Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Salmon Run DRAFT2 Drainage Report 20101117
DRAFT DRAINAGE REPORT FOR SALMON RUN APARTMENTS 10720 VANCIL ROAD SOUTHEAST YELM, WA 98597 Prepared: November 17, 2010 By: Chad Heimbigner, P.E., LEED AP Coffman Project #10247 L. / `~" SS's' ''~~-'~ A~ YO e ~ ~p 25870 ,w'w ~~ 'sI~NAL ~~~ti~ DRAFT Prepared By: ~COFFMAN N G I N E E R 5 10 N. Post Street, Suite 500 Spokane, WA 99201 (509) 328-2994 TABLE OF CONTENTS Project Description ........................................................................................................................ 1 Methodology ................................................................................................................................. l Topographic Data .......................................................................................................................... 1 Soils ............................................................................................................................................... 1 Peak Flow, Volume and Disposal Calculations ............................................................................ 2 1. Runoff and Rainfall Data ................................................................................................. 2 2. Hydrology Computations ................................................................................................. 2 3. Stormwater Treatment ...................................................................................................... 3 Conclusions ................................................................................................................................... 3 ATTACHMENTS "A": Vicinity Map "B": Geotechnical Report "C": Drainage Basin Map "D": Hydrology Calculations "E": WWIIlVI3 Output ~COFFMAN N G I N E E R S Salmon Run Apartments . Drainage Report PROJECT DESCRIPTION The proposed project is located at 10720 Vancil Road SE in Yelm, Washington. The on-site improvements consist of the addition of five (5) new multi-family residential buildings with a total of forty (40) units and one (1) community building. Paved parking .lots, sidewalk, playground and landscaped areas are also included in the development. The storm water management improvements for the subject site consist of bio-infiltration swales and subsurface infiltration galleries. The project is located in Yelm in a portion of the southeast 1/a and northeast 1/a of Section 30, Township 17 North, Range 2 East, City of Yelm, W.M. Thurston County, Washington. (See Vicinity Map, Attachment «A»,) METHODOLOGY Stormwater generated on-site will utilize best management practices recommended in the Stormwater Management Manual for Western Washington, as published by the Washington State Department of Ecology, February 2005. The SCS Method is used to determine the water quality design storm volume from a 6-month, 24-hour storm event. A continuous hydrograph created using an approved continuous runoff model (WWl-IlVI3) is used to size flow control facilities. Stormwater disposal is based on recommendations from the geotechnical report contained herein. TOPOGRAPHIC DATA The existing site is undeveloped and relatively flat, with a gentle slope from the northeast down to the southwest. The site is covered with low growing vegetation and a few trees. Slopes on-site range from 1% to 3 %. SOILS Soils for the subject site are classified as Nisqually loamy fine sand, 3 to 15 percent slopes (74 =soil unit symbol) and Spanaway gravelly sandy loam, 0 to 3 percent slopes (110 =soil unit symbol) in accordance with the Web Soil Survey, Thurston County, Washington; as published by the Natural Resources Conservation Service. On-site soils were sampled and classified by the project geotechnical engineers, Terra Associates, Inc. This was accomplished by excavating seven test pits, obtaining samples and performing laboratory testing. Terra Associates, Inc. indicated infiltration facilities would be suitable for the subjects site. Based on their analysis, an estimated long-term design infiltration rate of two inches per hour can be used for sizing of the infiltration facilities. A copy of the Terra Associates, Inc., Geotechnical Report, dated May 2010, is included in Attachment "B". Groundwater was not observed during the test pit excavations. ~COFFMAN N G I N E E R S Salmon Run Apartments Drainage Report PEAK FLOW. VOLUME AND DISPOSAL CALCULATIONS Runoff associated with the design storm event, generated by the Salmon Run project, will be retained on- site utilizing bio-infiltration swales. The swales combine vegetation and soils to remove stormwater pollutants by percolation into the ground. The SCS Method is used to determine the water quality design storm volume from a 6-month, 24-hour storm event. Runoff from the on-site drainage basins is directed to bio-infiltration swales. The swale bottoms are relatively flat, with longitudinal slopes less than 1%. Stormwater is allowed to pond to a treatment depth of 6" before overflowing into a catch basin which discharges to subsurface infiltration galleries. A continuous hydrograph created using an approved continuous runoff model (WWHM3) is used to size flow control facilities. The geotechnical engineer provided an infiltration rate of 2 inches per hour for the stormwater management facilities. This rate was applied to the bottom area of the infiltration galleries. The swales in conjunction with the infiltration galleries were sized to not exceed a drawdown time of 48 hours. 1. Runoff and Rainfall Data The 6-month, 24-hour storm value used for the SCS Method was estimated as 72% of the 2-year, 24-hour rainfall amount as recommended by the Stormwater Management Manual for Western Washington. The 2-year, 24-hour rainfall amount was obtained from an isopluvial map for the state of Washington. The continuous hydrograph utilized to size flow control facilities was produced using historic precipitation data for Thurston County within the WWHM3 program. 2. Hydrology Computations The site has been divided into three drainage basins, labeled `Basin A,' `Basin B,' and `Basin C' (see Drainage Basin Map, Attachment "C"). The SCS Method is used to determine the water quality design storm volume from a 6-month, 24-hour storm event. See Attachment "D" for Hydrology Calculations and Attachment "E" for WWHM3 output. The following table summarizes the results of the basin calculations. Treatment Treatment Infiltration Basins ;Drains Storage Storage Gallery 'Within ', Required Provided ' 'Dimensions 48 Hours (C>~ (CF) '; (W x L x D) Basin A Yes 569 576 115' x 11' x 5' Basin B Yes 1980 1983 318' x 10' x 5 Basin C Yes 898 925 20' x 52' x 5' 2 ~COFFMAN N G I N E E R S Salmon Run Apartments Drainage Report 3. Stormwater Treatment Per the geotechnical report, groundwater was not observed during the test pit excavations. According to the Stormwater Management Manual for Western Washington site suitability criteria, the subject site is suitable for infiltration systems. Runoff from the parking lot areas and hydraulically connected sidewallcs is treated with the bio-infiltration swales. Per the City of Yelm, roof runoff was included in the total storm runoff volumes, but not included as a pollutant generating source for the treatment volume calculations. CONCLUSIONS The above described Stormwater management improvements will provide the necessary systems to control and treat runoff associated with the design storm events for the Salmon Run development. Refer to the attachments for additional information. 3 VICINITYMAP ATTAC~IMENT "A" SITE VICINITYMAP ATTAC~IlVIENT "A" GEOTECHNICAL REPORT ATTAC~IMENT "B" ~ ~`'' _c ~., I ~! i i s +~- « w o o ~ Q rn r-+ O ~ ~ ~ ~ ~ `~ O OJ F, a us O c ~ ~ ~ 4 Ifs rti N m If1 ,` Q ~ `~ I I o~ ~ ~ c ~Q~ ~ N ~ c E +~ ~ v cu ~ room as ~ ? o~ ~ ~'~~ ~ ~ ~ ~v~c ~~'~c ~ ,~' a ~ ~ ~ ~ ~ cv w c ~ CT ~ 9 E ~ G ~ Ql ~ f9 ~ ~ L Q ~ ~ 4= d [1 i CT Q a i ~ ~ ,~ "' a ~ ~ a ,~ ~ ~~ ~ ~~~:;~, QEQTECl~~LIC~-L REPC?RT Salmon Ran ~4partments 10720 Vancil Road SE Yelm, Washington Project N©. T'd6437 Prepared for: Timf~er River ~3evelopment Eellev~e, °d~ashington I~ftay 5, 2010 TERRA A~S~+~~I~T~, In~~ Consultants in Geotechnical Engineering, Geology and Environments! Earth Sciences May S, 2010 Project No. T-6437 Mr. ivlark Rozgay Timber River Development 2223 - 1 12t1] Avenue NE, Suite 102 Bellevue, Washington 98004 Subject: Geotechnical Report Salmon Run Apartrnents 10720 Vancil Road SE Yehn, Washington Dear Mr. Rozgay: As requested, we have conducted a geotc;c]]nical engineering study for the subject project. Our field exploration indicates the site is generally underlain by 2 to 2,5 feet of organic fill material overlying variable glacial sediments composed of silty sand, sand with silt, variable gravel content, and gravel with sand. The fill materials are not suitable for the support of tl]e proposed buildings and pavements. The fill raterials will need to be removed from structural and pavernent subgrades. The attached report presents our findings and recommendations for the geotechnical aspects of project design and construction. We trust the infot7nation presented in this report is sufficient for your current needs. If you have any questions or require additional information, please call. Sincerely yours, TE/~RRA ASSOCIATES, INC. Ci/z/~7r~ Carolyn Sc1]eppei•, E.I.T. Staff En 7' eer T ., ,.~ ,~',. Projec serf ' ~~` ~• , ~~ ]eo ~~ Sclie~jS~~P.E. ~y~ ~ ~. 12525 Willows Goad, Suite 101, Kirkland, Washington 98034 Phone {425 RZ1-7777 • Fax (425} 821-4334 TABLE OF COI~Z'ENTS Patye No. 1.0 Project Description .......................................................................................................... 1 2.0 Scope of 1~'or•k ................................................................................................................. 1 3.0 Site Conditiotis ................................................................................................................ 2 3.1 Siirface ................................................................................................................ 2 3.2 Subsurface .......................................................................................................... 2 3.3 Grouz~d~vater ....................................................................................................... 2 4.0 Geologic }~azards ............................................................................................................ 2 4.1 Seismic Coi~siderations ...................................................................................... 2 4.2 Ei•osion .......................................................................................................,....... 