Loading...
3153-3T Lateral Analysis & Beam Calcs i t LATERAL ANALY S I S & BEAM CALCULATIONS ��o� A S��!" ��. �� ; ��' �� � � � . � �� 37172 ,� ,�j'�' � ���l� °����GrsTE�� .���' ��,) � �"�rONAL E�'C� IF THIS SIGNATURE IS NOT IN COLOR, DO NOT ACCEPT FOR PERMIT SUBMITTAL. Project: Plan 3153/3T August 2, 2012 20091NTERNATIONAL BUILDING CODE 85 MPH WIND, EXPOSURE B, K�= 1.00 SOIL SITE CLASS D SEISMIC DESIGN CATEGORY D (IBC) D1/D2 (IRC) 3206 SOth Street Court NW Suite 210-B � F� � � � ��. Gig Harbor, WA 98335 .-. . � �, _ ry �,�.. Phone: 253-858-3248 �'�, ���� � �-- �' ����� e � ���� Email: myengineer@centurytel.net� � � .;3 �` ���'�-------------------- � s Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net � DESIGN LOADS: ROOF DEAD LOADS 15 PSF Total ROOF LIVE LOADS 25 PSF (Snow) FLOOR DEAD LOADS 15 PSF Total FLOOR LIVE LOADS 40 PSF (Reducible) STAIR LIVE LOADS 100 PSF WOODS : WOOD TYPE: JOISTS OR RAFTERS 2X.------- -- –HF#2 BEAMS OR HEADERS 4X -6X OR LARGER----------DF#2 LEDGERS AND TOP PLATES HF#2 STUDS 2X4 OR 2X6 — HF Stud POSTS 4X4 HF#2 4X6 HF#2 6X6– — DF#1 GLUED-IAMINATED (GLB) BEAM & HEADER. Fb=2,400 PSI, Fv=165 PSI, Fc (Perp) =65� PSI, E=1,800,000 PSI. PARALLAM (PSL) 2.OE BEAM & HEADER. Fb=2,900 PSI, Fv=290 PSI, Fc (Perp)=750 PSI, E=2,000,000 PSI. MICROLAM (LVL) 1.9E BEAM & HEADER Fb=2,600 PSI, Fv=285 PSI, Pc (Perp) =750 PSI, E=1,900,000 PSI. TIMBERSTRAND{LSL) 1.3E BEAM, HEADER, & RIM BOARD Fb=1,700 PSI, Fv=400 PSI, Pc (Perp) =680 PSI, E=1,300,000 PSI. TRUSSES: PREFABRICATED WOOD TRUSSES SHALL BE DESIGNED BY A REGISTERED DESIGN PROFESSIONAL REGISTERED INTHE STATE OF WASHINGTON. TRUSS DESIGNS SHALL COMPLY WITH THE REQUIREMENTS OF IBC 2303.4. SUBMITTAL PACKAGE SHALL COMPLY WITH REQUIREMENTS OF IBC 2303.4.1.4. UNLESS OTHERWISE SPECIFIED BY LOCAL BUILDING OFFICIAL OR STATUTE, TRUSS DESIGNS BEARING THE SEALAND SIGNATURE OF THE TRUSS DESIGNER SHALL BEAVAILABLE AT TIME OF I NSPECTION. ENGINEERED I-JOISTS -FLOOR JOISTS & BEAMS OF EQUAL OR BETTER CAPACITY MAY BE SUBSTITUTED FOR THOSE SHOWN ON THIS PLAN, "EQUAL" IS DEFINEDAS HAVING MOMENT CAPACITY, SHEAR CAPACITY, AND STIFFNESS WITHIN 3% OF THE SPECIFIED JOISTS OR BEAMS. 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 � , � Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net LATERAL ANALYSIS : BASED ON 2009 INTERNATIONAL BUILDING CODE (IBC) Lateral Forces will be distributed along lines of Force/Resistance. Lines of Force/Resistance will be investigated for both wind and seismic lateral loads. Roof and Floor diaphragms are considered flexible. SEISMIC DESIGN: SEISMIC DESIGN BASED ON 2009 IBC CHAPTER 16 SECTION 1613 SINGLE FAMILY DWELLING, LIGHT FRAME CONSTRUCTION LESS THAN THREE STORIES IN HEIGHTABOVE GRADE. Seismic Desiqn Data: —Soils Site Class D(Assumed) —Seismic Design Category D IE:= 1.0 For Seismic Use Group I occupancy (ASCE 7-05 Table 11.5-1) �R:= 6.5 S2o:= 3.0 Cd:= 4 Light Framed Walls w/Wood Shear Panels (ASCE 7-05 Table 12.2-1) SS:= 1.25 Mapped Maximum Considered Earthquake Spectral ResponseAcceleration Short-Period S1 := 0.40 Mapped Maximum Considered Earthquake Spectral ResponseAcceleration 1Second Period Fa:= 1.0 Site Coefficient based on Site Class & SS (ASCE 7-05 Table 11.4-1) F�:= 1.50 Site Coefficient based on Site Class & S� (ASCE 7-05 Table 11.4-2) W,wX Seismic Weight of Overall Structure, Seismic Weight of Structure above Level x (LB.) Equation 16-37 Sms:= SS•Fa Sms = 1•25 Equation 16-39 SDg:= 3•Sms SDS =0.83 Equation 16-38 $m� ;= S1•F� Sm� =0.6 Equation 16-40 SD� := 3•Sml SD1 =0.4 Roof SlopeAdjustment Factor: ,i S:_ ( 1 � ' cos�atanl �J� � � S- �.o$ Plan Area for Each Level: Plan Perimeter for Each Level: Al := 2069ft2•S Pl = 2(40ft) +2(47ft) (Roof) (Upper Floor) AZ:= 1809ft2+ 1243ft2-S P2:= 2(SSft) + 2(47ft) (Upper Floor+ Lower Roof) (Main Floor) Lateral Loads transfered to foundation at Main Floor Level 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 Z r ' 288 Sf 2�09 sf �68 sf AREA SUMMARY MAIN FLOOR: 154L SF. UPPER F�OOR: 1809 SF. TOTAL: 3153 SF. GARAGE: 1143 SF. 18� Sf � t r Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net Weight of Structure at Each Level: Story Weight at Upper Floor. Weight of floors include weight of floor wl := 15•psf•�A1� + 12•psf•4•ft•�Pl� framing, flooring material, insulation, and 5psf for miscellaneous partition walis. Story Weight at Main Floor. w2:= 15•psf•�A2� + 12•psf•�5-ft•�Pi� + 4.Sft•�P2�� Shear at each Level: F=1.0 for one-story building F=1.1 for two-story building F=1.2 for three-story building F:= 1.1 � �F•SDS'�'t� u�E:= R v1E= 591931b Story Shear at Upper Floor u2E�- LF•SDS•`w2J� V2E=9701.121b Story Shear at Main Floor R Total Base Shear. Vg:_ (V�E+ V2B� VE= 15620.421b 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 � , ' Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net WIND DESIGN USEANALYTICAL PROCEDURE OFASCE 7-05 SECTION 6.5 ENCLOSED RIGID BUILDINGS (ALL HEIGHTS) WIND EXPOSURE = B h:= 30•ft Mean Roof Height as per Sec. 6.2 (not less than 30 ft for Exp B and not less than 15ft for Exp C) I:= t.0 Important Factor(Table 6-1). �;= gs Wind Speed Miles per Hour(Figure 6-1). zg:= 1200ft Per Table 6-2: zg = 1200ft & a= 7.0 for Exposure B Kd:_ 0.85 Wind Directionality Factor(Table 6-4). a= 7.0 z9 = 900ft & a = 9.5 for Exposure C (a) Kh:= 2.01�h 1 Ky,=0.7 Velocity Pressure Exposure Coefficient {Table 6-3). Zg) Topographic Factor(KZt) (Figure 6-4): 2-D Escarpment with building downwind of crest for Exposure B. x:= l ft Lh= l ft �H�,:= l ft z:= h �y:= 2S µ= 4 (-7•z) L Kl := 0.75 H1 Kl =0.75 KZ:= 1 - X KZ=0.75 K3:= e h K3=O �Lhl µLh I{�:_ �l + Kl•KZ•K3�2 IC�= 1 Therefore use: K�. �.