 1 N- S l o a d s G r i d L 1 L 2 L 3 L 4 L 5 L 6 9. 0 8 < H w 8 9. 0 8 < H w 7 9. 0 8 < H w 6 9. 0 8 < H w 5 9. 0 8 < H w 4 9. 0 8 < H w 3 14 . 2 5 2 0 . 6 7 28 4 7 4 7 E 15 9 25 8 4 2 5 9 8 5 - 7 2 7 - 5 6 0 9. 0 8 < H w 2 19 . 1 7 2 7 . 1 7 1 8 . 2 5 2 1 . 4 2 37 7 0 7 0 E 48 4 33 4 6 3 3 3 9 4 8 - 3 6 1 4 - 3 3 1 5 9. 0 8 < H w 1 23 . 1 7 20 . 8 3 30 10 3 10 3 E 48 4 27 7 93 7 33 6 7 -3 0 9 0 -2 4 2 9 E- W l o a d s G r i d L 1 L 2 L 3 L 4 L 5 L 6 9. 0 8 < H w H 9. 0 8 < H w G 9. 0 8 < H w F 9. 0 8 < H w E 9. 0 8 < H w D 9. 0 8 < H w C 3. 0 0 6 . 0 0 3 . 0 0 16 7 2 8 5 2 8 5 E 28 8 15 1 8 2 5 8 5 5 1 8 1 0 0 0 2 0 6 8 h o l d o w n 9. 0 8 < H w B 16 . 5 8 20 2 3 4 8 3 4 8 E 35 6 18 3 5 3 1 6 2 1 7 6 9 6 6 1 3 9 3 h o l d o w n 8. 0 0 < H w A 2. 3 3 2. 7 5 2. 3 3 10 . 0 0 89 17 1 17 1 E 27 7 71 3 13 6 9 83 0 -1 1 8 53 8 Project Information Code:Date: Designer: Client: Project: Wall Line: > 0.6W > 0.7ρE - V (lb) =410 1179 - Apply Ωo per 12.3.3.3?Y - Overstrength factor (Ωo) =2.5 - ASCE 7-10 12.4.3.3 ASD stress increase w/Ωo =1.2 - Sds =1.033 - ρ =1.3 V 1179 lbf Seismic controls Opening 1 2bs/h L1 2.67 ft ha1 1.08 ft Adj. Factor L2 2.67 ft ho1 4.00 ft P1=ho1/L1=1.50 N/A hwall 8.08 ft hb1 3.00 ft P2=ho2/L2=1.50 N/A Lwall 13.25 ft Lo1 7.91 ft 1. Hold-down forces: H = Vhwall/Lwall 719 lbf 6. Unit shear beside opening 221 plf 2. Unit shear above + below opening 221 plf 176 plf 1179 lbf OK 3. Total boundary force above + below openings 7. Resistance to corner forces First opening: O1 = va1 x (Lo1) =1393 lbf R1 = V1*L1 =589 lbf R2 = V2*L2 =589 lbf 4. Corner forces F1 = O1(L1)/(L1+L2) =697 lbf 8. Difference corner force + resistance F2 = O1(L2)/(L1+L2) =697 lbf R1-F1 =-107 lbf R2-F2 =-107 lbf 5. Tributary length of openings T1 = (L1*Lo1)/(L1+L2) =3.96 ft 9. Unit shear in corner zones T2 = (L2*Lo1)/(L1+L2) =3.96 ft vc1 = (R1-F1)/L1 =-40 plf vc2 = (R2-F2)/L2 =-40 plf 10. Net hold-down forces Holdowns (overturning) Hwind =250 lbf < (0.6W) Hseismic =1383 lbf < (0.7ΩoE/ρ) Holdowns (Dead resisting) Uniform =149 plf Conc. =0 lbf Hwind (net) =-341 lbf < (0.6D+0.6W) Hseismic (net) =485 lbf < (0.6-0.14Sds)D+(0.7ΩoE/ρ) Check Summary of Shear Values for One Opening Line 1: vc1(ha1+hb1)+V1(ho1)=H?-164 883 719 lbf Line 2: va1(ha1+hb1)-vc1(ha1+hb1)-V1(ho1)=0?719 -164 883 0 Line 3: va1(ha1+hb1)-vc2(ha1+hb1)-V1(ho1)=0?719 -164 883 0 Line 4: vc2(ha1+hb1)+V2(ho1)=H?