3 4.3 Landslide Hazard ................................................................................................ 3 5.0 Discussion and Recommendations .................................................................................. 4 5.1 Gei~eral ............................................................................................................... 4 5.2 Site Preparation acid G~•ading ............................................................................. 4 5.3 Excavations ........................................................................................................ 5 5.4 Foundation S~ipport ............................................................................................ 5 5.5 Floor Slab-on-Grade ........................................................................................... 6 5.6 Stoi•~mvatei• Infiltration Feasibility ..................................................................... 6 5.7 Drainage ............................................................................................................. 7 S.S Utilities ............................................................................................................... 7 S.9 Paveme~it ............................................................................................................ S fi.0 Additional Services ......................................................................................................... S 7.0 Limitations ....................................................................................................................... S Figures Vicinity Map ...........................,..........................,.,..,.,.......................................................... Figure 1 Exploration Location Plan .................................................................................................... Figure 2 Anoendis Field Exploration acid Laboratory Teslii~g ........................................................................Appendix A Geotechnical Report Salmon Run Apartments 10720 Vancii Road SE Yelm, Washington 1.0 PROJECT DESCRIPTION The project consists of developing t}rc site with live new apartment buildings, a community building, a play area, and associated parking and utilities. Based on the conceptual site plan prepared by 7eck Bolter Architects dated September 2, 2003, the buildings will be located on the outer edges of the property with the community building and play area located in the center. 1~Ve expect that the apartment sh'uctures and the recreational building will be two-story wood-framed buildings constr2tcted al grade. Structural loading should be relatively light; with bearing walls carrying loads oft to 3 kips per foot and isolated columns carrying maximum loads of 30 to 40 kips. The recommendations in the following sections of this report are based on our understanding of the preceding design futures. We should revie«r design drawings as They become available to verify that our recommendations have been properly interpreted and to supplement them, if required. 2.0 SCOPE OI' ~~'ORK Our work was completed in accordance with our proposal dated July 16, 2009. (.fin April 27, ?010, we observed soil conditions at 7 test pits excavated to depths ranging from 3 to ]0 feet below existing grade. Using the information obtained from the subsurface exploration, we performed analyses to develop geoteclutical recommendations for project design and cortstrrrction. Specifically, this r•epori addresses t11e following: • Soil and groundwater conditions • Seismic design parameters per 2006 International Building Code (IBC) • Geologic critical areas • Site preparation and grading • rourtdations • )~loor• slabs at grade • Stormwater in171tration feasibility • Subsurface drainage • Utilities • Pavements It should be noted that recommendations outlined in this report regarding drainage are associated with soil sU~;ngth, design earth pressures, erosion, and stability. Design and perfor•tmance issues with respect to moisture as it relates to the structure environment (i.e., humidity, mildew, mold) is beyond Terra Associates' purview. A building envelope specialist or contractor should be consulted to address these issues, as needed. ivlay S, 2010 Project No. T-6437 3.0 SITE CONDI'CIONS 3.1 Surface '['he site is located at 10720 Vancil Road in Yelnt, VVasltington. The approximate site location is shown on Figure 1. The site is rectangular with a pan handle that extends towards lire west. The site is currently undeveloped and is covered with tall grass, brush, small h•ees, and a few mature tries. ~r4re observed household rubbish scattered throughout the site. The site is bordered by single-family residences to the south and west, an open field to the east, and a retail center to the north. The site and vicinity are relatively level. The ground surface on the site is uneven suggesting some past grading may have occurred. 3.2 Subsurface 1r4'e observed 2 to 2.5 feet of organic fill material immediately below existing grades. Benc;ath the fill mantel, all of our test pits encountered and were lenninated within glacial sediments composed of silty sand, sand ~vitlt silt and a variable gravel content, and gravel with sand, The: Geologic il~lal~ r~j~Ire Centralia Qrraclrarrgle, FVa.slrir7glorr, by Henry lr4'. ,Schasse (1937), show Ilse site is ~vitltin alt area mapped as "Vaslton Orrtwaslt Gravel" (Qdvg). Native soil conditions we observed at our test pits are generally consistent ~~+ith the geologic conditions shown on the reap. The preceding discussion is intended to be a general review of the soil conditions encountered. For more detailed descriptions, please refer to the Test Pit Logs in Appendix A. 3.3 Groundwater We did not observe groundwater seepage in the test pit excavations at the time of our exploration. We did observe same wet soil conditions suggesting areas of shallow seepage possibly develop during the normally wet winter season. However, based ou soil conditions and laboratory test results, we expect these areas would be Iir»ited in extent. 4.0 GEOLOGICAL HALARDS 4.1 Seismic Considerations Section 14.OS.130 of the Yelnt vlunicipal Code (Y,~1C) defines Seismic hazard areas as areas subject to severe risk of damage as a result of earthquake induced ground shaking, slope failure, settlement, soil liquefaction, lateral spreading, or surface farthing. Liquefaction is a pltenoutenon wlrerc there is a redaction or complete loss of soil strength due to an increase in water pressure induced by vibrations. Liquefaction mainly affects geologically recent deposits of tine-grained sand that is below the groundwater table. Soils of this nature derive their strength front intergranrrlar ti•iction. The generated water pressure or pore pressure essentially separates the soil grains and eliminates this intergranular ti•iction; tiros, eliminating the soil's strength. Page No. 2 A4ay 5, 2010 Pt•oject No. T-6437 Based on the soil and groundwater conditions we observed, it is our opinion that the hazards for liquefaction or settlement at this site during an ea,•tbquake and their associated risk or impacts are negligible. Based on soil conditions observed in the test borings and out• ktrowledge of the area geology, per Chapter lG of the 2006 Lrtec-national Building Code {1BC), site class "C`• should be used in structural design. Based on this site class, in accordance with the 2006 IBC, the following parameters should be used in computing seismic forces; Seisurrc Desi~-t Pnranret~ts {IBC 2006) Spectral response acceleration (Shot•t Period), SS 1.139 Speett•al response acceleration (1 -Second Period), Si 0.558 Site coefficient, F, 1.000 Site coefficient, P,. 1.402 Five percent damped .2 secoitd:~±rt•od, So; 0.759 Five percent damped 1.0 second period, S~, 0.372 Values determined using the United States Geological Survey (USGS) Ground Motion Parameter Calculator accessed on April 28, 2010 at the web site http;~~~~-riltquake.tts~S.a~it~~'a•~~u~,rfiltfhaZni~p~~d~,s.~t~litYdek~ltp. 4.2 Erosion Section 14.05.130 of•the YMC defines Erosion hazard areas as areas are at ]east those areas identified by the U.S. Depat•tutent of Agriculture's I~Tatural Resources Conservation Service as ]raving a "moderate to severe," "se~•ere," or "very severe" rill and inter-rill erosion hazard. Erosion hazard areas are also those areas intpacled by shore land and/or stream bank erosion and those areas within a river's channel migration zone. The soils encountered on-site are classified as Nisgttally loamy fine sand and Spanaway gravelly sandy loam by the United States Department of Agriculture Soil Conservation Set•~-ice Soil Classification System. With the existing slope gradients, these soils will have a slight to moderate potential for erosion when exposed. Therefore, the site is not an erosion hazard area as defined by the YMC. Rebardless, erosion protection measures as required by the City of 1'eIm will need to be in place prior to starting grading activities on the site. This would include perimeter silt fencing to contain erosion on-site and cover measures to prevent or reduce soil erosion during and following construction. 4.3 Landslide Hazard Section 14.08,130 of the YMC defines Landslide hazard areas as areas potentially subject to landslides based otr a combination of geologic, topographic, and hydrologic factors. They inchtde areas susceptible because of any combination of bedrock, soil, slope (gradient), slope aspect, stntcture, hydrology, or other factors. Based on lire soil and topographic conditions of the site, no portions of the site are susceptible to risk of mass movement and; Therefore, no portions of the site would be considered a landside hazard area. Page No. 3 it9ay 5, 201 Q Project Na.1'-6437 5.0 DISCUSSION AND RECOMMENDATIONS S.1 General Dared on our study, there are no geotechnical considerations that would preclude development of the site, as currently planned. 1-Iowever, as described earlier, our exploration indicates the upper ? to 2 'h feet of soil is fill material that contains a considerable amount of organic soil. In our opinion, this upper soil horizon will not be suitable for support of building foundations or immediate support of floor slabs and pavements. The buildings can be supported on conventional spread footings bearing on competent native soils observed below this upper 2 to 2.5 feet of ortanic fill material or on structural fill placed and compacted above competent mineral native soils. Pavement and floor slabs can be similarly supported, The following, sections provide detailed reconnncndations retarding the preceding issues and other geotechnical design considerations. These recommendations should be incorporated into the final design drawings and construction specifications. 