= 1.0 Intemal Pressure Coefficients (Figure 6-5) GCp;:_ .18 +/- Extemal Pressure Coefficients w/ Roof Pitch = 5/12 (23 degrees) Front to Back & 10/12 (40 degrees) Side to Side Taken from Figure 6-6 (w/ G=0.85 per Section 6.5.8.1) Front to Back: Side to Side: L L�,:= 47ft B�,:= SSft L� =0.85 h = 0.64 LSS:= SSft BSS:= 47ft SS = 1.17 h =0.55 B{� L� Bss Lss GCpfl :_ .8 Windward Wall GCpsl :_ .8 Windward Wall GCP�:= 0.05 Windward Roof G�ps2= .34 Windward Roof GCp�:_ -.6 Leeward Roof GCps3:_ -.6 Leeward Roof �pf4�- -•5 Leeward Wall GCps4:= =.47 Leeward Wall Velocity Pressure (qh) Evaluated at Mean Roof Height (h) (Equation 6-15) qh:= 0.00256•Kh•IC�•I{�•V •I 4h= 11.01 Design Wind Pressures p= qGCP -q�(GCp�) (Equation 6-18)where q & q�will be conservatively taken as qh 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 5 / ����iiiii�ii . , ,.�� ,•�- ,��� ,��",' / i���r"r1 i�� /1�`� / i�•`••,I� i1�•••• , / i�� i���```\�\� ' ����`__\\�\ i . . � ������������������\������»i����������������������I� •� � ����� �\ �'���� �-. �.j,� r����� �►' • r--, —� � ► f�� ► � ' \I�� �!\���\�\j;i�i����,������`� `I�� \I'�I�� �� � � � ��� �\li�\��\I��\ i\�i���il► i,a��.��i�\1►\1!I\,\i!1\\\ i, I� ��i��ii�/.i�� j�i�%ii�i�',�ii�'O�!��1% ��ij� '��il� �� - � �������—�����=�r.�� I/ /%��I, I , li_-_--__ .. ir ► � '������� - � :.� �/ , _ �I //////// /i � ����� � � =1���////���///���// � . �� . �1�L�1L�%a!%v/J/J/JIJ�.-------- ----------- iiiiii==iiii�iiiiiiiiiiiiiiiii i ii ,►• ���,--= =�=;,� -- .,,:����_.�,�,�:��,ii /'1/////�///////%._ii;iiiiiiiiiiii�i" � �� --- ---- - ---- --- ---- - ����; � i i �!I��j�ij'',��iAii���,�i� ��:;ie��ii�ii:r��i;�i�1'�i.��ria.ii.i�iiii 1'�ii�;,�ri:i`ma�ii �/I � � �� I I I I L�Ji -•p , . •, , ► �� —,0� �.,—•-,�i� ,��• ���,�, 0� / //,II�/ I/II, I J �Ii II I � J Jl iIIA J( II i I� � , ,�i — I ��— ni � _ �I/I __ ' . T.�/ I ' I 'll�_��`��. ��� .�s��� / ��_ �� �J��i_��L aJ��' ���a r�i�. � . •��L JII� �I I I i/1�--�I_ �� — r�II I' '/�1 I� �Ir�i ll�lf�I�I - )f If -_ l ���lf�l�l_ 1 i�������������I�E I;il'rr �II;'I�='���L�1�J� ��L��I�1 ��I�I�J�1 ��� ',IIiI :�� , �� I� �� � � ._._ piiiiiiiiiiiiiiiiiiiiD�i__ ���i�0 �;���� ,���� ����; ���[��'�L��l�_[ '�C��1�-�[�'�[��1�- .___. --.� . ,� ^ .::..-;�:���, � .��� �L 1 \�� % ///�•• \\\� . � � �. .��� - ��\� � -.��'������� ������ ;•��������� ;� ����� ._�����o�������������������:�.����������������������������\. ������ ``�:����,�� �� \' --� --- ���`::���;_:\\\\�\\\\\\\\\\\� .�\�\\\��. j� /� "��/� --.������,��I � �� �'�'� / �/ � . , il i/ �������Ii�!.�I.►�, _i�� �/�/� . , . , �. ,�/ •.�. •.�, �/I.///i/i///��/////��//////�///////����///���0//////////�i����, .�,\_ ���i j••i• ••♦•��r1 ��j/ ' �� � `\��1`. I�� /��/��/� �I!iir i�'I, /1 1 ' ���/ I��I, � IIIII- III i�!���_ . ._ . , . 1 , arnc var rrP. iI conPOSinon 2ooF � �5 I x 2 TRIM 8D.ON 5/4 X 8 BAid'iE BD.TYP. 7NT.METAL GU1?ER ON d X 8 FASCIA BD.1YP. 5/4 x 4 COFNER BD.TYP. � IJ 45 I1 4� 5/4 x 10 BAND BD. 6"BEVEL SIDING � APPR< . PROVIDE FLASNING PER DETAIL L�'I' �L�Y,4tION COMF'05�T�ON R��NG 5/a x 4 COfd1ER BD.TYP. b"BEVEL 51DINE 5/4 x 10 BPND BD. 'EL SIDIN6 :BD.77R 9 m APP�x.GRADE � RE�4i? �L�V,4tION 7 • r Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net The Internal Pressures on Windward and Leeward Walls& Roofs will affset each other for the lateral design of the overall building and will therefore be ignored for this application. Front to Back: Side to Side: P�1 �= qh'��pft�•psf pfl = 8.81 ft 2•lb Windward Wall psl ;= qh'�GCpsi�•psf psl =8.81 ft 2•Ib Windward Wall p�:= qh•�GCp��•psf p�=0.55 ft 2•lb �Nindward Roof pS2:- qh•�GCpsz�•psf ps2=3.74ft 2•lb Windward Roof p�:= qh•�GCp��•psf p�_-6.61 ft 2•lb Leeward Roof ps3�- qh'�GCps3�•psf ps3=-6.61 ft 2•lb Leeward Roof Pf4�- 9h'�GCpf4�'Psf pf4=-5.51 ft 2•lb Leeward Wall ps4�- qh'�GCpsq�•psf ps4=-5.18 ft 2•ib Leeward Wall Wind Pressure at Upper Floor Wall & Roof (Front to Back): Vlw:_ �p�—pf3�322ft2+ �pfl -pf4�•251-ft2 Vl�r =5899.321b Wind Pressure at Main Floor Walis (Fror� to Back): VZW:_ �p�—pf3�•163ft2+ �p� —pf4�•454-ft2 V2�, =7667.6816 Wind Pressure at Upper Floor Wails&Roof(Side to Side): V3w�_ �Ps2—Ps3�•63ft2+ �ps1 —Psa�`419ft2 V3�,�, =6513.371b Wind Pressure at Main Floor Walls (Side to Side): V4w�_ �Ps2—Ps3�'Oft2+ �psl —p��•467ft2 V4�, = 6532.541b But not less than 10 psf over the projected vertical plane. 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 � . ' C �-------------------------- ---, �p i I i � i � i �v i � A. � � � � � �xa �xo � ��XO �xo ---- ----, � � � � X �•x�° ', g 50WC NB I �0 � I A� Z � I Mii�7AT ��1LTED VAULTED T��E ITTINCs A ,4 MA�.STtER SUI?� ; _ / �8 CARPET` I �v � � b ER 0 �_—_--___— vPLLTLINE_-----__— I � I � I�I -- � ----n— I �_� I I rz�' --- DESK i Z�' j,� I I 5068 BI-PA55 �� .I��SJ I N ,��O,� I a i aw�T�_y i a `,�'�'Tp�T � i _ I I �i I � � `��OJ' ——� I o L— --�---J ��v��'"�c i x � �D��"� Z � � a � ca�eT � I m w �, m � t v C �R � � � /►� I `V� �/�/ �\ VINYL W � �� %"FIICsN'iz wALL \� �� I I � D � (VTO1 � 60"r32° L41 � 3068 � T/5 I BI-f-0LD � I � BATN 3068 '� UNEN � � O BI-FOLD VINYL Z468 , � I N9 _��__ � LINEN � —_—_—�—_— 668 � 4068 BI-PA55 I 66 6068 BI-PA55 I /_ � �` I `b� � � BONIlS ROOM/ ' BEDROOM 4 OP710NAL BEDROOM 5 BEDRO�'1 3 cAar�T �A�T I� car�T � I I I I RE55 EGRE55 I ------_—__— —_� 3 SN 3040 5N EGRESS �� EGRE55 5050 XO 5050 XO ,✓'/ !rJ � �•J ►� � �,�' �,� PORGFI IINE BELOW UPP�R �LOOR PL,4N � � t Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net WALL AA: Story Shear due to Wind: V3W =6513.371b Story Shear due to Seismic: V1E=5919.31b Bldg Width in direction of Load: Lt= 47•ft Distance between shear walls: L1;= 22•ft Shear Wall Length: Laa�,,:= (12+ 3)ft Laas:= �12+ 3�8J�ft Laaµ,= I S ft Laas= 14.25 ft 18.75•ft Max Opening Height = Oft-0in, Therefore Ca:= 1.00 Percent full height sheathing: ��- 10(%=55.56 (33.75•ft � perAF&PA SDPWS Table 4.3.3.4 : V3W•21 �.�p•�IE.