-164 883 719 lbf 221 plf Seismic controls W6 4-Term Deflection 3-Term Deflection 697 lbf One side > CS16 x 30 inches 4-Term Story Drift % 3-Term Story Drift % 485 lbf NONE 89 plf *The Design Summary assumes that the shear wall is designed as blocked. V2 = (V/L)(T2+L2)/L2 = First opening: va1 = vb1 = H/(ha1+hb1) = Check V1*L1+V2*L2=V? Design Summary* Req. Sheathing Capacity Req. Strap Force Req. HD Force - H(net) Req. Shear Wall Anchorage Force (vmax) V1 = (V/L)(L1+T1)/L1 = Expire IBC > SDPWS > APA 5/31/2025 ELR Mountain Terrace Builders, Inc. RHD 1482B-902B-GL Upper Grid A - 13'-3" - ELEVATION B Shear Wall Calculation Variables Adj. Factor Method = Wall Pier Aspect Ratio Project Information Code:Date: Designer: Client: Project: Wall Line: > 0.6W > 0.7ρE - V (lb) =659 1730 - Apply Ωo per 12.3.3.3?N - Overstrength factor (Ωo) =N.A. - ASCE 7-10 12.4.3.3 ASD stress increase w/Ωo =N.A. - Sds =1.033 - ρ =1.3 V 1730 lbf Seismic controls Opening 1 Opening 2 2bs/h 18" min per APA >L1 2.63 ft ha1 1.08 ft ha2 1.08 ft Adj. Factor 18" min per APA >L2 4.71 ft ho1 4.00 ft ho2 4.00 ft P1=ho1/L1=1.52 N/A L3 2.67 ft hb1 3.00 hb2 3.00 ft P2=ho2/L2=0.85 N/A hwall 8.08 ft Lo1 5.00 Lo2 5.00 ft P3=ho3/L3=1.50 N/A Lwall 19.96 ft 1. Hold-down forces: H = Vhwall/Lwall 701 lbf 6. Unit shear beside opening 2. Unit shear above + below opening 146 plf 172 plf 205 plf 172 plf 145 plf 1734 lbf OK 3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) =858 lbf 7. Resistance to corner forces Second opening: O2 = va2 x (Lo2) =858 lbf R1 = V1*L1 =383 lbf R2 = V2*L2 =963 lbf 4. Corner forces R3 = V3*L3 =388 lbf F1 = O1(L1)/(L1+L2) =307 lbf F2 = O1(L2)/(L1+L2) =551 lbf 8. Difference corner force + resistance F3 = O2(L2)/(L2+L3) =548 lbf R1-F1 =76 lbf F4 = O2(L3)/(L2+L3) =311 lbf R2-F2-F3 =-135 lbf R3-F4 =78 lbf 5. Tributary length of openings T1 = (L1*Lo1)/(L1+L2) =1.79 ft 9. Unit shear in corner zones T2 = (L2*Lo1)/(L1+L2) =3.21 ft vc1 = (R1-F1)/L1 =29 plf T3 = (L2*Lo2)/(L2+L3) =3.19 ft vc2 = (R2-F2-F3)/L2 =-29 plf T4 = (L3*Lo2)/(L2+L3) =1.81 ft vc3 = (R3-F4)/L3 =29 plf 10. Net hold-down forces Holdowns (overturning) Hwind =267 lbf < (0.6W) Hseismic =701 lbf < (0.7ρE) Holdowns (Dead resisting) Uniform =149 plf Conc. =0 lbf Hwind (net) =-624 lbf < (0.6D+0.6W) Hseismic (net) =-652 lbf < (0.6-0.14Sds)D+(0.7ρE) Check Summary of Shear Values for Two Openings Line 1: vc1(ha1+hb1)+V1(ho1)=H?118 583 701 lbf Line 2: va1(ha1+hb1)-vc1(ha1+hb1)-V1(ho1)=0?701 118 583 0 Line 3: vc2(ha1+hb1)+V2(ho1)-va1(ha1+hb1)=0?