5.2 Site Preuaration and Grading To prepare the sift; fot• construction, all vegetation, ortanic surface soils, and other deleterious material should be stripped and removed fmm the building and paved areas. Surface stripping depths of about 2 to 2.5 Feet should be expected to remove the ortanic surface fill. The ortanic fill material will not be suitable for use as structural fill, but may be used for limited depths in nonstructural areas. Once clearing and stripping operations are complete, cut and fill operations can be initiated to establish desired building trades, Prior to placing till, all exposed bearing surfaces should be observed by a representative of Terra Associates to verify soil cariditions are as expected and suitable for support of new fill or buildirie elernents• Our representative may request a proofroll using hea~ry rubber-tired equipment to determine if any isolated soft and yielding areas are present. ]f excessively yielding areas are observed, acrd they camrot be stabilized in place by compaction, the affected soils should be excavated and removed to firm bearing and trade restored with new structural fill If the depth of excavation to remove unstable soils is excessive, the use of teotextile fabrics, such as Mirafi SQQX, or an equivalent fabric, can be used in conjunction wish clean granular structural fill. Our experience has shown that, in general, a minimum of l8 inches of a clean, granular structural fill place and compacted over the geotextile fabric should establish a stable bearint surface. The ability to use native soil from site excavations as structural fill will depend on its moisture content and the prevailing weather conditions at the time of construction. The fines content of the granular native outwash observe below the fill horizon typically ranges between live to 12 percent. Gravel outwash with a fines content of less than five percent was observed at Test Pits TP-4 and TP-7 below a depth of five feet. In ottr opinion, these native soils will be suitable for use as structural fill and trench backfill. However, the fines content of most of outwash will snake the soil slithtly to moderately moisture sensitive and close moisture conu•ol will be required to facilitate proper compaction. During dry weather conditions, the contractor should be prepared to add water in order to facilitate crnupaction, During wet weather, the fines content of the outwash may cause the soil to become unstable in a fill condition and unsuitable for use as fill. In This case, the contractor should be prepared to dry the soil back to suitable moisture content by aeration or use an additive such as cement kiln dust, Portland eernent, or lime to stabilize the moisture, If an additive is used, the pH of the soil will be elevated and additional measures for monitoring pH of stonnwater runoff along with mitigation measures will need to be included iti the projects Stone 1tUater Pollution Prevention Program (SWPPI'). Page No, 4 ylay 5, 2010 Project No, T-G437 If importing soil for grading or backlilling during wet weather conditions becomes necessary, we recommend importing a granular soil that meets the following grading requirements: i. ,. v' e e c nt Pa `sdl~~~. ~' -~ No. 4 75 maximum No. 200 5 maximum' * Based on the 3/4-irtclt fraction. Prior to use, Ten•a Associates, Itic, should examine and test all materials imported to the site for use as su•trctw•al fill. Stwctural fill should be placed in uniform loose layers not exceeding l2 inches and compacted to a minimum of 95 percent of the soil's maximum dry density, as determined b}' American Society for Testing and 1~iaterials (A.ST;V1) Test Designation D-G9S (Standard Proctor). The moisture content of the soil at the time of compaction should be within two percent of its optimum, as determined by this ASTM standard, In nonsUlrcurrtl areas, the degree of compaction can be reduced to 90 percent. 5.3 Cacavations All excavations al the site associated with confined spaces, such as utility n•enehes, must be completed iu accordance with local, state, and federal requirements. Based on re~.>ulatio~ls outlined in the \~hashington Industrial Safety and Health Act (1rJISHA}, Cite glacial sediments observed would be classified as'I'ypc C soils. Accordingly, temporary excavations in Type C soils should have their slopes laid back at an inclination of l.S:l {Horirontal:Vertical) or Clatter, from the toe to the crest of the slope:. A11 exposed slope faces should be covered VVllh a durable reinforced plastic membrane during constivction to prevent slope raveling and Writing during periods of precipitation. la'or utility trenches, a properly designed and installed shoring trench box can be used to support the excavation sidewalls. The above information is provided solely for the benefit of the owner and other design consultants, and should not be constnred to imply that Terra Associates, Inc. assumes responsibility for job site safety. It is understood that job site safety is the sole responsibility of the project contractor. 5.4 Foundation Support The buildings can be supported on conventional spread footing foundations bearing on competent native soils or on structural fills placed above competent native soils. Foundation subgrade should be prepared as recommended in Section 5.2 of this report. Perimeter foundations exposed to the weather should bear a minimwn depth of 1.5 feet below final exterior grades for frost protection. interior foundations can be constructed at any convenient depth belo«~ the floor slab. Foundations can be dimensioned for a net allowable bearing capacity of 2,500 pounds per square foot {psf), hor short-teem loads, such as wind and seismic, a one-third increase in this allowable capacity can be used. 1~Vith stiltetural loading as anticipated attd this bearing stress applied, estimated total settlements are less than one-inch. Page No. 5 May 5, 2010 Project No. T-6437 For designing foundations to resist lateral (Dads, a base friction coefficient of 0.35 can be used. Passive earth presstn•es acting on the side of the footing and buried portion of the foundation stem wall can also be considered. 1~Ve recommend calculating this lateral resistance using an equivalent fluid weight of 300 pef. V1%c reeonunend not including the upper l2 inches of soil in this computation because the}~ can be affected by weather or disturbed by Future grading acliviq~. This value assumes the foundation will be constructed neat acainst competent native soil or backfilled with structw•al fill as described in Section 5.2 of this report. The values recommended include a safety factor of 1.5. 5.5 rloor Slab-on-Gracle Slab-on-grade floors can Ue supported on subgrade prepared as recommended in Section 5.2 of this report. It is typically recommended to place afour-inch thick capillary break layer composed of clean, coarse sand or fine gravel that has [ess than three percent passing the No. 200 sieve immediately below the slab. 'This material reduces the potential for upward capillary movement of water through the underlyiut; soil and subsequent wettinb of the Moor slab. However, in our opinion, if clean native outwash that meets the criteria described above is exposed at the floor subgrade elevation or used as structural fill to establish the floor grade, it would not be necessary to import material for placement as capillary break below the slabs. A representative of Terra Associates should observe the subgrade to verify the suitability of the native outwash to serve as the capillary break layer at the time of construction. •I'he capillary break layer will not prevent moisture intntsion through the slab caused by water vapor h•ansmission. Where moisture by vapor transmission is undesirable, such as covered floor areas, a common practice is to place a durable plastic membrane on the capillary break layer and then cover the membrane with a layer of clean sand or ftne Gravel to protect it front damage during construction, and to aid in uniform curing of the concrete slab. It should be noted that if the sand or gravel layer overlying the membrane is saturated prior to pouring the slab, it will not Ue effective in assisting uniforn curing of the slab and can actually serve as a water supply for moisture bleeding through the slab, potentially affecting floor coverings. Therefore, in our opinion, covering the membrane with a layer of sand or gravel should be avoided if floor slab construction occurs during the wet winter months and the layer cannot be effectively drained. 1Ve recouunend floor desib ers and contractors refer to the 2003 American Concrete Institute (ASI} Manual of Concrete Pr^aciice, fart 2, 302.1R-96, for fi,rtlter information regarding vapor barrier installation below slab-on-grade floors. 5.6 Stormwater Infiltration rettsibility ~1re expect that infiltration facilities will be considered for stornwater mana~;entent. T'he recessional outwash sands and gravels we observed at the site would be a suitable receptor formation for infiltration discharge. Depending on the location of the infiltration facilities, it may be necessary to excavate five feet of tuore below cun•ent site grades to roach the suitable outwash layer. To determine the lone term design infiltration rate, +.'e used ~letlrod 2 as outlined in Section 3.3.6, Volume III of the Ecology`s SYa•nrtr~ater r~lmrngen,eur ~~Inrrrrrrl,Jor If'estc~rrr II'nslrirrb~urr. This method con•elates the long-term infiltration rate with gradation testing of the soils in accordance with ASTM Test Designation D-422. Gradation curves front laboratory testing on the soils are attached in Appendix A. Based on the results of the testing and on Figure 3.8 in Ecology's Sr<~runraie,• Mrnnrge~nrclN Murrrurl•/hr I3'esler•rr I•t~crshirr~>lorr, we recommend using a long- term design infilh•ation rate of two inches per hour. Page No. 6 VIay S, zolo Project \To. T-6437 The permeability of the native outwash soils will be signs(-scantly impacted by the intnrsion of soil fines (silt- and clay-sized particles). Even a relatively minor amount of soil fines can reduce the permeability of the formation by a factor of ten. The greatest CxpOSlil'e to soil fines contamination will occur during mass grading and construction. Therefore, tive recommend that the Temporary Erosion and Sedimentation Control (TI;SC) plans route coustr•trction stormtivater to a location other than the permanent infiltration site. If this is not possible, the TESC pond bottom elevation should be kept two feet above the final infiltration elevation with final grade established after site areas Dave been substantially stabilized. We should review stormwater management plans when they become available to verify suitability of soils in the plaruted locations and to provide supplemental discussion and recommendations, if needed. 