�1 Wind Force: vaa:_ � Seismic Force: p:= 1.0 E�:_' t Laaµ, 'Laas E vaa= 101.63 ft 1•lb �� = 101.63 ft 1•lb E�=68.05 ft 1•lb � =68.05 ft 1•lb Co Co P1�: 7/16" Sheathing w/8d nails @ 6"O.C. Wind Capacity= 339 plf Seismic Capacity= 242 plf Dead Load Resistinq Overtuminq: L�:= 3•ft Plate Height: Pt= 8•ft WR:= 0.6(15•psf)•24•ft•L�+ 0.6•(10•psf)•Pt•L�+ 0.6•(lOpsf)•Oft•L� DLRM:= WR•2� DLRM= 1188ft•Ib Overturnin Moment: OTMW:= vaa•L�Pt OTMW=2439.05 ft•Ib OTMS:= E�L�Pt OTMS = 1633.28 ft•lb Holdown Force& Net Uplift: OTMW OTMS -DLRM -DLRM Co Co HDFaa,�,:= HDFaas:_ L� L� HDFaaN,=417.021b HDFaas= 148.431b No Holdown Req'd Base Plate Nail Spacina (2005 NDS Table11N) Anchor Bolt Spacinq (2005 NDS Table 11E) 16d Common (0.162"x3.5") Nails & 1-112" Plate Hem-Fir 5/8" Dia. Bolt(6" Embed)8�1-1/2" Plate Hem-Fir ZN:= 122•lb CD:= 1.6 AS:= 860•lb �= 1.6 ZB:= AS•CD ZB = 13761b Bp:= CD ZN C� Bp= 1.92 ft Per Nail As:= ZB C� As= 13.54 ft Per Bolt v3a V31 46d @ 16" o.c. 5/8"A.B. @ 72'' o.c. 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 In , ' Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net WALL BB: Story Shear due to Wind: V3�,=65'I3371b Story Shear due to Seismic: ViE= 591931b Bldg Width in direction of Load: L�:= 47•ft Distance between shear walls: �:_ 25•ft Shear Wall Length: LbbW:_ (2•4 + 2•4.5 + 3)ft Lbbs= r2•4 + 2•4.5 + 3(8�1 ft L \ J LbbW=20 ft Lbbs= 19.25 ft 8•ft Max Opening Height = 5ft-Oin, Therefore C = 0.71 Percent full height sheathing: ��_ 100 %=61.54 ' ^"`�^ 13•ft perAF&PA SDPWS Table 4.3.3.4 V3W L1 VtE L1 0.7p• L 2 Wind Force: vbb:= Lt 2 Seismic Force: �:- 1.0 Ebb:= t LbbW Lbbs E vbb = 86.61 ft 1•lb Cb = 121.99ft i•lb Ebb=57.25ft I•lb c b =80.63ft 1•lb 0 0 P4-6: 7/16"Sheathing w! 8d naiis @ 6" O.C. Wind Capacity= 339 plf Seismic Capacity= 242 plf Dead Load Resisting Overturninq: Lbb= 8•ft Plate Height: PMt,,c= 8•ft W�:= 0.6(15�psf)•2•ft•�,bb+ 0.6•(10•psf)•Pt•Lbb+ 0.6•(lOpsf)•Oft•Lbb D�N_ WR.Lbb DLRM=2112ft•lb _ 2 Overtuminq Moment: O�y�:= vbb•Lbb•Pt OTMW= 55433ft•Ib 0�,�,�= Ebb'Lbb'Pt OTMS=3663.79ft•lb Holdown Force& Net Uplift: OTMW OTMS -DLRM -DLRM o C F-IDFbbW:= C �IDFbbs:= o Lbb Lbb HDFbbW= 711.931b HDFbbs=381.031b No Holdown Required Base Plate Nail Spacina (2005 NDS Table11N) Anchor Bolt Spacinq (2005 NDS Table 11E) 16d Common (0.162"x3.5") Nails 8� 1-1/2" Plate Hem-Fir 5/8" Dia. Bolt(6" Embed)8� 1-1/2" Plate Hem-Fir Z�:= 122•Ib �= 1.6 A�:= 860•lb �= 1.6 �:= AS•CD ZB = 13761b B�= CD ZN C� Bp= 1.6ft Per Nail �- ZB C� As= 11.28ft Per Bolt vbb vbb 16d @ 16",a.a 5/8"A.B. a�'72" o.c. 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 !� , Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net WALL CC: Story Shear due to Wind: Vi�, = 5899.321b Story Shear due to Seismic: V1E=5919.31b Bldg Width in direction of Load: L,�:= 40•ft Distance between shear walls: �:_ 40•ft Shear Wall Length: LccN,:= (16.5 + 6.25 + 12)ft Lccs:= (16.5 + 6:25 + 12)ft Lcc,,,=34.75 ft Lccs= 34.75 ft 10•ft Max Opening Height = Oft-0in, Therefore C = 1.00 Percent full height sheathing: ��- 100 %= 100 ^^'�" 10•ft perAF&PA SDPV1lS Table 4.3.3.4 Viw Li 0.7p•v1E•L1 Lt 2 Lt 2 Wind Force: vcc:= Seismic Force: �:- 1.0 Ecc= Lcc,�, Lccs E vcc= 84.88 ft 1•]b vcc _ 84.88 ft 1•lb E��= 59.62 ft 1•lb cc =59.62 ft 1•lb Co Co P1-6: 7M6"Sheathing w/ 8d nails @ 6" O.C. Wind Capacity= 339 pif Seismic Capacity= 242 plf Dead Load Resistinq Overtuminq: Lcc:= 6.25•ft Plate Height: P�t�:= 8•ft W�:= 0.6(15�psf)•2•ft•L��+ 0.6•(10•psf)•Pt•L��+-0.6-(lOpsf)•Oft•L�� Lcc D��= WR�2 DLRM= 1289.06 ft•lb Overtuminq Moment: O�T�M�:= vcaL��•Pt OTMW=4244.11 ft�lb O„�,T��,�= Ecc'Lcc'� OTMS=2980.94 ft•Ib Holdown Force& Net Uplift: OTMW OTMS -DLRM -DLRM Co Co �IDFccN,:_ �IDFccs:_ Lcc Lcc HDFccN,=472.811b HDFccs=270.71b No Holdown Required Base Plate Nail Spacinq (2005 NDS Table11N) Anchor Bolt Sqacinq (2005 NDS Table 11E) 16d Common (0.162"x3.5") Nails 8� 1-1/2" Plate Hem-Fir 5/8" Dia. Bolt(6" Embed)&1-1/2" Plate Hem-Fir Z�:= 122•]b �= 1.6 A�,:= 860-1b �= 1.6 Z�:= AS•CD ZB = 13761b B�= CD ZN C� Bp=2.3 ft Per Nail A�:- ZB c0 As= 16.21 ft Per Bolt vcc vcc 16d @ 16"o.c. 5/8"A.B. @ 77' o.c. 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 �Z , ' Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net WALL DD: Story Shear due to Wind: V1�,�,= 5899.321h Story Shear due to Seismic: V1E=5919.31b Bidg Width in direction of Load: L�:- 40•ft Distance between shear walis: �:= 40•ft Shear Wall Length: LddW:_ (47)ft Ldds:_{47)ft LddW=47 ft Ldds=47 ft 10•ft Max Opening Height = Oft-Oin, Therefoce�= 1.00 Percent full height sheathing: �/ :- 100 %= 100 ^^R^ 10•ft perAF&PA SDPWS Table 4.3.3.4 Vl`,�, LI VtE L1 .2 0.7p•Lt � 2 Wind Force: vdd:= � Seismic Force: �:_ 1.0 E�a:= LddW Ldds E vdd =62.76ft 1•lb Cd =62.76ft l�lb Edd=44.08ft l�lb Co =44.08ft 1•lb 0 P1-6: 7/16"Sheathing w/ 8d naiis @ 6" O.C. Wind Capacity= 339 p1f Seismic Capacity=242 plf ' Dead Load Resistinq Overturninq: Ldd;- 47•ft Plate Height: MP^t,,:= 8•ft W := 0.6(15•psf)•2•ft•Lad+ 0.6•(10•psf)•Pr•Ldd+ 0.6•(lOpsf)•Oft•Lda DL W Ldd DLRM- 72897 ft•lb Mnr�c� Nv�w' R• 2 Overtuminq Moment: O�TM��;= vdd•Lda•Pt OTMW=23597.28 ft•]b O�TM„�,.= Edd'Ldd'� OTMS= 16574.05 ft•lb Holdown Force& Net Uplift: OTMW OTMS _DLRM -DLRM a C HDFdd�,,:= C L F-IDFdds= o dd dd L HDFddW=-1048.93 lb HDFdds=-1198.361b No Holdown Required Base Plate Nail Spacinq (2005 NDS Tab1e11N) Anchor Bolt Spacinq (2005 NDS Table 11E) 16d Common (0.162"x3.5") Nails 8�1-1/2" Plate Hem-Fir 5/8" Dia. Bolt(6" Embed)8�1-1/2" Plate Hem-Fir Z�:- 122•lb �.= 1.6 A�:= 860•lb �= 1.6 �:= AS•CD ZB = 13761b D' N' o Z C C Z C B =3.11 ft Per Nail A�= B � As=21.93ft Per Bolt '�" vdd p vdd 16d @ 46"o.c. 5/8"A.B. @ 7Z' o.c. 