-117 818 701 0 Line 4: va2(ha2+hb2)-V2(ho2)-vc2(ha2+hb2)=0?701 818 -117 0 Line 5: va2(ha2+hb2)-vc3(ha2+hb2)-V3(ho2)=0?701 119 582 0 Line 6: vc3(ha2+hb2)+ V3(ho2) = H?119 582 701 lbf 205 plf Seismic controls W6 4-Term Deflection 3-Term Deflection 551 lbf One side >CS16 x 30 inches 4-Term Story Drift % 3-Term Story Drift % -652 lbf NONE 87 plf V1 = (V/L)(L1+T1)/L1 = Expireopen AWC-SDPWS-2021 5/31/2025 ELR Mountain Terrace Builders, Inc. RHD 1482B-902B-GL Upper Grid C - 19'-11" Shear Wall Calculation Variables Adj. Factor Method = Wall Pier Aspect Ratio First opening: va1 = vb1 = H/(ha1+hb1) = V2 = (V/L)(T2+L2+T3)/L2 = Second opening: va2 = vb2 = H/(ha2+hb2) = V3 = (V/L)(T4+L3)/L3 = Check V1*L1+V2*L2+V3*L3=V? *The Design Summary assumes that the shear wall is designed as blocked. Design Summary* Req. Sheathing Capacity Req. Strap Force Req. HD Force - H(net) Req. Shear Wall Anchorage Force (vmax) Project Information Code:Date: Designer: Client: Project: Wall Line: > 0.6W > 0.7ρE - V (lb) =891 1711 - Apply Ωo per 12.3.3.3?N - Overstrength factor (Ωo) =N.A. - ASCE 7-10 12.4.3.3 ASD stress increase w/Ωo =N.A. - Sds =1.033 - ρ =1.3 V 1711 lbf Seismic controls Opening 1 1.25-0.125h/bs L1 2.50 ft ha1 1.08 ft Adj. Factor L2 2.50 ft ho1 5.00 ft P1=ho1/L1=2.00 N/A hwall 9.08 ft hb1 3.00 ft P2=ho2/L2=2.00 N/A Lwall 10.00 ft Lo1 5.00 ft 1. Hold-down forces: H = Vhwall/Lwall 1554 lbf 6. Unit shear beside opening 342 plf 2. Unit shear above + below opening 342 plf 381 plf 1711 lbf OK 3. Total boundary force above + below openings 7. Resistance to corner forces First opening: O1 = va1 x (Lo1) =1904 lbf R1 = V1*L1 =856 lbf R2 = V2*L2 =856 lbf 4. Corner forces F1 = O1(L1)/(L1+L2) =952 lbf 8. Difference corner force + resistance F2 = O1(L2)/(L1+L2) =952 lbf R1-F1 =-96 lbf R2-F2 =-96 lbf 5. Tributary length of openings T1 = (L1*Lo1)/(L1+L2) =2.50 ft 9. Unit shear in corner zones T2 = (L2*Lo1)/(L1+L2) =2.50 ft vc1 = (R1-F1)/L1 =-39 plf vc2 = (R2-F2)/L2 =-39 plf 10. Net hold-down forces Holdowns (overturning) Hwind =809 lbf < (0.6W) Hseismic =1554 lbf < (0.7ρE) Holdowns (Dead resisting) Uniform =533 plf Conc. =0 lbf Hwind (net) =-790 lbf < (0.6D+0.6W) Hseismic (net) =-873 lbf < (0.6-0.14Sds)D+(0.7ρE) Check Summary of Shear Values for One Opening Line 1: vc1(ha1+hb1)+V1(ho1)=H?-157 1711 1554 lbf Line 2: va1(ha1+hb1)-vc1(ha1+hb1)-V1(ho1)=0?1554 -157 1711 0 Line 3: va1(ha1+hb1)-vc2(ha1+hb1)-V1(ho1)=0?1554 -157 1711 0 Line 4: vc2(ha1+hb1)+V2(ho1)=H?-157 1711 1554 lbf 381 plf Seismic controls W3 4-Term Deflection 3-Term Deflection 952 lbf One side > CS16 x 30 inches 4-Term Story Drift % 3-Term Story Drift % -873 lbf NONE 171 plf V1 = (V/L)(L1+T1)/L1 = Expire IBC > SDPWS > APA 5/31/2025 ELR Mountain Terrace Builders, Inc. RHD 1482B-902B-GL Lower Grid A - 10'-0" Shear Wall Calculation Variables Adj. Factor Method = Wall Pier Aspect Ratio V2 = (V/L)(T2+L2)/L2 = First opening: va1 = vb1 = H/(ha1+hb1) = Check V1*L1+V2*L2=V? Design Summary* Req. Sheathing Capacity Req. Strap