5.7 llraina~e Sru face Final exterior grades should promote free and positive drainage away from the site at all tunes. «'ater must not be allowed to pond or collect adjacent to foundations or within the immediate building areas. We recommend providing a gradient of at least three percent for a minimum distance of ten feet from tlxe building perimeters, if this gradient cannot be provided, surface water should be collected adjacent to the sUuctur•es and disposed to appropriate storm facilities. Subsrrr face Considering the well-drained nature of the native site soils, provided the finish floor grade is al or above the adjacent exterior grade and positive drainage away from the stn~clure is maintained, in our opinion, perimeter foundation drains would not be required. If these conditions are not met, footing drains should be placed at the perimeter of each structure. The footing drains should consist of a four-inch diameter perforated PVC pipe that is enveloped in clean washed %-inch drainage abgregate. T'he aggregate envelope should extend a minimwii of six inches above and to the sides of the pipe and three inches belotiv the pipe invert. The drain pipe can be placed at a uniform grade with an invert eyuivalent to the bottom of the adjacent footing and tied to discharge into the development storm system. Reverse gradient or bellies in the pipe muss be avoided. Surface water discharge elements such as downspouts or yard drains should not be tied directly or indirectly into the footing drains. 5.8 Utilities Utility pipes should be bedded and backfil[cd in accordance with American P~rblic Works Association (APWA) or City of Yelm specifications. As a minimum, trench backfill should be placed and compacted as structural fill, as described in Section 5.2 of this report. During wet weather conditions, it may be necessary to import suitable wet weather soil for use as backf`ill. 5.9 Pavement Pavement subgrades should be prepared as described in the Section S.2 of this report. Regardless of the degree of relative compaction achieved, the subgrade must Ue firm and relatively unyielding before paving. TI>e subgr•ade should be proofrolled with heavy construction equipment to verily this condition. Page No. 7 May s, Salo Project No. T-6437 The pavement design section is dependent upon the supporting capability of the subgrade soils and Ilse Traffic conditions to which it will be subjected. For on-site access and parkine, with traffic consisting mainly of light passeueer vehicles with only occasional heavy traffic, and with a stable subgrade prepared as recommended, we recommend the following pavement sections: • Two inches of hot mix asphalt (HMA) over four inches of crushed rock base (CRB} • Two inches of H1~1A over three inches ofasphalt-treated base (ATB} The paving materials used should confornt to the Washington State Deparintent of Transpo,fiation {WSDUT) specifications f'ot• %z-inch class IIiNA, ATB, and CRB. Long-term pavement performance will depend on surface drainage. Apoorly-drained pavement section will be subject to premature failure as a result of surface water infiltrating into the subgrade soils and reducing their supporting capability. For optimum pavement performance, we recontntend surface drainage gradients of at least two percent. Sorne degree of longitudinal and transverse cracking of the pavement surface shot-Id be expected over time. Regular maintenance should be planned to seal cracks when they occur. 6.0 ADDITIONAL SI;RVICiJS Terra Associates, inc. should review the final design drawings and specifications in order to verify that earthwork and foundation recommendations have been properly interpreted and implemented in project design. We should also provide geoteelutical service during constntction to observe compliance with ow• design concepts, specifications, and recommendations. This will allow for design changes if subsw•face conditions differ from those anticipated prior to the start of construction. 7.0 LI\~iITATIONS We prepared this report in accordance with generally accepted geoteehnieal engineering practices. No other warranty, expressed or implied, is made. This repo,fi is the copyrighted propetfiy of Terra Associates, htc. and is intended for specific application to the Salmon Run Aparfiments project. This report is for the exclusive use of Timber River Development and its authorized representatives. The analyses and recommendations present in this report are based on data obtained from the test pits and borings done on site. Variations in soil conditions can occur, the nature and extent of•whiclt may not become evident until constn,ction. If variations appear evident, Ten•a Associates, htc. should be requested to reevaluate the recormendations in this report prior to proceeding with construction. Page No. 8 i 4 v~ ~ ''f't /6 r~~'~d ~6'~ sf N r~ ~*r ~~ ~~b ~O7 ~~. ~ ~~ y~~s~s a ~ ~ ; F;~rt ~ Venn. FI~1~~1~i`iR~rY. ~et~~c ~,~ ~>~ 143rd Svc 'i03rd Avg ~~ ~.- C ~ti ~ ~,.* ~' x c #, ~ ~- 71 t a w ~ ~ ~. ~. ~ ~ •th Aye S~ `~'°° . ~ ( m ~+?d fdE ~t ~ _ m $sat~ ~y~~ SI7`~ ,'F iI ~'~ ~ .; ,/V• ~ ~> i u`,~ j .~_~ ~ ,b ~,~, i Qi'th t ~~ i , c} ~~fK~afICF St S m ~~ z ~, ~ p, k ' ~ ~. n, ~ ~ ~ ,~ z Q ~'~ cn m '109th Avg SE ° ~~ U~ :, -_ 5~~ *~ « ~-- a. ,~ Clark R~ Sk - ~ t REFERENCE: GOGGLE MAPS, WVVVV.GOOGLE.COM, ACCESSED 4-27-2010 i ~~~ ~~•~N w rn ~r d a t-° n. ~l NOT TO SCALE .:•;~::~~ Terra vICINITY MAP ''"'• ~~ SAL.MON RUN APARTMENTS Associates I11C. YELM, WASHINGTON • •• ` ~onsullanls in Geotechnical engineering Geology and Environmental Earlh SGences Proj. No.T-6437 Date MAY 2010 Figure 1 ~~' ~ ul a~~' ~df ~ ~~~ i{'Jtf r War' SE' +Jld Ye-m-Mc Kenna F I r:; ~• a''b ~~{~ xs ~~ ~~~ 'i~.Crc~~~,,a Ci N Z ~ ~ ~ Z Z LL LL z Zw pg0 Q~p ~ N UQZ N ~a~ Z Q ~ o p~~ a F¢¢- Z ~ fYpw D o O ~>' J J Q. Q r~i X ~ W ~- Z 'o a .m ~~ ~ u o f N ~ N W u AW ~~ ~OT~~ Qi oC (]~ U ~ "' ~C O b ~ w ~ y9 ~ a~ ~-~~ C 1 t Z 0 U O r a r G w 2 r W w C7 W g J X O K a ¢OO ~ ~ LL l ZOO Q F 7 f UO y m w i r00 i za UQ~p~, ` 7 F"~OZ l ~pNO r =rrOU c az ya¢¢ i yW~tll f ZKZZ azWO V i wOZO 2 F'NW Z W ' OZ~O p,' 1 In~W W f F =.w W LL i = ro~o ~ i APPENDIX A FIELD EXPLORATION AND LABORe~TOR1` TES"PING Salmon Run Apartments Ye[n-, Washington On April 27, 2010, we completed our site exploration by observing soil conditions at 7 test pits. The test pits were excavated using a baclaioe to a maximum depth of ten feel below existing site grades. Test pit locations were determined in the field by measurements from existing site features. The approximate location of the test pits are shown on the attached Exploration Location Plan, Figure 2. Test Pit Logs are attached as Figures /~-2 through A-3. A geoteclutieal engineer from our office conducted the field exploration. Our representative classified the soil conditions encountered, maintained a log oFeach test pit, obtained representative soil samples, and recorded water levels observed during excavation, All soil samples were visually classified in accordance with the Unified Soil Classification System (USCS) described on Figure A-l, Representative soil samples obtained li•ont the test pits were placed in closed containers and taken to our laboratory for further examination and testing. The moisture content of each sample was measured and is reported on the individual Test Pii Logs, Grain size analyses were periortned on selected samples. The results of the grain size analyses are shown on Figures A-9 and A-10. Pi•~ject No. T-6137 MAJOR DfVISIONS J 0 rn O W Z Q tY w lY Q O `m IIIIl ~~ _N ~'~ •~ a~ ~> E `~ O o N O "' o ~Z c~ ~ c ~~ ~~ 0 GRAVELS ! More than 50% of coarse fraction is larger than No. 4 sieve SANDS More than 50% of ~o~rse fract'wrt Is smaller titan No. ~ sieve J 0 O t.i~ Z Q IY w Z L~ ,,, O ~L ~~ Eon ~Z N O C N rt7 .C N C ,~, 7 ~ ~ a~ ~ o~ QH Organic clays of high plasticity. - ---- _ _ -- _ _ ..~._. ~._ -__J - ~iIGj-1LY ORGANIC S(~?ILS P`r Peat. DEFINITION OF TERMS AND SYMBOLS ~ ~ Densil Standard Penetration Resistance in Blows/Foot [ 2" OUTSIDE DIAMETER SPLIT SPOON SAMPLER J _ _ . Z ~ Very Loose 0-4 2.4" INSIDE DIAMETER RING SAMPLER Loose 4-10 1 OR SHELBY TUBE SAMPLER w = Medium dense Dense 10-30 30-50 `I WATER LEVEL (DATE) ~ Very dense X50 Tr TORVANE READINGS, ts# Consistence w ~ Very soft ~ Soft ~ Medium stiff ~ Stiff I Very stiff Hard 0-2 2-4 4-8 8-16 16-32 X32 Pp PENETROMETER READING, tsf pp DRY DENSITY, pounds per cubic fool LL LIQUID LIMIT, percent PI PLASTIC INDEX N STANDARD PENETRATION, blows per foot T@1'1'a UNIFIED SOIL CLASSIFICATION SYSTEM ~~A' I ~@S ~t1C. SALMON RUN APARTMENTS ,~,,, ASSQC a ~ YELM, WASHINGTON Consultants in Geolechnical Engineering Geology and Environmental Earth Sciences Proj. No. T-6437 Date MAY 2010 Figure A-1 LETTER TYPICAL DESCRIPTION SYMBOL CI t5 v~ (a'w Wetl-gt'atled gravels, gravel-sand mixtures, little.or na Gra i~ fines.." _ - y (less than ~ ~~ gravet~sand mixtures, tittle ar 'Poorly-graded ~gravelr, fine~) 5% no fines,, _ ~M _ _ Silty gravels, ~grave~-~ar~d-silt mixtures, non-plastic Grawel~ fines, = with. 'dines - ---- - -- --- -- -: - -- G~ Clayey gravels, gravel sand-clay mixtures, plastic tines. Cfear~ ~~ ' NIel1-~tac#ed sands gravelly sands, little or no fines, (les~~~?8n I ° ~~ Poorly=grBcYedsand~ o~~-gravelly sands, little or no !a f flea) ~ fines. ~~ 'Silty sands, sand-silt mixtures, nan-plastic rhes. S~~id~ T.. _ _ _ _ , ~ _ with Vines ~ ~,(~ lactic tines: Gtayey sands, sand=clay snlxt~res, p , r ' i t ilh li ht ~ ~,i+ Inorganic ~1#s, rgck tlo~ar, q ~yey s I s w s ,g SILTS AND CLAYS tYtL plasticty, _ _ C~ Inorganic claye of IQvu to medium plasticity, (lean clay}. Liquid limit is less lhari ~i~°,co - QL Organic silts end organic dlays cif ldvit,pla'sCicity. H Inorganic silts, ~Isstlc SILTS AND CLAYS - ..._v_ _ ~~_ _ (;~ Inorganlc clays of high plastlclty, fat clays. Liquid limit is greater than 50% _ .. _- _ _ __ Standard Penetration Resistance in Blows/Foot LOG OF TEST PIT NO. 1 FIGURE A-2 PROJECT NAME: ~JmQpBu~nariments _ PROJ. NO: T-6437 LOGGED 8Y: (:S LOCATION: ~ elm. Waaf?jp~iotl SURFACE CONDS: Tall C,rassl$mall Trees APPROX. ELEV: DATE LOGGED: ~fj(~Z,,,Z010 DEPTH TO GROUNDWATER: N!A DEPTH TO CAVING: ~ F?et LL 1- = ~ W a DESCRIPTION CONSISTENCY! RELATIVE DENSITY ~ Z W ~ REMARKS W Y 0 ~ U O a F1LL?: dark brown sand with sill, fine grained, moist, Medium Dense roots. extensive organics. 