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 13 Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net WALL EE: Story Shear due to Wind: V3W =6513.371b Story Shear due to Seismic: V1E=591931b Bldg Width in direction of Load: L,�:= 47•ft Distance between shear walis: �:- 22•ft L2:= 25ft ShearWall Length: Lee�,,:= (16+ 12)ft Lees:={16+ 12)ft Lee�,=28 ft Lees =28 ft 10•ft Max Opening Height=-0ff-Oin, Therefore C = 1.00 Percent full height sheathing: ��- �100 %= 100 ^"'�^ 10•ft perAF&PA SDPWS Tabie 4.3.3.4 V3�,�, �Ll + L2� V1E �L1 + L2� 0.7p•-- Lt 2 Lt 2 Wind Force: vee:= Seismic Force: �:- 1.0 Eee= Lee�„ Lees E vee= 116.31 ft 1•lb vee = 116.31 ft 1•lb Eee= 73.99 ft 1•lb ee =73.99 ft 1•lb Co Co P1-6: 7/16" Sheathing w/8d' nails @ 6° O.C. Wind Capacity= 339'plf Seismic Capacity= 242 plf Dead Load Resisting Overturninq: Lee:= 12•ft Plate Height: P�:= 8•ft `W�:= 0.6(15•psf)•22.5•ft•Lee+ 0.6•(10•psf)�Pt•L�+ 0.6•(lOpsf)-Oft•L� Lee D�w= WR•2 DLRM= 18036 ft•lb Overtuming Moment: 0��:= vee•Lee•Pt OTMN,= 11165.78ft•lb 0��= Eee'I-ee'� OTMS=7103.17ft•lb Holdown Force& Net Uplift: OTMW OTMS —DLRM —DLRM Co Co �IDFee�,:_ �IDFees:_ Lee I-ee HDFee�„_—572.521b HDFees =—911.071b No Holdown Req'd Base Plate Nail Spacinct (2005 NDS Table11N) Anchor Bolt Spacinq (2005 NDS Table 11E1 16d Common (0.162"x3.5") Nails 8� 1-1/2" Plate Hem-Fir 5/8" Dia. Bolt(6" Embed)8� 1-1/2" Plate Hem-Fir Z�:= 122•lb �= 1.6 A�,:= 860•lb �;= 1.6 Z�,:= ?,S•CD ZB = 13761b B��= CD ZN C� Bp= 1.68 ft Per Nail �- ZB CO As= 11.83 ft Per Bolt vee vee 16d @ 16"o.a 5/8"AB. @ 72" o.c. 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 I � ..�._ t�C� � I S � �ri r�� PaTio <•� Z��c6�' 5G. � 6060 XO 6018 5GD F�0b0 XO 5060 XO dj� //��V t✓ DININCs ROOM 3068 Narmw000 �. CsREA7 ROOM `� LARPET � ` /� V� O \�� i 0 5 0 � �D�R.� W �� a � � � N W �� KIT oW � � �. i � HAAWOOD a w(OPTIONAL! I � � IR -� I /� u �m � �t �� I J 4"BOLLA� I C 5 i SNOP d1�A i ��,0 i � 4•�o�,�. i PANTRY 3468 F � �� I � — I � AV � � � 0 Q �WAY �uZ w PA�5 �� PWDR i3i � �� SLATE TILE I�I D I� \ 7ae8 I�I �m � I I Ai 3 CAR CsARACzE i `� 4"GONG. I �-----------� �----------�� �--- -------� 66 FOYER � � � i � � � HARDWOOD � I I I I I I I I � I I I I Dp^�N�y/vC��lJ�ST i i i i i i i � � I � � � � � � cna�r � i I I � I I I I I I � I I I �05o Fx im5m�c I I I � I I I 9G. SG. I 9080 OHD 9080 I 90b0 ,�m XoX �Y, . � � � 5 � � 4 �� �'S� y , � ��5 ��i �sT�O� �-6x6 S7�tO r L9 ��'r►D�y S��D�yRs STr6t� �� 1"�,41N �LOOR PL,4N l� Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net WALL A: Story Shear due to Wind: V4�,�,=6532.541b Story Shear due to Seismic: VZE=9701.121b Bldg Width in direction of Load: L�:- 47•ft Distance between shear walls: �;_:23•ft Shear Wall Length: LaW:= (6 + 21.83)ft Las<= (6 + 21_83)ft LaW=27.83 ft Las=27.83 ft 10•ft Max Opening Height= Oft-Oin, Therefore C = 1.00 Percent fulf height sheathing: ��_ •100 %= 100 ^"``�^ ' 10•ft perAF&PA;SDPWS Table4.3.3:4 Vaw Ll V2E Lt vaa•LaaK,+ � •.2 E�Laas� 0:7p•Lt -2 Wind Force: va:= Seismic Force: �:- 1.0 Ea= La�,, Las E va= 112.21$ 1•lb va = 112.21 ft 1•lb Ea=94.SSft 1•lb a =94.SSft �•lb Co Co P1-6: 7l16" Sheathing w/8d nails�6" O.C. Wind Capacity= 339 plf Seismic Capacity= 242 plf ' Dead Load Resistinq Overturninq: La;= 6.ft Plate Height: F�t:= 9•ft �W,�:= 0.6(15•psf)•24•ft•La+ 0.6•(10•psf)•2Pt-La+ 0.6•(lOpsf)•9ft•La Dn�i'RNI'= WR•L'a DLRM=6804ft•lb 2 Overtuminq Moment: O�TtiM�:= va•La Pt OT'MW=6059.32 ft•lb ON T�N := Ea La Pt OTMS=5105.71 ft•lb Holdown Force& Net Uplift: OTMW OTMS —DLRM —DLRM Co Co HDFaW:_ + HDFaaN, HDFas:_ + HDFaas La La HDFaW=292.91b HDFas =—134.621b No Holdown Req'd Base Plate Nail Spacinca (2005 NDS Table11N) Anchor Bolt Spacinq (2005 NDS Tabte 11E1 16d Common (0.162"x3.5") Nails 8� 1-1/2" Plate Hem-Fir 5/8" Dia. Bolt(6" Embed)�1-1/2" Plate Hem-Fir Z�:= 122•lb �= 1.6 A�:= 860•Ib �= 1.6 Z�. := AS•CD ZB = 13761b B�.= CD ZN C� Bp= 1.74 ft Per Nail A�= ZB C0 As= 12.26 ft Per Bolt va va 18d @ 1S" o.c. 5/8"'AB. �72" o.c. 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 l6 Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net WALL B: Story Shear due to Wind: V41,�, =6532.541b Story Shear due to Seismic: VZE=9701.121b Bidg Width in direction of Load: L,\,�:= 47•ft Distance between shear walls: L�:-24•ft Shear Wall Length: LbN,:= (2•2J5 + 1333 + 2 + 2.875)ft Lbs:= r2•2.75 95} + 1.33 + 2 + 2.8�5�59511ft L � J JJ LbN,= 11.71ft LbS= 8.53ft 10•ft Max Opening Height`= Oft-Oin, Therefore C�.= 1.00 Percent full height sheathing: °/ :— 100 %= 100 ^"�' 10•ft perAF&PA SDPWS Table 4.3.3.4 V L vbb•LbbW+ VLW•21 Ebb�Lbbs+ 0.7p•iE 2� t Seismic Force: := 1.0 E Wind Force: vb= ,,� b= LbW Lbs E vb=290.41 ft 1•lb C =290.41 ft 1•lb Eb=332.53 ft 1-Ib Co =332.53 ft l�lb 0 Restraint Panel Height = 10ft M'aximum P1-4: 7/16" Sheathing w/8d nails @ 4" O.C. Restraint Panel Width= 1ft-4in Minimum Wind Capacity= 495 plf Seismic Capacity= 353 plf Allowable Shear per Panel = 558 Ib �3.333ft•Eb� Shear per PaneL VZ:= VZ= 554.171b 2 O:K. Dead Load Resistina Overtuminq: Lb:= 2.75•ft Plate Height: P�t:= 9-ft W�:= 0.6(IS•psf)•2•ft•Lb+ 0.6•(10•psf)•2Pt•Lb+ 0.6•(lOpsf)•7ft•Lb D�.= WR,�b DLRM= 635.25ft�1b Overtuminq Moment: O�T�M�:= vb•Lb•Pt OTMW=7187.74ft•]b O�TMM�,:= Eb•Lb•Pt OTMS= 8230.2ft•lb Holdown Force& Net Uplift: OTMW ��S — DLRM —DLRM C HDFbW:= C� L + HDFbbW HDFbs:_ � b + HDFbbs b L HDFbW=3094.651b HDFbs=3142.831b Simpson STHD14RJ/STHD14 Base Plate Nail Spacinq (2005 NDS Table11N) Anchor Bolt Spacina (2005 NDS Table 11E) 16d Common (0.162"x3.5") Nails �1-1/2" Plate Hem-Fir 5/8" Dia. Bolt(6" Embed)&1-1/2" Plate Hem-Fir Z�:= 122•lb �= 1.6 �:= 860•lb �,:= 1.6 Z�:= AS•CD ZB = 13761b CD.ZN.C� ZB�C� Per Bolt B •= B =0.59 ft Per Nail As:= As=4.14 ft "v3L` Eb p � Eb 16d @ 6'• o c 5/8"AB. @ 48" o.c. 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 17 Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net WALL C: Story Shear due to Wind: V2�„�=7667.681b Story Shear due to Seismic: VZE=9701.12ib Bldg Width in direction of Load: L�:- 55•ft Distance between shear walls: �;- 40-ft Shear Wall Length: LcW= (47)ft Lcs:= (47)ft LcW=47 ft Lcs=47 ft 10•ft Max Opening Height= Oft-Oin, Therefore C�.