Force Req. HD Force - H(net) Req. Shear Wall Anchorage Force (vmax) *The Design Summary assumes that the shear wall is designed as blocked. ELR Engineering 10508 32nd Ave SW Unit B Seattle, WA 98146 phone: (206) 200-8764 email: elreng33@gmail.com Foundation Calculations Th i s s p r e a d s h e e t c a l c u l a t e s s o i l p r e s s u r e s a n d V u / φV n & M u / φ Mn f o r a c o n t i n u o u s p l a i n c o n c r e t e f o o t i n g u n d e r a c o n c r e t e s t e m w a l l ( a s s u m e a l l t o b e m i n i m a l l y r e i n f o r c e d ) Pr o j e c t : 14 8 2 - B - 9 0 2 B / G L Da t e : 5/ 3 1 / 2 0 2 5 Co d e : AC I 3 1 8 R - 1 9 C h a p t e r 1 9 - " P l a i n C o n c r e t e " Fo o t i n g I D : Ty p i c a l - [ Ta b l e R 4 0 3 . 1 ( 1 ) - 2 - s t o r y w i t h c r a w l s p a c e ] ft g . ( w ) = 16 ft g . ( h ) = 8 st e m ( w ) = 8 st e m ( h ) = 24 f' c = 25 0 0 φ = 0. 6 Al l o w . S P = 15 0 0 P = 4 in c h e s < O K 1) D e t e r m i n e a n d i n p u t u n f a c t o r e d d e s i g n l o a d s a p p l i e d t o f o o t i n g D ( p s f ) tr i b - 1 ( f t ) tr i b - 2 ( f t ) D ( p l f ) L ( p s f ) L ( p l f ) S ( p s f ) S ( p l f ) Ro o f 17 25 42 5 0 25 62 5 Wa l l 10 8. 0 8 81 0 0 Fl o o r ( R o o f - 1 ) 12 10 12 0 40 40 0 0 Wa l l 10 9. 0 8 91 0 0 Fl o o r ( R o o f - 2 ) 12 4 48 40 16 0 0 Wa l l 10 0 0 0 0 Fl o o r ( R o o f - 3 ) 12 0 0 40 0 0 St e m w a l l 15 0 8 24 20 0 0 0 Fo o t i n g 15 0 16 8 13 3 0 0 10 9 8 5 6 0 6 2 5 Fa c t o r e d d e s i g n s o i l p r e s s u r e s Su m t o t a l f o r L . C . 1. 2 D + 1 . 6 L + 0 . 5 0 S + 1 . 6 0 H 13 1 8 89 6 31 3 18 9 5 ps f 1. 2 D + 1 . 0 L + 1 . 6 0 S + 1 . 6 0 H 13 1 8 56 0 10 0 0 21 5 8 ps f Un f a c t o r e d s o i l p r e s s u r e s D + L 10 9 8 56 0 0 OK > 12 4 3 ps f D + 0 . 7 5 ( L + S ) 10 9 8 42 0 46 9 OK > 14 9 0 ps f D + S 10 9 8 0 62 5 OK > 12 9 2 ps f 2) S h e a r ( i n f o o t i n g ) Ca p a c i t y - T a b l e 1 4 . 5 . 5 . 1 ( a ) De m a n d De m a n d / C a p a c i t y r a t i o s φV n = 28 8 0 lb s p e r f t Vu = 71 9 lb s p e r f t D/ C = 0. 2 5 0 < O K φ = 0. 6 f' c = 25 0 0 h = 8 h ( 1 4 . 5 . 1 . 7 ) = 6 3) B e n d i n g ( i n f o o t i n g ) Ca p a c i t y - 1 4 . 5 . 2 . 1 a - b De m a n d φM n = 90 0 ft l b s p e r f t Mu = 12 0 ft l b s p e r f t D/ C = 0. 1 3 3 < O K φ = 0. 6 f' c = 25 0 0 h = 8 h ( 1 4 . 5 . 1 . 