16.1 ---------------------------------- Brown silty SAND, fine grained, moist, tools. (SM) ----------- Medium Dense 11.1 5 Brown SAND with sill and gravel, fine to coarse grained. Medium Dense moist to vet. (SP-SM) 9.0 Test pit terminated at approximately 8 feet. No groundwater seepage observed. Minor caving observed below 3 feet. 10 15 Terra NOTE: This subsurface informat:ori pertains only to this lest pd !o:alion and stuu!d Associates, Inc. rot be interpreted as bung indicative of other (cations al the sde. Consultants in Geolechn'.cal Engineering Geolcgy and - Enwronmenlal Earth Sciences 2 LOG OF TEST PIT NO = . > 1GURE A-3 PROJECT NAME: Salmon Run ARartments PROJ. N0. T-6437 LOGGED 8Y: CS LOCATION: YPIm. Washingtoq SURFACE COMDS: Tall GrasslSmall TrQ~gs APPROX. ELEV: DATE LOGGED; Aoril 27. 2010 DEPTH 70 GROUNDWATER: NIA DEPTH 70 CAVING:. 2 Feel z t i w ~ a DESCRIPTION CONSISTENCY( RELATNE DENSITY o w a F REMARKS w a 3 Y D Ul U O a i d tin r i t f FILL? bl k ilt d 2 9 y san , ne , mo s , roo s, ac s e g a : 8. extensive organics. Medium Dense 10 8 . 5 Brown SAND wiih slit, fine to coarse grained, moist to Medium Dense wet, varying amounts of gravel. (SP-SM) 2 2 1. 10 Test pit terminated at approximately 10 (eet. No groundwater seepage observed. Moderate caving observed below 2 feet. 15 T.~~r~ NOTE: This subsurface Nf~+maUorl pertains only to this lest pEl !ccalion and should A~sQC~ates, ~11C. not be interpreted as being indJcalWe al other lo:ztions at the slit. GOnsultr7D44 to 13e•olechni^al Engineering GeflloOy and - ~nvlivnmenlal Eanh Screrces LOG OF TEST PIT NO 3 . FIGURE A-4 PROJECT NAME: ~Slmon Run Apartments PROJ. NO: T-6437 LOGGED t3Y: CS LOCATION: Yelm, }~shinglon SURFACE CONDS: Tall Gr SS/Small'[r~es APPROX. ELEV: DATE LOGGED: April 27. 2010 DEPTH TO GROUNDWATER: NIA DEPTH TO CAVING: 4 Feet LL () tr w w -r a DESCRIPTION CONSISTENCYI RELATIVE DENSITY o n REMARKS ~ ~ Q ~ U O a FILL7: black silty sand, fine grained, moist, roots, extensive organics. di 16.13 um Dense Me ---------------------------------- ----------- 12.5 Brown SAND with silt, fine to coarse grained, moist, roots. (SP-SM} Medium Dense 5 ---------------------------------- ----------- Brown SAND wish sill and gravel. fine (o coarse grained, moist, occasional cobble. (SP-SM} Medium Dense s.q Test pit terminated al approximately 8 feet, No groundwater seepage observed. Minor caving observed below 4 feet, 10 15 Terra NOTE: This subsudac0 inlc{maU~n perlams only to Ihrs lest pit location and shauld Associates, ~ 11C. rot to Interpreted as being indiea0ve of other Io;aGons at the site. Gonsullants in Geotechnial Engineering Geology and Environmental Earth Sciences LOG OF TEST PIT NO 4 . FIGURE A-5 PROJECT NAME: Salmon Ryn A~artmenls PROJ. NO: 7-fi437 LOGGED BY: CS LOCATION: Yelm. Washington SURFACE CONDS: Tall e; ra / mat Tre .s APPROX. ELEV: DATE LOGGED: ADril 27. 201D DEPTH TO GROUNDWATER: NIA DEPTH TO CAVING: 2 Feet O LL I/ s ~ ~ DESCRIPTION CONSISTENCYI RELATIVE DENSITY w w REMARKS a ~ ~ U.t O Q to Y V O a 17 3 . FILL?: black sand with sill and gravel, fine to coarse grained, moist, roots, extensive organics. Medium Dense 3 5 . Brown GRAVEL with sand and cobbles, coarse grained, 5 moist, occasional boulder. (GP) Medium Oense Test pii terminated al approximately 8 feet. No groundwater seepage observed. Extensive caving observed below 2 feet. 1a 15 Terra NOTE: This subsurface information pertpi{!B wtlyto this test pd laalion and should Associates, ~I1C. not be interpreted as bung indicative of oltwr locallcns at the sire. Consultants in Geolechnical Engineering Gec!ogy and Envircnn;enlel Earth Sc:en:~s LOG OF TEST PIT NO 5 . FIGURE A-6 PROJECT NAME: ~~lmon Run A arp tmen~~ PROJ. N0: T-6437 LOGGED BY: CS LOCATION; Yelm W~,jj~9ton SURFACE CONDS: Tall GrassiSmall Trees APPROX. ELEV: DATE LOGGED: ~{~fil 27. 20 0 DEPTH TO GROUNDWATER: N/A DEPTH TO CAVING: +i LL o z -r z a w ~ DESCRIPTION CONSISTENCY! RELATIVE DENSITY e a F. REMARKS $ W a m OU 6 FILL?: black sand with silt and gravel, fine to coarse grained, moist, roots, extensive organics. Medium pense 18.9 SAIVp i h il i f Medium pense 5.4 Brown ine to coarse grained, mo st to w t s t, wet, some silt. some gravel. (SP-SM) 5 8.5 Test pit terminated at approximately 8 feet, No groundwater seepage observed. Minor czving observed below 2 feet, 10 15 Terra NOTE: This subsurface information pertains cnly to Ibis lest pif lacpUutt and ~hcWIQ A~soCiates, f ne. not be Interpreted as being irdaative of other IocaUons at the slta. ~orrgyllartt,+, i0 Getltechn:cal Engireenrg 'dealogy and - ~nvirartrheNl~l EArlh Sciences LOG OF TEST PIT NO 6 . FIGURE A-7 PROJECT NAME: S la mon Run A a~ rtmen(s PROD, NO: 7-t3437 LOGGED BY; CS LOCATION: `(elm_ Washington SURFACE CONDS; Tal~~ss APPROX. ELEV: DATE LOGGED: ADril 27..2010 DEPTH TO GROUNDWATER: fV/A DEPTH TO CAVING: 2 Feel 0 t z x ~ w -~ a DESCRIPTION CONSISTENCY! RELATIVE DENSITY a -- ~ o. REMARKS O N ~ F V 0 a FILL?: black sand with silt and gravel, fine to coarse grained, moist, roots, extensive organics. D Medium ense 13.1 ---------------------------------- Brown SAND with silt, (ine to coarse grained, moist to ------------ Medium Dense wet, some gravel, occasional cobble. (SP-SM) ------------------------ ------ ----------- 4 5 ---- 7. y SAND with silt, line to coarse grained, moist. {SP- S~ ~ Medium Dense Test pit terminated at approximately 8 feet. No groundwater seepage observed. Moderate caving observed below 2 feel. 10 15 Terra NOTE: This subsurface inlcrmafion pertains only to Ihis Iesl pit Ic~alion and should Associates, ~ t1C. not be mlerpreled as being rndical"rve of other IocaGens a11he site. Consultants in Geolechn;cal Engineering - Geology and Envircnmenlel Earth Sciences LOG OF TEST PIT N0 7 . FIGUREq-$ PROJECT NAME: Salmon Run AI~ljtnents PROJ. NO: T-6437 LOGGED BY: CS LOCATION: Yelm. Vt/ashington SURFACE CONDS: 'fat, Grass Small Tr .aG APPROX. ELEV: DATE LOGGED; ~,prii 27. 2010 DEPTH TO GROUNDWATER: NIA DEPTH TO CAVING: ~,,~ Feet LL .~-. z x J DESCRIPTION CONSISTENCY! RELATIVE DENSITY o a REMARKS a O ~ ~ ~ ~ Y U O a FILL?: black sand with sill and gravel. fine to coarse grained, moist, roots, extensive organics. 18.7 Medium Dense Brown silty SAND, fine grained, wet. (SM) Medium Dense 19.7 5 ---------------------------------- ----------- Brown GRAVEL with sand, fine to coarse grained, moist to wet, cobbles, occasional boulder. (GP) pense 6.8 Test pit terminated at approximately 8.5 feet. No groundwater seepage observed. Moderate caving observed below 2.5 Feet. 1Q 15 Terra NOTE; Thls subsurface information pertains oNy (o thw Zest pi[ location and should A$SQC~3t@S, ~ nC. not be interpreted as 6eing ind~calive of other IocaE~riB r#t the sire. Cohsulleills tp Geotechnical Engireerirg Gpclogyi and EnvGoiimenlal Eanh Sciences Particle Size Dis tribution Report Ip f7 Ol ~ C c C ~ v O iti ~ N ~ O ~ O 7 N u u ~ u rc m m goo 90 , - ~v ~ i ~ , ~" i ~ I J ~ .. - - - ~~ t ~ ~ ~ ~ - -- ~-~ -- ~ ~ 3 i ~. ~ ~ ( ~ ~ ~ ~ .; 70 W 60 Z -~ -----i - ~- ~~r i ; - 5 I ~ ', - , ---- ~ - - ' _ - - -- ~ ~ ~ , ~ ~ i - -~ -~ - - , ~ 4 50 ~ ~ ~~ ~ ~ ~ , '~ ~ ~ ~ `~ 30 - - ' - -.J ~ 1 - - ~ ~ ~ ~ ~ - ~ 10 ` - -°- ~ - ~ -~ ~~ ~ ~ -~ ~ ~ ~ ~ - - ~ ; ~ ~-' ~ - I{ ~ ~ i ~ '_ ~ I o :1 100 10 i 0.1 O.Oi 0.001 GRAIN SIZE - mm. ~" %4 ~raN~l - _u =-~ % Sand _ _ - °1° Ftnes - '_ + T Coarse Fine Coarse; ilflecfum ~ Fine _ ~ _ --- - - hilt ~____ _ Clay ~ ~.U ll .3 u62.4 10~,'~ ; 1 D:7 3;4 T_ 1.5 n 0.0 t1.0 4.4 ~1,'? 57:6 35:2. -7.4, I I_I. Pl. _DS D D' b ~ D `` C C o t~.azi~ i1.03j8 ; 9.~7RR 5.~ss2 ~,76~7 o.73t3 ~ ~.~~ i.os t=a 4.74l+t Qi52A~ O.dfA1 4.35~~1- 4.2334 ~ 4.i570~ i.32 ' 3".34. M aterial Description USCS AASHTO c Poorly gi~adcd GRAVEL ~+~ittti sand GI' ^ Poorly graded SAND with silt _. SP-SM Project No. T-~d37 Client: Timber Rider beveloprttent Remarks: Project: Salmon Run Apat~ments CiTrsted on 4-29-]0 I r~~ted o„ a-z9- t o v Location: Test Pit TP-4 Depth: -4 t'cct Sample Number: 2 ^ Location: Test Pit TP-S Depth; -7.5 tact Sample Number; 3 Terra Associates, Inc. Kirkland, INA Pigure A-9 Tested By; Particl e Si ze Dis tribution R e po rt ~D t << <~ In N ~ ~ o o~o o ~~ i ~ R 7e R ~R ~ R 100 ~ ' qq '' _ 1 I ~ I ~ ~ ~ ~ I ~ ~ I ' ( ~ ~ ; , ~ ao ~ ~ i ' ~ ~ l . l L: ~ ~ ~ ~ ~ ~ _ ~ ~ ~ i _ ~ ~ ~ ~ ~ , ~ fi0 LL Z 50 ~ ao - - ~ - 1 - - ~ - I ~ } , _ - --~- - I E ~, ,, , - - f 1 -i - ~~ ' _ 1 - ~ - ~ ~ - 30 20 - , 1 J7 - - - , '" ~ _~ , z a , ~ { ' ~-_ 11 ~ ~ ~ --~ ~ ' ~ -~ - 10 -:-~7 -_ ~ ~ ~~ - - ~~ ' ~ ~ --- 0 100 10 1 0.1 0.01 0.001 GRAIN SIZE - mm. „ % +Grav~i % Sand % Fi nes % }3 Coarse ~,T ~Ine - _ _, - _ _ Qs~arse ~ Medium ~ Fi.n~ - _ Silt E Clay 0 0.0 O.D _0.7 p., ~ 80.1 13,C. 4.9 0 4.0 .0.0 `0.[ ~.3 ~ 7.9 73,E 18.4 L4, PL D D D~ D. D D Cc C a 0.826 0.6465 0,5§2d 0.49U3 Q,3662 0.2717.. 1.31__, 2.34 a 0.383. 0,2997 4.2699. 0,1937 Material DesCt'iptidt USCS AASHTO v Poorly gradrd SAND wish silt SF-SA~i ^ SiItySAND SM •Project No. T-(,437 Client: 'Timber Rig-er Devulopmenl R~tnarks: Project: Salmon Run Apartments OTeslyd on 4-29-10 Ci7'Csted on 4-29-10 Location: Test Pit TP-h Depth: -5 tcct Sample Number: 2 o Location: Test Pit TP-7 Depth: -4 feet Sample Number: 2 Terra Associates, Inc. ..__ Ifirkland, Y11A,.-- - -___~_~ Figure A-10 Tested By: CS DRAINAGE BASINMAP ATTAC~IlVIENT "C" n ~r N O 4 v,¢Gq ~7 r w J LL 3w~ Q o ~ ® T ~ 3 ¢ ~ ~ ~ ~' ~' ~ ~'.h,OZ,lO.fO S 3 ~ x b~ w Z v n v v `~ `~ ~s£ o , s : ,~(( 350 ~ ~ ~, a s~ ~ ~~ ~ ~ m ~I _ _ _ 49+r '. ~ ,•; S~ 6TH :. ~`'~' ¢ ¢ I'. ~ ~ .bT .22 ~ > 3 {~ w w ~ ~ f _ ~ x ~,cT ~pq o W d O ~ m w > :~ Q ~ a U Z ~ fn Z W ~ x Q f ~ J Q ~ .' Z ~i m f 3 - 11 O z W ~~~ `j ~ Y Vi In } N m Z `~ Zc~ I:::~ awWQ K O 0 ~ 1 ~ ~ Q 'w = - bE Z > a_ J ¢ ~p > ¢ w ~.. ..t .:y rn 2 ~ ~~~ W ~ O rr ,, !1 O. N a aW m~~ Q Z ~ ~W N rn~ ~ z ~ c'~'' ~6.'.~. r '= a o cO1i w 'nom.'.:. aE.;.. I _ ~;r V ~ ~N O J G~ A?.'. '. .' O N M W fQ Z ~ :. ~~ Z ~~ °Zw sf ~~ ~~:- _ Q ~ {O~ N N ~ W '.~ ~ Fa G` •. U w ¢~ ~ ° ~ ~:I rW ~ 3 1 q ~ :~~ '' VJ ~ ~ a ~S z `~,~~ ~ ~.I a ~ 5 M N 3 ~ _ 1l 3„ !Y Z ~ O 3 . 1 O > •~ W Q13 m~ ~ > O ~ W I~ ~ / ~.~ O 3 I J1 ' t.'.• a ~ ~ a~ w '~ ~ _ X0.0 ~:I ~, U °~ ' W Q w ¢ ~:I ~, Q q I~ - > ..~ w .~ ~ N o Z ~ 2 3 r~ ~ Q (,~ w ~ v~ ~` p Z w > x ~ ON A a ~ Z U_' Q _ ~ z "' f 3~"a w w ~ m ~ ~ Z ¢ A Z Z °~ ~ ~ ~ ¢ w i:i Ul (n y~wl I' ~` a ~ o ~ 3 v, o m m N¢ ~ P' W W ti A Z 3 ~ 8b£ ~ a N w a~ w ~ v E a in Z V W~ d' U ~~ I R W~ ~ .. ¢ ~ W.W. R , .00 U '~ d U sad,z~ e I O Z H71 Z nM - bH~ 3NI~ L'31bM.8 W I Q ~~ ,Z9'!6Z ~ m _ n~,«,zoros W - ~~I~ 3M3S.b J dAl N'ld M3Q?S I I ~ ~~// HYDROLOGY CALCULATIONS ATTAC~IlVIENT "D" r cH In y m ~ ~ '~ 3 D O o o D _i l y N ~ N ~ N O N O N O N O N O VAi O N O M O N O N~ ~; J~ A~~ ~ N~ w~ ry ~0 ^D O O 2' ~~ll m ~ W Ip d ~ O _ UI J nvO ~ °' ^° "7 ~' b1 o A ~ ri ; : o . o n 3 IO ni ~ m , ~ m m N N N A A A W W W W N N N~~ O J A W N N m m W O V A -~ m N N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O J O O~ ° ~ 3 n~ ~ ' ~ w~ Gg ~~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 o v N ~f ~ S ~ 3S a ~ y ` m ~. ~D P7 ~ Z m 3 y a . y S ' _ C f A ~' y ~ O ~ y - 0 0 0 0 0 0 0 0 0 0~ ~ ~~ -~ -+ -~ N N W V V J J m m m ip f0 (O O -~ -• IV (J 4N V O N OI ~ W m m -~ A J O A m A O m J m N N~ LL OI fJ O) m O ? 