= 1.00 Percent fuil height sheathing: �/ ; 100 %= 100 ^"R` 10•ft � perAF&PA SDPWS Table 4.3.3.4 vco-Lcc�v+ V2W L1 �cc•Lccs+ ;0.7p•V2E L1 Lc 2 Lt 2 Wind Force: ��;_ Seismic Force: �:- 1.0 E�:_ LcW Lcs E vc= 122.08ft 1•lb �� = 122.08ft 1•Ib E�= 96.62ft 1•lb c =96.62ft 1•lb Co Co P1-6: 7/16" Sheathing w/8d nails @ 6" O.C. Wind Capacity= 339 plf Seismic Capacity= 242 plf Dead Load Resisting Overturning: L�;_ 4�•{} Plate Height: �Pt�:= 9-ft W�:= 0.6(15•psf)•2•ft•L�+ 0.6•(10•psf)•2Pt-L�+A,6•(19psf)•lft•L� D�LRN,�1._ WR�LO DLRM= 145794ft•Ib _ 2 Overtuminq Moment: O�,T�Mrt�:= vc•L�Pt OTMW= 51641.18ft•lb �,:= E�L�Pt OTMS=40870.19ft•lb Holdown Force & Net Uplift: OTMW OTMS —DLRM —DLRM HDFcW:= C� + HDFcc�, HDFcs:= C� + HDFccs L� L� HDFcW=—1530.44 Ib HDFcs =—1961.72 Ib Na Holdown Required Base Plate Nail Spacing (2005 NDS Table11N) Anchor Bolt Spacinq (2005 NDS Table 11E) 16d Common (0.162"x3.5") Nails& 1-1I2" Plate Hem-Fir 5/8" Dia. Bolt(6" Embed)& 1-1/2" Plate Hem-Fir Z�:= 122•lb �.= 1.6 �:= 860•lb �= 1.6 Z�,\:= AS•CD ZB = 13761b ��- CD•ZN•Cp Bp= 1.6ft Per Nail A�s,:— ZB CO As= 11.27ft Per Bolt vc vc 16d @ 16��o.�. sis°aB, @ 7z� o:�. 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 �� Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net WALL D: Story Shear due to Wind: Vz�,�,=7667.681b Story Shear due to Seismic: VZE=9701.121b Bldg Width in direction of Load: L�:= 55•ft Distance between shear walls: �:_ 40,ft �:= 15ft Shear Wall Length: LdN,:= (18.5)ft Ld�:= (18.5)ft Ld,�,= 18.5 ft Lds= 18.5 ft 10•ft Max Opening Height = Oft-Oin, Therefore C�.= 1.00 Percent full height sheathing: ��- 100 %= 100 (10•ft perAF&PA SDPWS Table 4.3.3.4 vdd•LddW+ VZw•L1 Eda•Ldds+ 0.7p•VZE•Ll Lt 2 T-c 2 Wind Force: vd:= Ld Seismic Force: �:= 1.0 Ea= � w I' E vd=310.16 ft 1•lb �d =310.16 ft 1•lb Ed=245.47 ft 1•lb � = 245.47 ft 1•Ib Ca Co P1�: 7/16" Sheathing w/8d naiis @ 4" O.C. Wind Capacity= 495'plf Seismic Gapacity= 353 plf Dead Load Resistinq Overtuminq: Ld:= 18.5•ft Plate Height: P�t:= 9•ft W := 0.6(15•psf)•2•ft•Ld+ 0.6•(10•psf)•2Pt•Ld+ 0.6•(lOpsf)-lft•Ld Ld nvJRn D��= WR•— DLRM=22588.5 ft•lb 2 Overtuminca Moment: O�TNM�:= vd•Ld•Pt OTMW=51641.18ft•lb Oti�:= Ed-La•Pt OTMS=40870.19ft•]b Holdown Force& Net Uplift: OTMW OTMS –DLRM –DLRM Co Co �IDFdW:= HDFds:_ La Ld HDFdW= 1570.41 lb HDFds=988.21b Simpson LSTHD8RJ Base Plate Nail Spacinq (2005 NDS Table11N) Anchor Bolt Spacinq (2005 NDS Table 11E) 16d Common (0.162"x3.5") Nails 8� 1-1/2" Plate Hem-Fir 518" Dia. Bolt(6" Embed)&1-1/2" Plate Hem-Fir Z�:= 122�1b �= 1.6 A�:= 860•lb �= 1.6 Z�:= AS•CD ZB = 13761b Z C B�= CD ZN C� Bp=0.63 ft Per Nail A�:= B � As=4.44 ft Per Bolt vd vd 16d @ 6" o.c. 5/8"AB. @ 48" o.c. 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 �� Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Emaii: myengineer@centurytel.net WALL E: Story Shear due to Wind: V4�,=6532.541b Story Shear due to Seismic: V2E=9701.12 ib Bldg Width in direction of Load: L�;— 47•ft Distance between shear walls: �:- 23•ft �:= 24ft Shear Wall Length: LeW:_ (19.33+ 8.5)ft Les;= (19.33 + 8.Sjft LeW=27.83 ft Les=27.83 ft 10•ft Max Opening Height = Oft-Oin, Therefore C = 1.00 Percent full height sheathing: %:— 100 %= 100 ^"'�^ "^"` 10•ft perAF&PA SDPWS Table 4.3.3.4 vee•Lee�,+ V4W �L1 + L2� Eee•Lees-i- 0.7p•V2E �LI �' L2� Lt 2 Lt 2 Wind Force: ve= L Seismic Force: �:— 1.0 Ee'= Le ew s E ve=234.39ft 1•lb Ve =234.39 ft 1-lb Ee= 196.45 ft 1•lb e = 196.45 ft 1•lb Co Co P1-6: 7/16" Sheathing w18d nails @ 6" O.C. Wind Capacity= 339 pif Seismic Capacity= 242 plf Dead Load Resistinq Overtuming: Le;- g.s.ft Plate Height: MPtM= 9•ft �W�:= 0.6(15•psf)•0•ft•Le+ 0.6•(10•psf)•Pt•Le+ 0.6•(lOpsf)•Sft•Le D��= WR,�e DLRM=3034.Sft•lb Overtuming Moment: ��:= ve•Le Pt OTMW= 1�930.51 ft•lb ri�:= Ee Le Pt OTMS= 15028.2�ft•lb Hotdown Force & Net Uplift: OTMW OTMS —DLRM —DLRM Co Co HDFe�,,:_ + HDFee�, HDFes:_ + HDFees Le Le HDFeW= 1179.951b HDFes=499.961b Simpson HDU2 w/ PAB5(6" Embed)Anchor 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 � Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net WALL E (Continued): Dead Load Resistinq Overtuminq: 19.33•ft Plate Height: P�t^:= 9•ft �- W�,:= 0.6(15•psf)•22.5•ft•Le+0.6-(10•psf)-2Pt•Le+ 0.6•(lOpsf)�9ft•Le D��= WR,Le DLRM=68097.51 ft•Ib 2 Overtuminq Moment: O�TM�:= ve•Le Pt OTMN,=40776.09ft•lb O�TM�:= Ee Le Pt OTMS=34176.06 ft•lb Holdown Force& Net Uplift: OTMW OTMS _DLRM —DLRM Co Co ��:= L + HDFeeN, �ID,wF�e�= e + HDFees e L" HDFeW=—1985.941b HDFes=—2665.931b No Holdown Required Base Plate Nail Sqacinq (2005 NDS Tab1e11N) Anchor Bolt Spacinq (2005 NDS Table 11E) 16d Common (0.162"x3.5") Nails 8�1-1/2" Plate Hem-Fir 5/8" Dia. Bolt(6" Embed)8�1-112" Plate Hem-Fir Z�,:= 122•Ib �= 1.6 �A�,:= 860�1b �= 1.6 Z�:= AS•CD ZB = 13761b CD•ZN•Co ZB'Co 8�.- Bp=0.83 ft Per Nail A�:= As= 5.87 ft Per Bolt ve ve 16d @ 8" o.c. 5/8"AB. @ 66" o.c. 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 �) Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net WALL F: Story Shear due to Wind: Vz�,�,=7667.681b Story Shear due to Seismic: V2E=9701.121b Bldg Width in direction of Load: L�:- 55•ft Distance between shear walls: I�,y,:- 15-ft Shear Wall Length: LfW:_ (37)ft Lfs:_ (37)ft LfW=37ft Lfs=37ft 10•ft Max Opening Height= Oft-Oin, Therefore C = 1.00 Percent full height sheathing: %:- 100 %= 100 ^"�^ """ 10-ft perAF&PA SDPWS Table 4.3.3.4 VzW Ll 0.7p•v2E.Ll 2 Wind Force: vf:= Lt 2 Seismic Force: �:- 1.0 Ef:= � LfW 'Lfs E vf =28.26 ft 1•lb �f =28.26 ft 1•Ib Ef=25.03 ft I•Ib f =25.03 ft 1•lb Co Co P1-6: 7/16"Sheathing w/8d nai,ls @ 6" O.C. Wind Capacity= 339 plf Seismic Capacity='242 plf Dead Load Resistinc� Overturninq: Lf:= 37•ft Plate Height: P�t:= 10•ft W := 0.6(15•psf)•2•ft•L + 0.6•(10•psf)•2Pt•Lf+ 0.6•(lOpsf)•lft•Lf L nnn,�n f D�w= WR•f DLRM=98568 ft•lb 2 Overtuminq Moment: O�TM,M�,�:= vf•L�-Pt OTMW= 10455.93 ft•Ib N�:= Ef•Lf•Pt OTMS=9260.16 ft•lb Holdown Force& Net Uplift: OTMW OTMS -DLRM -DLRM HDFfW:= C� HDFfs:= C� Lf Lf HDFfW=-2381.41 16 HDFfs=-2413.731b No Holdown Required Base Plate Nail Spacinct (2005 NDS Tab1e11N) Anchor Bolt Spacinq (2005 NDS Table 11E) 16d Common {0.162"x3.5") Nails 8� 1-1/2" Plate Hem-Fir 5/8" Dia. Bolt(6" Embed)� 1-112" Plate Hem-Fir Z�:= 122•lb �= 1.6 A�,:= 860•lb �= 1.6 Z�:= AS•CD ZB = 13761b B�= CD ZN C� Bp=6.91 ft Per Nail A�:= ZB C� As=48.69ft Per Bolt vf vf 16d @ 16" o.c. 5/8"A.B. @ 72" o.c. 