7 ) = 6 Wall Footing LIC# : KW-06019101, Build:20.25.05.28 ELR Engineering (c) ENERCALC, LLC 1982-2025 DESCRIPTION:1482B-902B)>Typical foundation "design" - 2-story + crawl space ELR Engineering 10508 32nd Ave SW Unit B Seattle, WA 98146 Phone: 206.200.8764 Email: elreng33@gmail.com Project File: 1482B-902B-GL.ec6 Project Title:1482B-902B_GL for MTB, Inc. Engineer:ELR Project ID: Printed: 31 MAY 2025, 9:19AM Project Descr: Code References Calculations per ACI 318-19, IBC 2021 Load Combinations Used : ASCE 7-16 General Information Material Properties Soil Design Values 1.50 Analysis Settings 150.0ksi No ksfAllowable Soil Bearing = = 2.50 60.0 2,850.0 150.0 = 0.250 Flexure = 0.60 Shear = Values 0.0018 Soil Passive Resistance (for Sliding) 1.0 1.0 = Increases based on footing Width Allow. Pressure Increase per foot of width = ksf when footing is wider than = ft : = AutoCalc Footing Weight as DL No Adjusted Allowable Bearing Pressure ksf= 1.50 when base footing is below ft pcf Increase Bearing By Footing Weight = pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth0.60 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus Min. Sliding Safety Factor = = : 1 Reference Depth below Surface ft =Allow. Pressure Increase per foot of depth ksf = = = Concrete Density = ksif'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Dimensions Footing Width 1.333ft= Wall center offset from center of footing 0in = = Wall Thickness 8.0in Footing Thickness 8.0in= Rebar Centerline to Edge of Concrete... = inat Bottom of footing 4.250 Reinforcing # Bars along X-X Axis Reinforcing Bar Size = 4 Bar spacing = 13.00 Applied Loads 1.098 0.560 0.6250 D Lr ksf L S P : Column Load OB : Overburden = k W E M-zz V-x =k k-ft Vx applied = in above top of footing = H = Wall Footing LIC# : KW-06019101, Build:20.25.05.28 ELR Engineering (c) ENERCALC, LLC 1982-2025 DESCRIPTION:1482B-902B)>Typical foundation "design" - 2-story + crawl space ELR Engineering 10508 32nd Ave SW Unit B Seattle, WA 98146 Phone: 206.200.8764 Email: elreng33@gmail.com Project File: 1482B-902B-GL.ec6 Project Title:1482B-902B_GL for MTB, Inc. Engineer:ELR Project ID: Printed: 31 MAY 2025, 9:19AM Project Descr: DESIGN SUMMARY Design OK Governing Load CombinationFactor of Safety Item Applied Capacity PASS 0.9936 Soil Bearing 1.490 ksf 1.50 ksf +D+0.750L+0.750S PASS n/a Overturning - Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Sliding - X-X 0.0 k 0.0 k No Sliding PASS n/a Uplift 0.0 k 0.0 k No Uplift Utilization Ratio Item Applied Capacity Governing Load Combination PASS 0.06123 Z Flexure (+X) 0.1198 k-ft 1.957 k-ft +1.20D+L+1.60S PASS 0.04261 Z Flexure (-X) 0.08338 k-ft 1.957 k-ft +1.20D+L+0.20S PASS 0.03329 1-way Shear (+X) 1.3 psi 38.421 psi +1.20D+L+1.60S PASS 0.03329 1-way Shear (-X)1.3 psi 38.421 psi +1.20D+L+1.60S Detailed Results Rotation Axis & Xecc Actual Soil Bearing Stress Actual / Allowable Soil Bearing Gross Allowable -X +X RatioLoad Combination... D Only 1.50 ksf 0.8237 ksf 0.8237 ksf 0.5490.0 in +D+L 1.50 ksf 1.244 ksf 1.244 ksf 0.8290.0 in +D+S 1.50 ksf 1.293 ksf 1.293 ksf 0.8620.0 in +D+0.750L 1.50 ksf 1.139 ksf 1.139 ksf 0.7590.0 in +D+0.750L+0.750S 1.50 ksf 1.490 ksf 1.490 ksf 0.9940.0 in +0.60D 1.50 ksf 0.4942 ksf 0.4942 ksf 0.3300.0 in Flexure Axis & Load Combination k-ft As Req'd Footing Flexure Tension @ Bot.Which Actual As Statusk-ft Mu Side ? or Top ?in^2in^2 in^2 Gvrn. As Phi*Mn +1.40D 0.064 -X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK +1.40D 0.064 +X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK +1.20D+1.60L 0.09216 -X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK +1.20D+1.60L 0.09216 +X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK +1.20D+1.60L+0.50S 0.1052 -X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK +1.20D+1.60L+0.50S 0.1052 +X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK +1.20D+L 0.07818 -X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK +1.20D+L 0.07818 +X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK +1.20D 0.05486 -X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK +1.20D 0.05486 +X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK +1.20D+L+1.60S 0.1198 -X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK +1.20D+L+1.60S 0.1198 +X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK +1.20D+1.60S 0.09649 -X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK +1.20D+1.60S 0.09649 +X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK +1.20D+L+0.50S 0.09119 -X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK +1.20D+L+0.50S 0.09119 +X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK +0.90D 0.04114 -X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK +0.90D 0.04114 +X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK +1.20D+L+0.20S 0.08338 -X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK +1.20D+L+0.20S 0.08338 +X Bottom 0.1728 ACI 7.6.1.1 0.1846 1.957 OK One Way Shear Units : k vu @ +XLoad Combination... vu @ -X vu:Max vu / Φ vnΦ vn Status +1.40D 0.7 0.7 0.7 38.4 0.018psipsipsipsi OK +1.20D+1.60L 1.0 1.0 1.0 38.4 0.026psipsipsipsi OK +1.20D+1.60L+0.50S 1.1 1.1 1.1 38.4 0.029psipsipsipsi OK +1.20D+L 0.8 0.8 0.8 38.4 0.022psipsipsipsi OK +1.20D 0.6 0.6 0.6 38.4 0.015psipsipsipsi OK +1.20D+L+1.60S 1.3 1.3 1.3 38.4 0.033psipsipsipsi OK +1.20D+1.60S 1.0 1.0 1.0 38.4 0.027psipsipsipsi OK +1.20D+L+0.50S 1.0 1.0 1.0 38.4 0.025psipsipsipsi OK +0.90D 0.4 0.4 0.4 38.4 0.011psipsipsipsi OK +1.20D+L+0.20S 0.9 0.9 0.9 38.4 0.023psipsipsipsi OK