3 ~ 3 - -11 O '. ~ ~ ~ .. pp rn `~ 3 0 to `~°o ~~p n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0- ~ - i D p (' N ~O N = C 1 p 0 (/~ ~ ~ .7 C ~ ~ (n O O. ~ a~ N N IJ IJ IJ IJ N IU IJ tJ (J (J (J W A A N m V ~ W W A N m V m f0 O N A m m N V W N W LL W 1 ~ ~ j ~ p ~ A -~ ~ Q a N O w C~ S w'mm' O a v M 'W m~~ ? ~ ~ G ~ 3 ~ ~~ N mv°.a mom _ ' - ~v OG~ ~O OG <NIO' ~ ((..]] ~ ~ ~ y''''''mm mmm JmrnNA O A C G ~~ O ~ W O 1aD C7 1 3 0. <n O N> > 3 O. ~ (/) ~ A~ m N N m N -~ J f J ~ (NJ V~ OV O (mD O N W W W N m N O A m J W 7 N ~ ` ' m ,O m: O W O O N D; N m. ': V~W A W rn fN O ' ~' II II °^ ~ II, II O ~ N - p? ~ • -I::(11::10;, m m~00 2 d ~ A a 6 ~ a A ~ ~ J J m m N N N A ~~aa ~ W W N N A -~ J W m m N m A V W m m N m A -~ V W W _ C O G O^ a ~ ~ 1D C w A C w W ~ ~ A V N -` A V t0 N A V !o N A V m N A J m N !a t0 (l~ O N O 01 -~ Of -~ J IJ ~l fJ CD W OD A A J J O W m m ~ A J m N N m~ W O~ m N V J ~ ~ O~ x .C-. ~ .J C1 d y 3 N N m V m Ol m~ W ~ ? d i l p O -O.. A. ~ ~ .. n ~ N m m m m I mIp~ m OI m m m m m N N N N N A A_ (mi] ~ m A m N N ONi T UNi N N ~ Omi N fNJ 1W0 OOD V N A N N ~ C O~ ~ x ~ V L+ `~ " ~ N d m ~ d c ~ a' ~ ~ c~i =~ 1 0 -~ ~ ~ r ~ m m c~ p p ~ .z m G cn o. ~ N ¢ '2 °-~ OEi' 3.y _ v ~ W~ r m ~ o o o d ° y m g ~ ~ ~ ~ H o~ o: D A~ ao a s g3 w, o p . . ~ ~ n ° m N w~ m~ m m.H_ <~ ~~m o°im m o d .. ~° m ` m x y o 3- p+o a to ~ ~ °l'N. ~ ~d ~ A N. ;~ ; m a, ~ ~m~oo 00oooooDD O~O' ~~ N m -N Nm y :O N O O m OV N O N E N p, m~~ . m °', o .. ~~~ N,.A N;O ~ ~: O b N 2 3 p1 •p . ~ _,. _ n o~ D~m ~ ' ~~'`~3 m~ mmm<o m; Q ~ AA y ...w 0 A Q p"O m N •+O m mWm: Z 0 0 3 ~ Ajj ~. m (~ o. ~+ ~g,.2' V m D ~ ~ m ~m C O O N m i 0,~ N OO ~ N O.~ ~~, zm'~ OONV~Nm D ~ m 0 0 y 1D 0 ~ . _ O B- y ~. ?° m O O m m A W N O O N~ N N m A A {5, d 3~~ m ~_ >< ~, 3 N . 3 y m N N ~ yN_ A N b A A 0. 0 N ~ ~?, O J ~ m 0 0 O .f m 00 an T ~ ~ y Nt W N fD"' OAi _ 7 ~' r . .~ ~ 171 i~, v -I ' '' ~ n m. ~ O Y b r x o . ~ o~'.. '° +~ O ~m D m a ~ D r is t m ~ ~ ~ ~ ~,; o g e G's (p 5 ~ G ~ tll 's ~ o ~~, n n n n x n u n n z o ° g 3 ~H ~ : w v . g m, . c. W ~, 1°io m o'in ID ~' A m~iil '. N: , J O T. ~. J J G ._ (n N N N O ~ O ~ . ~ ~ 3 m 3 ~ m D 3 .~ ._. G ~ Z m O d, C 0 ~ 1 nJ t 3 Q m 0 V 1 p > ~c O D A O V 0 d 0 O m m m O C 1D y m ON N`Z - m m b D ~ N .w. O w ? ~ mho ~ w ~ ?'3~ ~ ? o m, 'm m. 3 w ° m ,_, N O ~ ~,O~O p o S m ~. a~.~ ni ' w ^. v° 0 <~ 0 ° rn ~ ~ 3 m ~^ O ~ 0 . O O Nl 3 ~ m m d ° d ~ ~ m ~ ? r i a ~ '~ ~ 3u°i n~aD ~vo~ m y ~alc'm°. ~n .~ m 0 00 0000000^yD ' ~ m O D O O m V N O N O (") D ° 0 03 cc7oq' ~o ap H O ~ V _ ;W A~N O C O O~ ~ (~ '; O ~D 0000000 ' m O v 0 + D oooo~o N O m W N n O O W p j x f p o 0 NA-+m A ' D p mNO1 ~N~- N ~ ~ A O DO A•N.~~, `~' j W `-' A N m o ~ ~ 4 O d O m = 9 ? Z .~. F S b ~ ~p G1 W ~ Pp ~~ g mb N ~' " m3 o m m~ O N Z H N y ~ d ~ `~ I N I 3 -1 ~ 3 DO<(~D 1 W2C3dN 3O yY \ ~ N mmmmVVWmNNAAW WNN~~ f ~ N O N O N O N O N O N O N O N O N O N OO .x ik i j O~~ V O ~~~ t~ N N D p O ` h~9 I n n n T n~~ N~ Q~O y ~ ~ ~ I I ~ ? p vQ ~7V n % O m W ~ J e O a ~ ~ hf A ~ ~ m m 'm m N N N A A A W W W W N N N ~~ o V A m N N m m W O V A~ m N N ~ ~ ~~ o 0000000000000 000 J O~ N _- ~p ~ 03 n~ N ~ ~~ ^ ~G m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 °o 1 ~ ov m 0 a ~ j ~ ~ 3~ w ~ II ~ m ~ ~ D ~~ ~ 3 N v m n N g ~ O 3 ~ O y S ~ p H -. 0 0 0 0 0 0 O O O O -~ ~+ -i -+ -~ -~ N N W V V V V m OD m 10 (O m O~ ~ N W N ~7 O N E u W m m~ V O A ~ o A O m V m N N~ ~ m (J 1i O~ m ~ 3 N~ 3 ' r O - O ~ N m ~ ~ ~ - O' :. Iwo 01 ~ d m + < <0_ ~:. ry Njp O ? C G NfD ~ ~ O O O 000 O O O 000 O-• :. -~-~-~ N(J i fJ D ~j p N % O C (q~~ ~ ~ N C S yZ (p O 6~ ~ ID O' m m N m m mm m V V J m mm i00 (J Ao~o OI m~ W N V m N N m N V N m N A m W V m A E O A ~e v~ m A ~... ~ A T ^~ d m ~~aN ~ 0 ~~~OO p' ~ ' V 3 ~ _~ ry Q O ~ p N $ O N ~ O m ~ . N~ f N N N N N N n O; O~ : ~ c ~ p) ry n 1 c ^ ~ C ry , ... J W W I (~/ W W W ~ m N A. W N O t0 J m N AA.. W O m m A NI~ N A N V m m 0 0 0 m m m A V N N V m N I~ NI C < ik N . O ~ ~ ~' N :~ N O 3 0. (/1 (~ j 3 n~ N ~ O O V N A A O W~ m N m m N N W V N~~ > S O~ ~_~ O ,~ N m tmO N m W O ~>A 'u- II II O^ ~ II II O tNn v . . O'__N._.tD W ~ A N W O c 3 a ~ A _ a a ~ ~ v ~ rn cna~ n~ ~ o m` m O~ N W N m V m °~ ~ m m~m~~m m m _ C a~ < = w C N m m G fC N m m N J I AA A N N N N m O~ mI~Ja A N O m T W~ fW0 J A N O m m (Wi] ~ N V A N N O ~j Sc "" p o m A~ O V ~ j f it w ~~ ,2 ~ x d •• ~ °~ W a c -- ~~~~~ ~ ~~ ~~ ~ ~ ~ ~ ~ ~ ~ m m m m m m m m m m V V V O~ O~ N A A N~ N W A A A A AA W N O m N N m W V m O m W m N N V m m A O~ N m m~ m V V N m W~~ ~ ~ W iC n ~ N C O~ ~ 'y V m V ~ ~ ~ ~ N d N 10 J n or3 o-m ~m x&m ~ ?' m I • =o ~'z m o o_ jj 7 O ~ ~ N II r m o p +' `~ ' r :: m ~ m A Q ~ OO ~ ~ m m LV N .-. ~>. p .m s ~ N R1'hl 0 -'. 1 0 •P; N.Q A N N H D~~ p l O O o °'3~ N D (~~ a ~, ~ O ~ m ~ ~ ~ o m 3 O n m m oA O ~ °~ 3 r.~ ^ + ~ d Nm ~. ~~ O O fn y 3: m. n (Y' ~ w fal o m N ~ s ID. 7r- .. of on E O ~~a 1p n 3 n { ~ ry !fl c m ~ ~ p ~ ' ' ~ w: O v ~ N a: f0 ~ m O d A 0 0 ~ ~ 3 0 m n F N O NI A O d p m O 1+.I 1 N `Z ?~ L7 H N O ~ ~ _ ~ j ? i d N 3 N n 3 (p p '° ~- w p ~ o ~E v gm o°-'m N < ~ ~ a~ m o ~ ~ m --o 00oooooDD [JN WD O O A O fJ O 4I O~ OOmNVmm.:..N W o ~ 3 ~v m m ai m- m ru m m' O rn N-~Ammm-w; Z N ~ - _ O O~ A j m N N 00 ~ A (O(~~v D 0 0 0 N A N A o ~ m O A ~ V N D ~ m ~ N N O O O~ N A p m ~ tA0 A N m V O O a N ~ w n e e v a a r < 's m 's ~ < s ~ 's n n u u? n n n n z ~ ~ O ~.C ~ O O'' -. O m O tll',~ N OVi N; u,: ~. 3 5 N S 5 9 D -I D P m i N N N m f tD" m t~ ID C O m D ~ o N d O ~ ~ 3 i, moo m <wv ?:. 3 ~ N j » O m~ m w ^ w m 0 0 moa O 'O ~ m w w- ~ 0 O 0 m' c ~' m ~ o ~ 0 ~ w N N -~ O N ~ ~ ~~~° 3 •m O v ~ 3N ro o:D ~ Ovn m ~ aIC m S ~.. m o --0 0000000DD ' m A (J d WD N O O A O W O W O OOmNVmm' w n W O 0 03 0 0 oooo Q N O N~ X~ (~~ {pp 11 ( { N Q N~~~ O: n ,.. O N m N A N O W~ Ay ~ 0000000 ooo~(~oiu D oOfVi]O Ntmi~ V n O O m m W m m a N ~ a OO i ~ ~ N N ~ m p p p f A t0 - A 4i v O N m W V N T d O i ~ O~ 1 O d 7 o W 2 N ~ S b ~ V GlO O -~ W ~ w N D •^ Z~ ~ e N ...Z 3 ~ c ~ N O ~ a ~' ~ c O ~ m a ~°'_.: m m m ~ m ~ v { ~ o~c ~ 3 a(Oir` tD ~ II II ~ A a d A w m N m -°i. A. N CI S y ~ m N C '~ c ~ ~~ ~~ a c ~ °1 3 ~ N S~ O , ~ ~ J' N 0 N a °c N 'm ; y~ (~ ° [L o~~mes m 'O d li o ~ ~ '~ o: 3 O.Ip U II II ~ 6 a d ~ r r O m ~~ J W N m m V V m m N m A A W W N N Q N O N O U O N O NON O N O m O m 0 m m N m A A A W W W W N N LL -+ -~ O V A m N N w m W O V A m m N W m U O O O O O O O O O O O O O O O O O O O C O O O O O O O O O O O O O O O O O O O C 0 0 0 0 0 0 O O O 0-~-+>~ ~~~NN4 ~l J V J m m m W w W p ~ ~ IJ (J N J O (N a -~ W m m>A V O A W A O m V mN N-+-~C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0- O O N N N W A (Nll ONi V N O N N mW N~ trail ~~ N -+ y'y -i O O O ~ m N ~ [ml~ ~ OVi NV V ~ N OAO C N N OD O~ O~ V W m N W N W N N V m m U A ppA~~ a j W W fJ A N N A N N>~ ~ N~ J W~~ .CmD AA O m ~ .Omi NANN V ,fWJ ,mm ~A~aa O N ~ OAi N . N A O N..J N m fJ tmOAOOmi~ JNm(WJ tmp~ LL V V m m m m m m m m m N m N~ AmmA pp(.~ G W -~ m A~ A J~ O 1°1o V fWJ V~ N O w N m~ ~ ~ o9 O n~ a ~ O S~ N G O .Z °- N Ouni 3y \ v ~ mO ~ ~ ' ~ ~ ? ~ ~ a ~ r 0 w p . ~ m m > 0 3 ° a ro m o 7n ' m L . 'r j ~ y:: - h A p~ D y ~ N ~~ m n.o 0 m 0 0 0 0 0 0 0^ D ' D < C Q o ~ =' 'q m ~ ~ .z o m_ m h2 h N,~ Oy O i m o 0 0 0 0 c W O N ut w w V ~. H O , O m '~ o o_ .p m P D m A- , ° m ~ D o ~ O 11 N ~ m ~ ~ m v'!a 3 ~ m m m m so wi O Dm '?Om C O U O :O ~'; ( N W Z - 7 m O N D ~' ~° O Z~ N O w A N N A O ( m A~ D ~ m O ,0 m O l D 4 7 C y ~ I ~ S n J I w 0 W m m v n O ' m 0 y m ) S p q p . m m_: V O m N N ~O O m V W m~ ~ O m• n H •c. m 3 , ID ~' p D. k~ N ,, ~ N F: [o C ~ ~ C _ V ~ V N 3 ~~ O £' 3 N ~. ; ~ ' D ~ D m N+ V 'm V ~ O W SOO N H C O j m O O o + CI ~ ~ ~ _. . O :~ I O m N fJ OI fJ j ° QD ~ mi Kam: O ~uoi~mW v m . ~ ~ ,,. ~. ~ _ ~ m! m' ° ` n a v O ~ O _o r m V ~ Z c; ,. T.tQ: O m W A ~ D "~ O. 1 0 ~ 0:: , " Q~ 3 ~ 3 3 ~ 3 3 <s w s ~ <'s (n 's r -' n ; ~ ~ ~ II II II II ~ II II II II {ll ` O W 3 ~ ~ ° ~' ~ m' .. Z ' (n O ~ ~ ~ ~. . ~ ~ '~ 3~ b N IV `~~.G O m m~..a _ ~ . p_ . ~ O W o~I ~ ~ ^^ m N= o ~: ~ ...~ 9 o ' m 0 orn w. 0 ° _5 Z -1 o ~ 1 m F D I _ C '' ~ 0 d~ lr m r O ~ C) m '2 F <D ~.~~a ~ $ n 3 n Ov ~ m y N C v D p A. n~ c <y .x.. j U ~c o s ~, a ~~ u n to #m C O ; T ~ b ` v ~ ry 3~ 3 'm ~° o m 3 =°°fu ?~3mm ~°m°m FmNyo :o ¢7~i',~ ~n ~~ H o p O,'. J N N N °G J O .~-. °vp-nV n ~ j. • .o a 3 ~~ - V m '° ~~ O ry Q ° ~ v D a 3 'II O - 0,.O-. N ~~ O N - C .A. T ~ N 3 F ~,~ _• v m y ° m ~i o ~ W O iO'm ~:O ~ ~ O O m ~!.,N tJD :,~mO ~ ~O a ~ c N m ~ ~ ~ O d .. m N A N -~I °^ ~ ~ Orr ~ 3 ? ~ ~ a ~ ~ pv~~1Om c < m j ~ oT °~-' ~ N m m a~ m o~~ m 0 00 ooooooo^DD m J ~D fOit ONN(O.I fOJ VAN O O ~i 0 03 'OOO((oooolop(o(pp: H O Omit/ NO m ~~ OD~: ~ ri :_ _ m w ~ ~ w S3 moo < d ~ °: 3 ~ m ~ 3 0 m~ m w 3 w = A m A O O w O ~ ov ~ m 'm m ~ w S O fD c ~' N ~ O (n O C N N 0 a ~D ooooooo O O ~ 0O00(AO(A~~ 1OO j D m ~ NONN V O~i W ~ m ... D m 'ry ' m N > J: w m tm0 ~mOOOib SOON'. ~o m o t~avww- om m m o m C a n TmT X41 d 00 1 ` C~ 3 O `z' d N O m Z 'q ° z N lO S b OI O C.l O m ,w. _ ~ ' ~~~ z17 N a = m~ b m A N C N Z ~ ~ ~ , 5 1 ~ N {° ~ pct--= ,- ~'~,.(~-~ ,. /y y~ ~ ~2 N -~ -~ -~ ~~" --- i - -,- ~ ~ V r ~ { 1. rt Y ~ ~ ~ _ -- _ __ "t ~ - - ~ ~- f, __ ...._._. __. U _ ~ ,,~,tt J -~ ~ I4~ t U J~~-. ~~, ,~ r. ,' ~ ,' I ~: ~ f 111/// n ~ ~ ~ rn J ~ ~ ~ ~ r~.. ~~ f L - g ~ c Nff~l\~~~~r~~~` ~/>IUpa. ~N - \. I ~ ..a. ~ * 4~~ _.,1_ j I.'J ~ l ~ ~ a ~ u ~ O }1 r /~~ ~• JJ~ 0.N f m G ti ~-'~' /~- ,. 8~ _ ~. f r~^~'~ ~" ~(1~ `~.~ ~s~~~J+ J(jp~ ~ ~.:f'~ ~~~~~'l,.j~C~.o (/` ~ Y'~" `-_"...e fy ~~ ~ ; ~a ~~~'~ ;rye. ^-° ~~ ~ ~ i yi ~\ / ~~' % ~ _ ~ ~ 1 ~ ~ ~- ~-- ~~y~ :~; ~ ~ ~ ~._ m t/*. ~ ~:~ i S, Y i ~ ~'~ s ' e N { ` N .. ~ ~ ~ ~,, ~ , M ;~~~ i ~~ O f~ --= _, - ~ l ~~ i/ <'~ ~ ' ~ N I ~ ' t' N ~`h`~~ M _ __I - ~--~ o -~~ M/, ~~ ,~ ~~ 4~~~~~ ~~ a : a ,~ r~ ;.