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 �Z Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net Diapragm Shear Check: Assume 2x HF Roof Trusses, 7/16" Sheathing w/ 8d (0.131" x 2.5") nails, 6" o.c Edge nailing Unbiocked Diapraghm Case 1 Capacity= 214 plf Unblocked Diapraghm Case 2-6 Capacity= 158 plf Wa II Li nes AA: Wa II Li nes D D: L L�s 1 LddW _ 1 Ldds 1 vaa• � =38.11 ft 1•ib E�— =24.24 ft •lb vdd� 47� =62.'76 ft •lb Edd- 47� =44.08 ft •lb 40ft 40ft Wall �nes BB: Wall Lines EE: Le Le vbb•Lbb�, _4331$ 1•lb Ebb•Lbbs _2�SSft l�lb vee• 40� = 81.42ft 1•lb Eee•40ft = S1J9ft 1•Ib 40ft 40ft Wall Lines CC: Wall �nes F: vcc• 47� =62.76 ft I•lb E��• 47� -44.08 ft 1�lb �f�45ft 23.24 ft 1•Ib Ef• Sf ft =20.58 ft 1•lb Wa 11 Li nes A: �va•LaW-vaa•Laa�,� _39.96 ft 1•lb Ea'Las-E�Laas _41.54 ft 1•lb (40ft) 40ft Wa I I Li nes B: �vb•LbW-vbb•LbbW� 1 Eb•Lbs-Ebb•Lbbs - 1 =30.33ft •lb SSft =31.52ft •Ib (55ft) Wall Lines C: �vc•LcW-vcc•Lcc,�,� _ 1 E�Lcs-E��•Lccs - 1 - 59.32ft •lb 47ft = 52.54ft -Ib (47ft) Wall Lines D: �vd•LdN,-vdd•LddW� I Ed•Lds -Edd•Ldds 1 =61.96 ft �lb 45ft = 54.88 ft •lb (45ft) Wall Line E: �ve•LeW-vee•Lee,�,� _ 1 Ee Les -Eee•Lees - 1 =59.39ft •Ib = 61.73ft •Ib (55ft) SSft 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 23 ._0. S%x>�- ��-/� � — — — - — — � -- — -- -- e � t� �o��' ..m. 6x g �� � - - -- ` � � � � R GN T 5 m 4°OG. PiFR ATHE L T SES a 4"O.G T ES e Z'OL. � PER .TYP R � � � �� d..5 R SPE .T7P. �— -- — -- -- — — — -- -- — — � vaJLT INE \ / \/ /\ / \ � � _ N � I � I � g � W � i Q � � R�� � � 0 � W m _ � � o ,� �, �� ,� �, �� �, ,� �, �� �, � �� � � � i 9 �� �� �i �� ,. �� �i �� �� �i �`�`a -c�i i i i w �m:iz �I � �:�za�{ �im:i7�� ��im:is� li � O R NG I' � I� v__,. R ING I' i� �� I � �� I � ' �I I� I� �I I� �� II �� �� �I I� � GIRDER TRI155 I � j I GI�ER Po155 �� � jL .y � GABL END T 5 GABLE END TFU55 0 I 6' �y 45 PER MKs.�S ECS.TYP.O.G. p-6• �,} Y _� -- �u =� -- — -- � — .� � �__'____=- =� i i —�-__=____-- i i i i i i i i i i i i � 2XP.T.LEDGER ����� ��IO SERIES 6XI0 bXlO � ib^oc. I11 I II U III � II 11 I 11 I� I I ��LL Il�h TJI 710 SER1E5 II�� r FLR J5T si6"o.c. �� �•/ �x �IIN �I� � III I II d D6L JOIST � 1� � � �I� xb PoSr � � � � ___�i� DBL JOiST I � � I � �I�I� � � o � � ,�� � � � �J , � ia i '�. i� i � ii� i r ���� sinpc�p�yNFwsssonm 1 / � \ � FACE HCUTN N?NGER 1 I � � 4X10 78 _ _ _ — _ — _ — _ •�3 - - - - �Z- - - - - I � � � P�� � N J i `;�, � � — — � � — — i � i , — — — _ _ _ — _ _ __--------- ` Q 4)IX6 T �/'L�7/z (jf� — — — — �i� 4'GANiILEVE 111b T�110 SERIES ��/f�'/-/I/LS L FLR J5T Ib°oc. n � n n S%z xl Z G� yxl� Z� n,_m. 23'•0' ��'-D" u°'•0� �,_b. �4 JZ< 4 4 52 $ .t� ro���Ar� � 14"X'1"SCREENED SLND VI�I lilw✓� � � � Rln J015T VENiS 4"CANC.SLAB ON �9��Q'� 4"COMP.FILL TYP. 3 Z S2 U — — — — — — — — — — — — — � �— — — — — — — — � � r— — — — — — - - — � I � I I ' I � I I N I I I I � i i �� I I i � I. Q z I i I I -� -- -�� ---- -��- - � _ - _ _ � � 74 24 74 24 ]4 I I I �" b'•�' �6'-mY 6'-�' 6'-0' 6'-�' 6'-0' _, I I I � � : �.cA ����+� 51 I I I i �� VFMW6 MI BL q L I I I I 2 VAPOR BARRIER TYP. I I I I _ _ _ J I � � 4x�� �' � <x�m � �� - - - - - - - - - I I _� __a – as� IYa 5 0 Y4 24 5 0" 3-6'I � - - � - - - — I I � I � 5 � I I ^ ,��b'� � eo�vEwi Fosr I � + 2 � I � � ( I'-4'FfG.� I I � I J -�� I I I I `a � I r— - - B��JG aT I � � I ��CN. I I 5� I � ° � Z � /\ CRAW SPACE I I I � acces i 3 8�_�. ���_4. a I I � I N ALI��W,P05T I I Q I I I axim `5 �_ —� —.��a= SL/�B ON C�RADE � � I I I I 4"CONC.SLAB ON I 24 2 44 l� �24 �6 SLOCPE 3%b�"/T TOWARD DOORS � I I �'j2 24 d I I I -p" 5'-6' 2' ' I T0'_9" � � `J�ln M I z.� I I � I I � � � I I I � II I I r - - - - -� I I I I I I I �, e � L � - - - - - - - — � � CONT.FOOTING — — — J— — — — — _ — I 0 h _ _ — — — _ _ — — — _ — — — — I �— — — SLAB ON � � � - - - - - - - Q �C��p� � a �I 4"Cq'IP.FILL TYP. -b � I Z � � � j4 COt1C.EDGE — — — Z4 CONC.EDGE 4 4 4 4 52 2 12'•I" b'-10" im 9'-3" 9° 9'-3' 3'-3" 9'-3' 7'-10IR' 13•�m• y,-b• 35�-2• e��.0. Z� Myers Engineering LLC 3206 SOth St Ct NW, Ste 210-B MYERS ENGINEEKING Gig Haxbor, WA 98335 (253) 858-3248 Fax (253) 858-3249 myengineer@centurytel.net _ _.._ .. ._. _ �°�.'���.a�� ��� �-._��'.__�r_tl . ��� _.�-1T4-�__.�. __�____�_..�...___� ___�... ����___.�.. � __� � -x v w .,_ ....._►�J�?��_x��_ a_.�._ z.. _. __.�o p... �__....�._._._i.._._ � �.�� _ ' �. __ " _ . . � �. �� � , � � �` �' T' w „ � .� � � _..% �.. �. �. �_ �..._._�_. �,_. � ,._._.. ..;_._ � M.� � __�__.._�,. .._.._.._+_,..�.__�-__��...__�__,..�.____�...,�.�..._�.__. ..._.___� . .�.....__�,�..� .�.�� �6;�e'C,� � �. � � � � � � ' # " � � ° � � � e � $ � � � � a f ,....v w._.. .�_ � ...�„ . ,_,u, ._._._� .., _�...._.__� �._.__�_ _ _.. �,�_.... a � _.�. �w..._..�.�_.�.µ.,� _�..� �..._,,,..�.. �,�_.�..��g .,�.�m..�..�_.�....._� � ���,,�..���_ " � � ' d +� ...� � .�.,�.,... r f � .,�.. .»�.1,,....,... ..�. k a��y .m.,�� .....�w,,.....,.n. ,..-L.....,...,T ,,.., ) r 9 i 4 � .�Y.....� M /�n�,��.e-�.� ...r.,_...:�.__�.� _�.,,,�..w.�, ��,�,_.....,...�,......._� ,...� .�.,.a...,. � R _._�...,._�,�.„...f.._ t ��_�_�"_,.. w,...... ..�..,.,......�____ " , � ,���T'� �9l � 1, �___� �t i" � r � � r � g` � .�__._�� ,._.g._.__,� , p ���� �--'— �, o < � ; �k 1 ' k r „ � y � � � � g r '.___�Ga�.,._ .�p.�. , .. ..� �..._..t �__. � _.�.m__., ._ _. , _L �_...