~... M G M in d' 4 `.i~l/4~i ~~~ ~ 1 fV'~G~~ i ~~5 ! I a _~' :r i 1 ~~ ~ J ~ ~ , i p N Z ~ ` ~, a 1 ra ~ ~ C.1 ; . M a 1 1 ll ~'~ I ~ i ~~ ~ ~~ _ ~~ J Q ~ I ~ LL 0 ? N i ~~ JZ n L~ WWHM3 OUTPUT ATTAC~IlVIENT "E" Western Washington Hydrology Model PROJECT REPORT Project Name: Site Address: City Report Date Gage Data Start Data End Precip Scale: WWHM3 Version: 10247 Salmon Run 10720 Vancil Rd SE Yelm 11/17/2010 Lake Lawrence 1955/10/01 2008/09/30 0.86 PREDEVELOPED LAND USE Name Basin A Predev Bypass: No Groundwater: No Pervious Land Use Acres A 8, Lawn, Flat .194 Impervious Land Use Acres ROOF TOPS FLAT 0.12 SIDEWALKS FLAT 0.071 PARKING FLAT 0.118 Element Flows To: Surface Interflow Groundwater Name Basin B Predev Bypass: No Groundwater: No Pervious Land Use Acres A B, Lawn, Flat .492 Impervious Land Use Acres ROOF TOPS FLAT 0.369 SIDEWALKS FLAT 0.107 PARKING FLAT 0.364 Element Flows To: Surface Interflow Groundwater Name Basin A Dev Bypass: No Groundwater: No Pervious Land Use A B, Lawn, Flat Impervious Land Use ROOF TOPS FLAT Acres .194 Acres 0.12 SIDEWALKS FLAT PARKING FLAT 0.071 0.118 Element Flows To: Surface Interflow Groundwater Basin A Dev Inf Trench, Basin A Dev Inf Trench, Name Basin B Dev Bypass: No Groundwater: No Pervious Land Use Acres A B, Lawn, Flat .492 Impervious Land Use Acres .ROOF TOPS FLAT 0.369 SIDEWALKS FLAT 0.107 PARKING FLAT 0.364 Element Flows To: Surface Interflow Groundwater sin B Dev Inf Trench, sin B Dev Inf Trench, Name sin B Dev Inf Trench Bottom Length: 318ft. Bottom Width 10ft. Trench bottom slope 1: 0.001 To 1 Trench Left side slope 0: 0 To 1 Trench right side slope 2: 0 To 1 Material thickness of first layer 4 Pour Space of material for first layer Material thickness of second layer 0 Pour Space of material for second layer Material thickness of third layer 0 Pour Space of material for third layer Infiltration On Infiltration rate 4 Infiltration saftey factor 0.5 Discharge Structure Riser Height: 5 ft. Riser Diameter: 10000 in. Element Flows To: Outlet 1 Outlet 2 0.4 0 0 Gravel Trench Bed Hydraulic Table Stage(ft) Area(acr) Volume(acr-ft) Dschrg(efs) Infilt(efs) 0.000 0.073 0.000 0.000 0.000 C.05b 0.073 0.002 0.000 0.147 0.111 0.073 0.003 0.000 0.147 0.1b7 0.073 0.005 0.000 0.147 0.222 0.073 O.OOb 0.000 0.147 0.278 0.073 0.008 0.000 0.147 0.333 0.073 0.010 0.000 0.147 0.389 .. ... 0.073 ., .,-,-, 0.011 ~ n~ ~ 0.000 n nnn 0.147 n ~ n~ 0.500 0.073 0.015 0.000 0.147 0.556 0.073 0.016 0.000 0.147 0.611 0.073 0.018 0.000 0.147 0.667 0.073 0.019 0.000 0.147 0.722 0.073 0.021 0.000 0.147 0.778 0.073 0.023 0.000 0.147 0.833 0.073 0.024 0.000 0.147 0.889 0.073 0.026 0.000 0.147 0.944 0.073 0.028 0.000 0.147 1.000 0.073 0.029 0.000 0.147 1.056 0.073 0.031 0.000 0.147 1.111 0.073 0.032 0.000 0.147 1.167 0.073 0.034 0.000 0.147 1.222 0.073 0.036 0.000 0.147 1.278 0.073 0.037 0.000 0.147 1.333 0.073 0.039 0.000 0.147 1.389 0.073 0.041 0.000 0.147 1.444 0.073 0.042 0.000 0.147 1.500 0.073 0.044 0.000 0.147 1.556 0.073 0.045 0.000 0.147 1.611 0.073 0.047 0.000 0.147 1.667 0.073 0.049 0.000 0.147 1.722 0.073 0.050 0.000 0.147 1.778 0.073 0.052 0.000 0.147 1.833 0.073 0.054 0.000 0.147 1.889 0.073 0.055 0.000 0.147 1.944 0.073 0.057 0.000 0.147 2.000 0.073 0.058 0.000 0.147 2.056 0.073 0.060 0.000 0.147 2.111 0.073 0.062 0.000 0.147 2.167 0.073 0.063 0.000 0.147 2.222 0.073 0.065 0.000 0.147 2.278 0.073 0.067 0.000 0.147 2.333 0.073 0.068 0.000 0.147 2.389 0.073 0.070 0.000 0.147 2.444 0.073 0.071 0.000 0.147 2.500 0.073 0.073 0.000 0.147 2.556 0.073 0.075 0.000 0.147 2.611 0.073 0.076 0.000 0.147 2.667 0.073 0.078 0.000 0.147 2.722 0.073 0.079 0.000 0.147 2.778 0.073 0.081 0.000 0.147 2.833 0.073 0.083 0.000 0.147 2.889 0.073 0.084 0.000 0.147 2.944 0.073 0.086 0.000 0.147 3.000 0.073 0.088 0.000 0.147 3.056 0.073 0.089 0.000 0.147 3.111 0.073 0.091 0.000 0.147 3.167 0.073 0.092 0.000 0.147 3.222 0.073 0.094 0.000 0.147 3.278 0.073 0.096 0.000 0.147 3.333 0.073 0.097 0.000 0.147 3.389 0.073 0.099 0.000 0.147 3.444 0.073 0.101 0.000 0.147 3.500 0.073 0.102 0.000 0.147 3.556 0.073 0.104 0.000 0.147 3.611 0.073 0.105 0.000 0.147 3.667 0.073 0.107 0.000 0.147 3.722 0.073 0.109 0.000 0.147 3.778 0.073 0.110 0.000 0.147 3.833 0.073 0.112 0.000 0.147 3.889 0.073 0.114 0.000 0.147 3.944 0.073 0.115 0.000 0.147 4.000 0.073 0.117 0.000 0.147 4.056 0.073 0.121 0.000 0.147 4.111 0.073 0.125 0.000 0.147 4.167 0.073 0.129 0.000 0.147 4.222 0.073 0.133 0.000 0.147 4.278 0.073 0.137 0.000 0.147 4.333 0.073 0.141 0.000 0.147 4.389 0.073 0.145 0.000 0.147 n nnn n n~~ n ono n nnn n 1d7 4.500 0.073 0.153 0.000 0.147 4.556 0.073 0.157 0.000 0.147 4.611 0.073 0.161 0.000 0.147 4.667 0.073 0.165 0.000 0.147 4.722 0.073 0.170 0.000 0.147 4.778 0.073 0.174 0.000 0.147 4.833 0.073 0.178 0.000 0.147 4.889 0.073 0.182 0.000 0.147 4.944 0.073 0.186 0.000 0.147 5.000 0.073 0.190 0.000 0.147 Name Basin A Dev Inf Trench Bottom Length: 115ft. Bottom Width 11ft. Trench bottom slope 1: 0.001 To 1 Trench Left side slope 0: 0 To 1 Trench right side slope 2: 0 To 1 Material thickness of first layer 4 Pour Space of material for first layer Material thickness of second layer 0 Pour Space of material for second layer Material thickness of third layer 0 Pour Space of material for third layer Infiltration Oa Infiltration rate 4 Infiltration saftey factor 0.5 Discharge Structure Riser Height: 5 ft. Riser Diameter: 10000 in. Element Flows To: Outlet 1 Outlet 2 0.4 0 0 Gravel Trench Bed Hydraulic Table Stage(ft) Area(acr) Volume(acr-ft) Dschrg(cfe) Infilt(cfs) 0.000 0.029 0.000 0.000 0.000 0.056 0.029 0.001 0.000 0.059 0.111 0.029 0.001 0.000 0.059 0.167 0.029 0.002 0.000 0.059 0.222 0.029 0.003 0.000 0.059 0.278 0.029 0.003 0.000 0.059 0.333 0.029 0.004 0.000 0.059 0.389 0.029 0.005 0.000 0.059 0.444 0.029 0.005 0.000 0.059 0.500 0.029 0.006 0.000 0.059 0.556 0.029 0.006 0.000 0.059 0.611 0.029 0.007 0.000 0.059 0.667 0.029 0.008 0.000 0.059 0.722 0.029 0.008 0.000 0.059 0.778 0.029 0.009 0.000 0.059 0.833 0.029 0.010 0.000 0.059 0.889 0.029 0.010 0.000 0.059 0.944 0.029 0.011 0.000 0.059 1.000 0.029 0.012 0.000 0.059 1.056 0.029 0.012 0.000 0.059 1.111 0.029 0.013 0.000 0.059 1.167 0.029 0.014 0.000 0.059 1.222 0.029 0.014 0.000 0.059 1.278 0.029 0.015 0.000 0.059 1.333 0.029 0.015 0.000 0.059 1.389 0.029 0.016 0.000 0.059 1.444 0.029 0.017 0.000 0.059 1.500 0.029 0.017 0.000 0.059 1.556 0.029 0.018 0.000 0.059 1.611 0.029 0.019 0.000 0.059 1.667 0.029 0.019 0.000 0.059 ., ,. ,. .. .. ., .~ n non n nnn n nG0 1.778 0.029 0.021 0.000 0.059 1.833 0.029 0.021 0.000 0.059 1.889 0.029 0.022 0.000 0.059 1.944 0.029 0.023 0.000 0.059 2.000 0.029 0.023 0.000 0.059 2.056 0.029 0.024 0.000 0.059 2.111 0.029 0.025 0.000 0.059 2.167 0.029 0.025 0.000 0.059 2.222 0.029 0.026 0.000 0.059 2.278 0.029 0.026 0.000 0.059 2.333 0.029 0.027 0.000 0.059 2.389 0.029 0.028 0.000 0.059 2.444 0.029 0.028 0.000 0.059 2.500 0.029 0.029 0.000 0.059 2.556 0.029 0.030 0.000 0.059 2.611 0.029 0.030 0.000 0.059 2.667 0.029 0.031 0.000 0.059 2.722 0.029 0.032 0.000 0.059 2.778 0.029 0.032 0.000 0.059 2.833 0.029 0.033 0.000 0.059 2.889 0.029 0.034 0.000 0.059 2.944 0.029 0.034 0.000 0.059 3.000 0.029 0.035 0.000 0.059 3.056 0.029 0.035 0.000 0.059 3.111 0.029 0.036 0.000 0.059 3.167 0.029 0.037 0.000 0.059 3.222 0.029 0.037 0.000 0.059 3.278 0.029 0.038 0.000 0.059 3.333 0.029 0.039 0.000 0.059 3.389 0.029 0.039 0.000 0.059 3.444 0.029 0.040 0.000 0.059 3.500 0.029 0.041 0.000 0.059 3.556 0.029 0.041 0.000 0.059 3.611 0.029 0.042 0.000 0.059 3.667 0.029 0.043 0.000 0.059 3.722 0.029 0.043 0.000 0.059 3.778 0.029 0.044 0.000 0.059 3.833 0.029 0.045 0.000 0.059 3.889 0.029 0.045 0.000 0.059 3.944 0.029 0.046 0.000 0.059 4.000 0.029 0.046 0.000 0.059 4.056 0.029 0.048 0.000 0.059 4.111 0.029 0.050 0.000 0.059 4.167 0.029 0.051 0.000 0.059 4.222 0.029 0.053 0.000 0.059 4.278 0.029 0.055 0.000 0.059 4.333 0.029 0.056 0.000 0.059 4.389 0.029 0.058 0.000 0.059 4.444 0.029 0.059 0.000 0.059 4.500 0.029 0.061 0.000 0.059 4.556 0.029 0.063 0:000 0.059 4.611 0.029 0.064 0.000 0.059 4.667 0.029 0.066 0.000 0.059 4.722 0.029 0.067 0.000 0.059 4.778 0.029 0.069 0.000 0.059 4.833 0.029 0.071 0.000 0.059 4.889 0.029 0.072 0.000 0.059 4.944 0.029 0.074 0.000 0.059 5.000 0.029 0.076 0.000 0.059 Name Basin C Predev Bypass: No Groundwater: No Pervious Land Use Acres A B, Lavin, Flat .146 Impervious Land Use Acres ROOF TOPS FLAT 0.027 SIDEWALKS FLAT PARKING FLAT 0.073 0.168 Element Flows To: Surface Interf low Groundwater Name Basin C Dev Bypass: No Groundwater: No Pervious Land Use Acres A B, Lawn, Flat .146 Impervious Land Use Acres ROOF TOPS FLAT 0.027 SIDEWALKS FLAT 0.073 PARKING FLAT 0.168 Element Flows To: Surface Interflow Groundwater Basin C Dev Inf Trench, Basin C Dev Inf Trench, Name Basin C Dev Inf Trench Bottom Length: 20ft. Bottom Width 52ft. Trench bottom slope 1: 0.001 To 1 Trench Left side slope 0: 0 To 1 Trench right side slope 2: 0 To 1 Material thickness of first layer : 4 Pour Space of material for first layer Material thickness of second layer 0 Pour Space of material for second layer Material thickness of third layer 0 Pour Space of material for third layer Infiltration On Infiltration rate 4 Infiltration saftey factor 0.5 Discharge Structure Riser Height: 5 ft. Riser Diameter: 10000 in. Element Flows To: Outlet 1 Outlet 2 0.4 0 0 Gravel Trench Bed Hydraulic Table Stage(ft) Area(acr) Volume(acr-ft) Dschrg(efs) Infilt(cfs) 0.000 0.024 0.000 0.000 0.000 0.056 0.024 0.001 0.000 0.048 0.1ii 0.024 0.001 0.000 0.048 0.167 0.024 0.002 0.000 0.048 0.222 0.024 0.002 0.000 0.048 0.278 0.024 0.003 0.000 0.048 0.333 0.024 0.003 0.000 0.048 0.389 0.024 0.004 0.000 0.048 0.444 0.024 0.004 0.000 0.048 0.556 0.024 0.005 0.000 0.048 0.611 0.024 0.006 0.000 0.048 0.667 0.024 0.006 0.000 0.048 0.722 0.024 0.007 0.000 0.048 0.778 0.024 0.007 0.000 0.048 0.833 0.024 0.008 0.000 0.048 0.889 0.024 0.008 0.000 0.048 0.944 0.024 0.009 ~ 0.000 0.048 1.000 0.024 0.010 0.000 0.048 1.056 0.024 0.010 0.000 0.048 1.111 0.024 0.011 0.000 0.048 1.167 0.024 0.011 0.000 0.048 1.222 0.024 0.012 0.000 0.048 1.278 0.024 0.012 0.000 0.048 1.333 0.024 0.013 0.000 0.048 1.389 0.024 0.013 0.000 0.048 1.444 0.024 0.014 0.000 0.048 1.500 0.024 0.014 0.000 0.048 1.556 0.024 0.015 0.000 0.048 1.611 0.024 0.015 0-.000 0.048 1.667 0.024 0.016 0.000 0.048 1.722 0.024 0.016 0.000 0.048 1.778 0.024 0.017 0.000 0.048 1.833 0.024 0.018 0.000 0.048 1.889 0.024 0.018 0.000 0.048 1.944 0.024 0.019 0.000 0.048 2.000 0.024 0.019 0.000 0.048 2.056 0.024 0.020 0.000 0.048 2.111 0.024 0.020 0.000 0.048 2.167 0.024 0.021 0.000 0.048 2.222 0.024 0.021 0.000 0.048 2.278 0.024 0.022 0.000 0.048 2.333 0.024 0.022 0.000 0.048 2.389 0.024 0.023 0.000 0.048 2.444 0.024 0.023 0.000 0.048 2.500 0.024 0.024 0.000 0.048 2.556 0.024 0.024 0.000 0.048 2.611 0.024 0.025 0.000 0.048 2.667 0.024 0.025 0.000 0.048 2.722 0.024 0.026 0.000 0.048 2.778 0.024 0.027 0.000 0.048 2.833 0.024 0.027 0.000 0.048 2.889 0.024 0.028 0.000 0.048 2.944 0.024 0.028 0.000 0.048 3.000 0.024 0.029 0.000 0.048 3.056 0.024 0.029 0.000 0.048 3.111 0.024 0.030 0.000 0.048 3.167 0.024 0.030 0.000 0.048 3.222 0.024 0.031 0.000 0.048 3.278 0.024 0.031 0.000 0.048 3.333 0.024 0.032 0.000 0.048 3.389 0.024 0.032 0.000 0.048 3.444 0.024 0.033 0.000 0.048 3.500 0.024 0.033 0.000 0.048 3.556 0.024 0.034 0.000 0.048 3.611 0.024 0.034 0.000 0.048 3.667 0.024 0.035 0.000 0.048 3.722 0.024 0.036 0.000 0.048 3.778 0.024 0.036 0.000 0.048 3.833 0.024 0.037 0.000 0.048 3.889 0.024 0.037 0.000 0.048 3.944 0.024 0.038 