� _�.___ .. __v�., _. _ � � . � _ �_._ — � .�`. ., , � _..__ ..._. .�,....� ._ __ ; � ; � � � � � � ._ � .� � � �� , , � � � < _ _ , _._„_.. .�._._ ..�, .�, ,...__^y�..�.,_ �_..._ � � .__... ' ._..�.__,_�,_.��_._..�, _.�___ �_._.__�_.__..` _ ._�__� —___._.._..._.�,�...�._.m_�.....�__-�-_._ �_ __ _._.�� _.., �M�� ���' �:._ .._� � � ( .� y , �,_...�� .; ..�,._..... � � � � M W -a-- . �M � ,,,q, ,� .�.,,. .�, "� .� .�,.. � , ,�...,,,._,..�._,, L.,.,..._.._.g.. ^ w M1 � 9 Q g y r q ti � ti � d i 9 � � � i � 4 q' t . � � y,...._ .._ _.,:,...� .� �..� n_.�_�...._._,@_...,.,,.�.�_w. % , � .�",,.. .��,���.""��`` , �.� .�w4r.�._.w.,A � . � . � '�`" 4 � A � � 4 ' J/ .,,,. _, ,� � _ Z ,__.--��s.__,_ �r-�� _��_._.,.�„_ �....,._4...__,�_,T�_ �_,�,__,_,...,.� _. �,. � � _ ^_. �,.,_,M,., <, �✓" � ��i... ���.,...._t ��p �� �•_~_ .�� � � .�. � � g ._�,.....M.�,,....,. � 9 ,,.. 9 ... ; p " n e ,.V; ry � � � # p � �' � � � � E � d N ..�....w -� � �� m�� _... �6�..5_.� .�.__ � _ _. � ... � _ ._ , _._ _ _.. __� _,,. , � 5 � � �� r �� e �' � � � � a � _�._.� �. __�,.� _. " � y ' � � � � �� , , � ; __.._,., ,.. ,.y......__�- ,.W.�..._ __,_.. <,_.,._ , ..��-. ....,._.' .. __. .. . __ 4 y k � „ � � .� �... ,�, �_ .._._� �, _ � , ._._ �„�� � � ? �' ��, q____._�, ..� ���._� � � � F � , � , k � " M r � � � _�__._. .�., � � � � � �, ., .�_ s, � �, � � �. � �. i � � ,�;�,p..,.,.. ,.,..�,._V .. p,.��. —�< ... �, ..,. ....._%,�_. .;�...,,.......��., ...�........,...� � .�......... .......� ..,.,,�,_.�..».. ,_....,��,�......�,.. R _ ,.. ....... „r N �..._ � � �� � �. � _. ! � _�� _.., _.�. _�. .. .��, ..__._ _�.__�.___�._.._�.__.�. ,..�._._._� _..�...... �. .�_..__�__�___�_ �a z �._ � ; U'�.....�' ��,�.. � � �.. �w_.... ` � ` �� �._$...... �.. .._� '____ . � ��z��_ . " � .� � �.__�. '_..�.._.� + y ¢ � �._ ` ,��- � � _ �.. �__�- � m_ 2 � � �!. � A �..._ . ._ . ._ ._ .___, �_ m.._ _; {1 � � ? � 5 � � � � � % —� � � .� �. _ � , � r ti F . . ._.� �.__ �.._.� ._W_. ..m.. � _ �. ... _.. A 6 h 8 N � .. w. _...� ' ��� , , r_.__..�.....,, ,,,.., � ,„,Y .�, .._..�.,.,...._.y.,..,_....�,_.,,_ �, �..... � ..„.�.,, ,.._ ..... ...�. � ..o......� »_. � �. ..l e..,. ,ro � , .._ ,.�.. .,., � � �.... 4 ( � g � � $,._..� 7 s t ; _ y �._._ g �.. ._�._......�_._,_! _._� �..._.�.�__�_.�_.,.,° � �. �...,_.�__�_.. __.,� ._�.�_ . ___.�.__.� � � .._�_ �. , ` 9.____k � � . , � � � �. . �. q,, � q � �.._ � _� ` 1 "¢` �-;� -�____.__�.__.�_.. _.� � r� M,..,.. .� y__��__-�._.� „� . ...�.., .� ,.. . ..� . � � � k � " �____,.�,._.,.,'�.._,.w.. ..,_ " ...__°..... �,w_,_.._ �,_"'_.._i i,....., � a-- -'� � -�4 �f ^ � { � � ��_,. _Q'..�__,_..$-._!'.� .�._....,_�. °�_�_._� ___¢. _, �_ .�.._.... .. � h a _ .,.,_ ... ,� , ... __ p _�_._ ' F S� ��.� ` d � ___�.,.�_� ti,__ � �...._.� �___�_.r.� ._. � ` __.'�---� � g � �.._�.�J.�_�._� _ �. �. __.�,..,...� ._ �. -.�-._ ..�__,_�._.__ __�_,___� �. ,�__.�.�___��___ __..._ g __.._..; .�._,..__� ; ' � � � g � � � � ; 3 � 4 , , � �� " , i _..� _ , .� .._..___. _.. __ �.__ _...�......_ ._.... .�.___ 4 � �_._._m�_.�__ � �.�0 ���_�� �_. � � � � q���.._. .._� �.__._�._ . �____�-.___ _.__ ..._. v�. _� .� , .�. ; ? � � � � ���d m �- � — , ! � � ..�..._ � u q;''' .-{{ �...._.��.__�.�. # .� ��,_.�_ � a . " ... { b � �_...._ g % y � Y � ... X � =.,..k �A� I .,... .... mM � ....t.d.«, «. � � } ���� 4 �S --�. a- �-- w ! � e ....,...` k N k � ( .,m� +�..»..,..., ...»..y. �...�......� ..... . � � �: ` �+� �� �S� -.�t���. . � Y_ µ _�._ � .� � .. �w 6 �% M6���� te D� S l� � � � � �� .�.w _ � . i � ..� 6..._.. ._ , ° , _�._� --� --� � __�—. . _...�___ _�... ._� _�__ � � , , ._ _ ___ . .. _µ___ � � �/ � �� � � � + . �.___ d —�. x „....__ � �_...._ �_.___ ��...___ _... � � � � � p� � � � �y � _.._. � � _ ._._. �,_�.�_��._,.. � ��' �� �. �..__ .� � � �. , � , .�. �.�_. � � � � 9 � .:__!^� C�.� � � .a _....., ti�__�..' ._...�_�.h; �... �,._._.�_ _ .�_.,�__. _._� ._.� _._�____�._ � � � ' " .�._.�._ _ � .�M-s..�.�, � �� �., ,_...mm �_.. ,� .. .._�..__�..������ � .._„ � � � ; � ` ^ � t ° b ; ' � � � �,_ i � w a � . � �. � � �_ ,� __� 4 � �. �. �..,.._� � �. � � � � ,. � # � �__ � �. .. � � tl � _.�. .. ..,.... 9� ...�_ �____ �__.._�.�..�.__.._�..w_�..._-� ____�,.._ �_,._.�.. � __._�.__�.._.__�, .._p �._.__.�M._� �._ ..�..�..-.�-_ .._�. �__.....� ____; , � � , �� � 4 � �.__._ �.,_._. __, 1_._..._� �_ ..___," � " � � �._�� � __; _ i s r k � � 3 � � 9 & h 8 _.. _" ,. ti t � .�. � � �. .� �. s ., r � , � � .. � � � ,a � i v � � z 9 __......._,. __._Z .,.._, i �,_,_ �._._.x_. ._..�_ k y __.�,u,.�r�,�w,��__�_,_ �..__.��,_, � � � � __.� --{-,,___� .____�__ � . _ �� __x_ _s_._,.y , . M t � , �,, � " ..�..._ .,_ .�_..,.�` ..�__.__,�__.._ ,...�..", .,_,�,_,__ �_,. � _.,�0,.,.. . .' . �__.. �_.. � � _._..�. � z.....�.�, .�...__..W ,� � , �. ,�,_. � .. 9 � �- � �-� � � � �. � q i ..3.._�. .W4.. F � ___�.....�.,_.... ._ ,�....,,.,.,�...w �. ,�_......^��,......��....^w_ � �_,.... ..,.� �___..�. � :._..�.� �_.,,..,.„ ,� x k __�_ � ...�. � � � .� _�. ._._ � � � . n � , , � � u e 4 � �..�. �. ..�... � � � � � , .�.. �. � � � % � � ���— � �` � � � , �. a � � � o � � ...._.__.�.. ..,,_.__:__._r,____.S,_.._,.9 ..,.._.._ .5,,....,,.., _._,_d,__�...a._._,_.Y�_�._�..�.....,_..d_..,..,.�,,.__,_�._.._�"...._,__._ .__�,___.,.,:,� __k__,_.__.�.,____R,___k,....:..._..__._..�__"_.__„�.._..._.._4 ._,___..._,_... ....,�. FOR I S3 � DATE g�B"�— JOB �'L7 BY �� Myers Engineering LLC 3206 SOth St Ct NW, Ste 210-B MYERS ENGINEERING Gig Harbor, WA 98335 (253) 858-3248 Fax (253) 858-3249 myengineer@centurytel.net � ;._ 6 /t� R �. !� .. �5 s-� , ..; c. ,. � _ �._ __...,_�.._�,. .,.. _.;.__ _�-� .q _._... _._ _ . _ � �,,, � 5 � � . _., V � r"�v�.�_ �__._��� .�,_ -�_�r__� ___ _.M�___ �-.._� _ _ _�__.��.___.�__ � ' O �� -�-° � � � � --__�.__��.. �� � s , _ , ,....... . .�1y �€._������.w .�� .�_.y i o� --�.'