0.000 0.048 4.000 0.024 0.038 0.000 0.048 4.056 0.024 0.040 0.000 0.048 4.111 0.024 O.C41 0.000 0.048 4.167 0.024 0.042 0.000 0.048 4.222 0.024 0.044 0.000 0.048 4.278 0.024 0.045 0.000 0.048 4.333 0.024 0.046 0.000 0.048 4.389 0.024 0.047 0.000 0.048 4.444 0.024 0.049 0.000 0.048 4.556 0.024 0.051 0.000 0.048 4.611 0.024 0.053 0.000 0.048 4.667 0.024 0.054 0.000 0.048 4.722 0.024 0.055 0.000 0.048 4.778 0.024 0.057 0.000 0.048 4.833 0.024 0.058 0.000 0.048 4.889 0.024 0.059 0.000 0.048 4.944 0.024 0.061 0.000 0.048 5.000 0.024 0.062 0.000 0.048 MITIGATED LAND USE ANALYSIS RESULTS Flow Frequency Return Periods for Predeveloped. POC #1 Return Period Flow(ofs) 2 year 0.170938 5 year 0.24148 10 year 0.29592 25 year 0.374167 50 year 0.43977 100 year 0.512027 Flow Frequency Return Periods for Mitigated. POC #1 Return Period Flow(ofs) 2 year 0.170938 5 year 0.24148 10 year 0.29592 25 year 0.374167 50 year 0.43977 100 year 0.512027 Yearly Peaks for Predeveloped and Mitigated. POC #1 Year Predeveloped Mitigated 1957 0.136 0.136 1958 0.269 0.269 1959 0.178 0.178 1960 0.166 0.166 1961 0.232 0.232 1962 0.129 0.129 1963 0.125 0.125 1964 0.241 0.241 1965 0.164 0.164 1966 0.175 0.175 1967 0.136 0.136 1968 0.162 0.162 1969 0.104 0.104 1970 0.109 0.109 1971 0.125 0.125 1972 0.120 0.120 1973 0.164 0.164 1974 0.122 0.122 1975 0.273 0.273 1976 0.172 0.172 1977 0.147 0.147 1978 0.208 0.208 1979 0.166 0.166 1980 0.217 0.217 1981 0.121 0.121 1982 0.230 0.230 1983 0.169 0.169 1984 0.305 0.305 1985 0.167 0.167 1986 0.149 0.149 1987 0.200 0.200 1988 0.153 0.153 1990 0.109 0.109 1991 0.481 0.481 1992 0.223 0.223 1993 0.165 0.165 1994 0.097 0.097 1995 0.158 0.158 1996 0.219 0.219 1997 0.206 0.206 1998 0.168 0.168 1999 0.261 0.261 2000 0.142 0.142 2001 0.176 0.176 2002 0.150 0.150 2003 0.175 0.175 2004 0.119 0.119 2005 0.459 0.459 2006 0.545 0.545 2007 0.265 0.265 2008 0.210 0.210 2009 0.256 0.256 Ranked Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 Yearly Peaks for Predeveloped 0.5455 0.4812 0.4587 0.3045 0.2734 0.2687 0.2647 0.2614 0.2557 0.2412 0.2322 0.2300 0.2225 0.2192 0.2175 0.2102 0.2082 0.2062 0.1998 0.1784 0.1764 0.1751 0.1748 0.1717 0.1686 0.1679 0.1665 0.1664 0.1664 0.1652 0.1643 0.1639 0.1619 0.1578 0.1533 0.1502 0.1490 0.1468 0.1416 0.1359 0.1358 0.1294 0.1251 0.1248 0.1222 0.1207 0.1203 Predeveloped and Mitigated 0.5455 0.4812 0.4587 0.3045 0.2734 0.2687 0.2647 0.2614 0.2557 0.2412 0.2322 0.2300 0.2225 0.2192 0.2175 0.2102 0.2082 0.2062 0.1998 0.1784 0.1764 0.1751 0.1748 0.1717 0.1686 0.1679 0.1665 0.1664 0.1664 0.1652 0.1643 0.1639 0.1619 0.1578 0.1533 0.1502 0.1490 0.1468 0.1416 0.1359 6.1358 0.1294 0.1251 0.1248 0.1222 0.1207 0.1203 Mitigated. POC #1 49 0.1091 0.1091 50 0.1087 0.1087 51 0.1037 0.1037 52 0.0971 0.0971 53 0.0860 0.0860 POC #1 The Facility PASSED The Facility PASSED. Flow(CFS) Predev Dev Percentage Pass/Fail 0.0855 1350 1350 100 Pass 0.0890 1137 1137 100 Pass 0.0926 1010 1010 100 Pass 0.0962 882 882 100 Pass 0.0998 788 788 100 Pass 0.1034 674 674 100 Pass 0.1069 596 596 100 Pass 0.1105 516 516 100 Pass 0.1141 457 457 100 Pass 0.1177 408 408 100 Pass 0.1213 358 358 100 Pass 0.1248 325 325 100 Pass 0.1284 279 279 100 Pass 0.1320 246 246 100 Pass 0.1356 221 221 100 Pass 0.1392 194 194 100 Pass 0.1427 177 177 100 Pass 0.1463 159 159 100 Pass 0.1499 147 147 100 Pass 0.1535 132 132 100 Pass 0.1570 119 119 100 Pass 0.1606 108 108 100 Pass 0.1642 94 94 100 Pass 0.1678 86 86. 100 Pass 0.1714 78 78 100 Pass 0.1749 73 73 100 Pass 0.1785 63 63 100 Pass 0.1821 56 56 100 Pass 0.1857 52 52 100 Pass 0.1893 49 49 100 Pass 0.1928 47 47 100 Pass 0.1964 47 47 100 Pass 0.2000 44 44 100 Pass 0.2036 37 37 100 .Pass 0.2071 30 30 100 Pass 0.2107 27 27 100 Pass 0.2143 25 25 100 Pass 0.2179 25 25 100 Pass 0.2215 20 20 100 Pass 0.2250 19 19 100 Pass 0.2286 19 19 100 Pass 0.2322 18 18 100 Pass 0.2358 17 17 100 Pass 0.2394 16 16 100 Pass 0.2429 15 15 100 Pass 0.2465 15 15 100 Pass 0.2501 11 11 100 Pass 0.2537 11 11 100 Pass 0.2573 9 9 100 Pass 0.2608 9 9 100 Pass 0.2644 8 8 100 Pass 0.2680 7 7 100 Pass 0.2716 6 6 100 Pass 0.2751 5 5 100 Pass 0.2787 5 5 100 Pass 0.2823 5 5 100 Pass 0.2859 5 5 100 Pass n_2R95 5 5 100 Pass 0.2930 5 5 100 Pass 0.2966 5 5 100 Pass 0.3002 4 4 100 Pass 0.3038 4 4 100 Pass 0.3074 3 3 100 Pass 0.3109 3 3 100 Pass 0.3145 3 3 100 Pass 0.3181 3 3 100 Pass 0.3217 3 3 100 Pass 0.3252 3 3 100 Pass 0.3288 3 3 100 Pass 0.3324 3 3 100 Pass 0.3360 3 3 100 Pass 0.3396 3 3 100 Pass 0.3431 3 3 100 Pass 0.3467 3 3 100 Pass 0.3503 3 3 100 Pass 0.3539 3 3 100 Pass 0.3575 3 3 100 Pass 0.3610 3 3 100 Pass 0.3646 3 3 100 Pass 0.3682 3 3 100 Pass 0.3718 3 3 100 Pass 0.3754 3 3 100 Pass 0.3789 3 3 100 Pass 0.3825 3 3 100 Pass 0.3861 3 3 100 Pass 0.3897 3 3 100 Pass 0.3932 3 3 100 Pass 0.3968 3 3 100 Pass 0.4004 3 3 100 Pass 0.4040 3 3 100 Pass 0.4076 3 3 100 Pass 0.4111 3 3 100 Pass 0.4147 3 3 100 Pass 0.4183 3 3 100 Pass 0.4219 3 3 100 Pass 0.4255 3 3 100 Pass 0.4290 3 3 100 Pass 0.4326 3 3 100 Pass 0.4362 3 3 100 Pass 0.4398 3 3 100 Pass Water Quality HMP Flow and Volume for POC 1. On-line facility volume: 0.055 acre-feet On-line facility target flow: 0.01 cfs. Adjusted for 15 min: 0.0663 cfs. Off-line facility target flow: 0.0376 cfs. Adjusted for 15 min: 0.0376 cfs. Flow Frequency Return Periods for Return Period 2 year 5 year 10 year 25 year 50 year 100 year Flow(cfs) 0 0 0 0 0 0 Flow Frequency Return Periods for Return Period Flow(efs) 2 year 0 5 year 0 10 year 0 25 year 0 50 year 0 100 year 0 Predeveloped. POC #2 Mitigated. POC #2 Yearly Peaks for Predeveloped and Mitigated. POC #2 Year Predeveloped Mitigated Ranked Yearly Peaks for Predeveloped and Mitigated. POC #2 Rank Predeveloped Mitigated POC #2 The Facility PASSED The Facility PASSED. Flow(CFS) Predev Dev Percentage Pass/Fail 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass Water Quality SMP Flow and Volume for POC 2. On-line facility volume: 0.1341 acre-feet On-line facility target flow: 0.01 cfs. Adjusted for 15 min: 0.1601 cfs. Off-line facility target flow: 0.0908 cfs. Adjusted for 15 min: 0.0908 cfs. Flow Frequency Return Periods for Predeveloped. POC #3 Return Period Flow(efs) 2 year 0 5 year 0 10 year 0 25 year 0 50 year 0 100 year 0 Flow Frequency Return Periods for Mitigated. POC #3 Return Period Flow (cfs) 2 year 0 5 year 0 10 year 0 25 year 0 50 year 0 100 year 0 Yearly Peaks for Predeveloped and Mitigated. POC #3 Year Predeveloped Mitigated Ranked Yearly Peaks for Predeveloped and Mitigated. POC #3 Rank Predeveloped Mitigated POC #3 The Facility PASSED The Facility PASSED. Flow(CFS) Predev Dev Percentage Pass/Fail 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass n nnnn n n n n~~~ 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0,.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass 0.0000 0 0 0 Pass Water Quality HMP Flow and Volume for POC 3. On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Perlnd and Implnd Changes Total of 123 changes have been made. Perlnd changes. Name Property Original Changed A/B, Forest, Flat SLSUR 0.05 0.02 Green/ECO/ROOF .lidtype 3 Green/ECO/ROOF .lidyes False True Green/ECO/ROOF .pnum 0 37 Green/ECO/ROOF .name NBLKS Green/ECO/ROOF NBLKS 0 1 Green/ECO/ROOF .name USER Green/ECO/ROOF USER 0 1 Green/ECO/ROOF .name IN Green/ECO/ROOF IN 0 1 Green/ECO/ROOF .name OUT Green/ECO/ROOF OUT 0 1 Green/ECO/ROOF .name ENGL Green/ECO/ROOF ENGL 0 27 Green/ECO/ROOF .name METER Green/ECO/ROOF .name ATMP Green/ECC/ROOF .name SNOW Green/ECO/ROOF .name PWAT Green/ECO/ROOF PWAT 0 1 Green/ECO/ROOF .name SED Green/ECO/ROOF .name PST Green/ECO/ROOF .name PWG Green/ECO/ROOF .name PQAL Green/ECO/ROOF .name MSTL Green/ECO/ROOF .name PEST Green/ECO/ROOF .name NITR Green/ECO/ROOF .name PHOS Green/ECO/ROOF .name TRAC Green/ECO/ROOF .name ATMP2 Green/ECO/ROOF .name SNOW2 Green/ECO/ROOF .name PWAT2 Green/ECO/ROOF PWAT2 0 4 Green/ECO/ROOF .name SED2 Green/ECO/ROOF .name PST2 Green/ECO/ROOF .name PWG2 Green/ECO/ROOF .name PQAL2 Green/ECO/ROOF .name MSTL2 Green/ECO/ROOF .name PEST2 Green/ECO/ROOF .name NITR2 Green/ECO/ROOF .name PHOS2 Green/ECO/ROOF .name TRAC2 Green/ECO/ROOF .name PVIL Green/ECO/ROOF PVIL 0 1 Green/ECO/ROOF .name PYR Green/ECO/ROOF PYR 0 9 Green/ECO/ROOF .name CSNO Green/ECO/ROOF .name RTOP Green/ECO/ROOF .name UZFG Green/ECO/ROOF .name VCS Green/ECO/ROOF .name VUZ Green/ECO/ROOF .name VNN Green/ECO/ROOF .name VIFW Green/ECO/ROOF .name VIRC Green/ECO/ROOF .name VLE Green/ECO/ROOF .name INFO Green/ECO/ROOF .name HWT Green/ECO/ROOF .name FOREST Green/ECO/ROOF .name LZSN Green/ECO/ROOF LZSN 0 1 Green/ECO/ROOF .name INFILT Green/ECO/ROOF INFILT 0 1 Green/ECO/ROOF .name LSUR Green/ECO/ROOF LSUR 0 50 Green/ECO/ROOF .name SLSUR Green/ECO/ROOF SLSUR 0 0.01 Green/ECO/ROOF .name KVARY Green/ECO/ROOF KVARY 0 0.5 Green/ECO/ROOF .name AGWRC Green/ECO/ROOF AGWRC 0 0.3 Green/ECO/ROOF .name PETMAX Green/ECO/ROOF .name PETMIN Green/ECO/ROOF .name INFEXP Green/ECO/ROOF INFEXP 0 2 Green/ECO/ROOF .name INFILD Green/ECO/ROOF INFILD 0 2 Green/ECO/ROOF .name DEEPFR Green/ECO/ROOF .name BASETP Green/ECO/ROOF .name AGWETP Green/ECO/ROOF AGWETP 0 0.5 Green/ECO/ROOF .name CEPSC Green/ECO/ROOF CEPSC 0 0.1 Green/ECO/ROOF .name UZSN Green/ECO/ROOF UZSN 0 0.1 Green/ECO/ROOF .name NSUR Green/ECO/ROOF NSUR 0 0.5 Green/ECO/ROOF .name INTFW Green/ECO/ROOF INTFW 0 4 Green/ECO/ROOF .name IRC Green/ECO/ROOF IRC 0 0.3 Green/ECO/ROOF .name LZETP Green/ECO/ROOF LZETP 0 0.5 Green/ECO/ROOF .name MELEV Green/ECO/ROOF MELEV 0 400 Green/ECO/ROOF .name BELV (;YPaYI/P.('(l/R (1(1F' Hama (~LnTT111'PM Green/ECO/ROOF .name PCW Green/ECO/ROOF PCW 0 0.12 Green/ECO/ROOF .name PGW Green/ECO/ROOF PGW 0 0.15 Green/ECO/ROOF .name UPGW Green/ECO/ROOF UPGW 0 0.18 Green/ECO/ROOF .name STABNO Green/ECO/ROOF STABNO 0 1 Green/ECO/ROOF .name SRRC Green/ECO/ROOF SRRC 0 0.1 Green/ECO/ROOF .name SREXP Green/ECO/ROOF .name IFWSC Green/ECO/ROOF IFWSC 0 4 Green/ECO/ROOF .name DELTA Green/ECO/ROOF DELTA 0 0.2 Green/ECO/ROOF .name UELFAC Green/ECO/ROOF UELFAC 0 4 Green/ECO/ROOF .name LELFAC Green/ECO/ROOF LELFAC 0 2.5 Green/ECO/ROOF .name CEPS Green/ECO/ROOF .name SURS Green/ECO/ROOF .name UZS Green/ECO/ROOF .name IFWS Green/ECO/ROOF .name LZS Green/ECO/ROOF LZS 0 0.5 Green/ECO/ROOF .name AGWS Green/ECO/ROOF .name GWVS Implnd changes. Name Property Original Changed ROADS FLAT SLSUR 0.01 0.02 This program and accompanying documentation is provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by the user. Clear Creek Solutions and the Washington State Department of Ecology disclaims all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions and/or the Washington State Department of Ecology be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions or the Washington State Department of Ecology has been advised of the possibility of such damages.