�._._.�........._...__ __. __w a____�__-_,�.-__� _.,.�.�.�..,.___:�-�-- �.. � �.....�__ __� _ � _�.__. i,,� � ._�oa 1�' 2 s F ,� 7� 1-� � R N � . �_ _._ ._..._ __ __ ._. . _�,..�_.�. _ _ .. ._ _ _,. ... ._g , �.,_ ..�.. e _S —�. � �� } � � -�. ,�_ _� __..�.._. .� _.�_.� _�K--..�.,��.__.�...��,� ; _�.._.__w� . � �.._ �...�_ .W��. � y ._.. . _. _. . .�... _�. �.__ _.. __�_ _.__ .____ __ � _ �_. � ._.._: � _._. ._� �...._ �.�.. � �. �_.._.� ..,�..�..,,��.v� �.. ..�� _ �._,._. ��_��.��. � . �.._ g _ �_ _..� � �. ,.. _�. .._�...�.�_� ._ �.�.� � ' W , � � � � ��0� d � � $ � � �,.. , ` < �� j � � .�_.,__�_ _. _.,..__%�_.. ._...,..,. __ �_._ .�....i...�..... .;.___m .._._�. .�__.,_� � a ._.,. _....__, _.._._. � _ . ._ � � �+. ,,.,3., .__. � r._.,_ I �� g.�G_. � ��.. —�,J �__ �tti � �, � � � � �,.,�..... t , �.�,. � � s §- �. .��►- .._..�._�, .,_ . _ ._..._..__ _. ___�_ �_._.. __ __ __. ... ._.._�_ " ' - � ur — y�D � �'� � 3� I� � � � � � � a � � � "� ��, � � _.. ,,.�, � _L;_.,.�Tx _,�. _�.,,�. .�„ .._�, _�� ..�,,..�.�� .. �. ,_,., _ _,_ „.,�...._ _.�_.,, _ ..__�,..�..�....1 � .�} .._,�.___j q . �,, � ..._ . i � ,... .. ...._ �...,.ap._,. �_, ,...._ k___,._� .W_..�..._, " �_�__.._,_ .,_,��,_. ._ _�._..,_,�. . ' ... _�.. .., _,._x...._ _ .�.f,.� _�_.� �. � _�_ g� � _�_ � A � � � z4 -� , ��� � ` ' m.�..�. .y __.�_..__ � _.___�.__ �_..___.�_ . � __...� ._,��_..__.�.__. .__._ __ _.. ___�. _ ___.�.��.�._�_�,....__;�.___.� .... x a .._J 1 � � ^. -��.._�.�,_. % , � � z u I � 1 � i S �. x ...�_ 9� � � � � � � � � �� A __. _,.._� < _._. 8 _�_.r .� _s . �. . �_.._ __.�_. �...� � ._�__�__. � _.. _ _ ____� _.� � --" q� � �— , 1� 5� d�� —� � p,r�l� w �____' � � �___,�. .� � � ._.. � _..._ .__. _ _ _ . �. q ; , _._ _��___ .._ � _�.. � .�, . .� ..�. � /� � � � �. f �___.�__. � ��..�._.�.,�...� �.....__, �_-_ _ __, °' ,�,O ST � � �Z�-� ' � � � � � I � � . , _ __. .,..�_ _...._��_ ..___ �___ .�.� y � _.z._ _.. �- _. _. � ._._.�_. .,�m_.�.�____ .� . . �zo� -� � z � � � � � � �__ � < � r �� .. �;u -�1�� > _ �_� _....� 1 I , � .�.....__�_ �__-__�_. _____�---___ � � _� , � � � . �...�.. �_____� � . w�� � ,�� ; ._�"Z. ... �� M ' � � i„�.� � x �.,..�_' ��� �.. _....� _.... .. . _,�..,.."^ �. �'..�l,� �.,�,� "C ., �" .. _ �„� �, �. .,. .. ._ _,_ _,. ���v, � _ � o � �_�_ �. , � _a . .�... M�_ _�_ w� �����_���. � ; � � t �y ...,_a__ �. .___�.�.�_._...�.__-.a._.._�_ __�'__..�_.._.z . /t/�') ` � � w ����� � �✓�.�.,.y. �..,.,...�.�,�.,...,.�... � rr „�. �. .W,� R � � �, g ry �' � �� � y Y w � 1 X ,. .. �, �,._...__ .,.,.'�.. -L.,.M..m .....�,...�....,.�.. �. ,,..:� {.�,. . ,,�.,� a.�,,.�._., .t _ � � . _..� �.� __.� �_.�,�..��. � -�___�_._.�_a � a ��� , � �� �....�. _..g �. ..� r �..___� � � � � � p � ; .... ,... , ^ ..___ _..� . (�._�. ..� � _ . g .._ i � �.._.._,.� ; . � � � k � ,� � � � � � �—�— �-•--�—�- --� ��-� � t__ .__. .,.� .._ , � .,..4 �..,_ . �._..._�,., _�„ _.,_� . "r,.,._.._.� .� . �,.,._ _.,.,."�.�.____�___� ,-- � � �. _ � � . � ,,. � -�.---_ 4 0 o w 15 S-� `��� r -� � .. �6f.�. �i �� , ��_ ._�..�_-� , u � , . .. �_...�.� ,�� ....�.�..1'� �_, .._._..�_._ ___, �_. _,P,___�- �`�_ . _ �..__._�u__... �_ �..�. � � � __ �.�-�'_����+.._ 1��_ �.� ...� ' � _w_` � .�__ ° . �. � � � � " 1 ,5 a g/°� � `� .. . /' , �.w,�h �.W_,,_.y �._�,__;_ �_..,..,. t_._..._� �_._ �... ��..,..�rt__:�._��Jd._� ,. ..._ ��' � 5...� � �_'_�-��� _ � � .. � - _ __ _ _. i � � _ „� 6 p � ��__ �..__�. _�___ �.__s..�.� p . _,�� �.. _ _,_�__ ._.�.._.__ ... � 'j�.—....� x i a s i � � _�_. .�.,.... y � ��r , � _....._ ,_ .. ,,,. . -;,.,_, � ,...y,. .�.._.___�_ �_,..__� __a___..� �_,,.. . �_�_____._,.� _,. � Y �,...�...,.�„...,._ �, . � ..,�,..__..,.¢8.,....__yP,.._.. .9...._,....�,. ,.�_.._.,.A... ..� � .�9. ,,�(......_,.,�_..._ r^ ._..�.,...,.._�_.,_._..�....,� .,p. .,.,,�. ,�,. ...� ..,..,_. ,... 4 Y.. � y y,�...�.....�� { i y � � 4, p ..,...� y.... ,..�-4� �.Y.,� p ,.�.�, � 1 � � � M � V y � !` ^ , ^ � � , � � � p � A ' '" � � __� � i Y ° k ° � � ..,.��. i ��� _W��%,n��-�'�s�.µ.��,,+I�� # 6'�� .,. ���'y��= _� �..��=;. �._ ._ ,�.m�._� _...�..._,,...�_. _ .. _.�.�.._ ._._.,� ._ .m..� 1 ����-� �.__ r ......� ....,.,..... , , A _. � ., _r ,. ..., ; _ _. � _.� _ . /�3-_� .__T _..�����,_.�_ �„__,.�.,_ _�_.___..�, _._�__�__ �__._�_.,__.___ �.._. .__�_..._� _..� � "+ y A _.__ . , � w �!o��f � _ � 7 �s W � �_� . d � �� , �t` � � /�`.,,,__��__ _� � � � .�_.._�.�_�._...� _._...�_.__�..��_. ��_.__a_ k , __. �J�� .����s Y. ��-�6 � -_�._��� -� � _ .. _. l � e � � � .. � .__. � _.� __ � ., _. , � � � � � ��� �� � � � ��� ' � �� , , _. . �. . .w,.. y ,., p ...�_ ... � _... _ . ,..�._ �.. . ..�._...�_ ,..w ... �.._ ,� � .. . _�....._..� . _� , r � � � .� � � � � � � m _� �. ,�i� ; � + ; , s "r w @ a � � � ; �._ ` � � ti.__ .�.__.. .�___�__� � " � � ..d. � ,. � ,. -� a �- -� '� ; a k � � _.,___�.,��. .�._._._.� � _ �_.,_.,.�,.._ � � � � 3 � � t + w � , _ � . . , w . .�.....�, _.�._.., �. .. .�_._...� �_ .%..,,..,,.�_.,_�.... � � � . ._S._._,. S_ a� �q , �., � � �. � � �, ., � . _. _,._ �. � �,...,��. �_ _ ..�..,__�� __.1 � #—, �.�_.._...__ ,.,_,_.. � _a_._.._ , , , � e � � �_._.__� � .� ...�._. � ,._..,� �___.;_.....�.�.__� ._�_ � � " _�_� } rv t 4 , � � ..�.� ._..�_ .� . 1 3 ' � � .' ,� .._�.,�_ �_..,,_q�_ ��._....�., _i�__..m.�....�__,_y'._.__,. _.._ ._... __�_.� ___� ��___._r,_._�-�_-___ _,_' ___ S,,, ¢,., � % �, , � � � 4 � ^ � y � � � � � � _� 1 r r � ,_ ..., � � � � € i 9 � , ._.�_ _Y.... .��_..,...� .��.,�..,..,� „��:�.._..��_..,_.�„_..., ,.._�_... .��..,.__�„_ 7�,�.,,,_,.�. ..._�y .x...�._..._.�w...�_,.__�. _.g._.. ._�__.....�_.,.._ry _.k-___ ' r � ! � { �. �, � �, � � u � q �� � p � � � � . . k � . .,. ( ,x,...__..,..n .,�.( � ................. .......... . ..��.......,..,,,,..,�� .., _a...,,,.__�,._�,.,..,.,l...,,._..,_M,........a...._,......,,...,�wX,...,.., „...,....�...,,», �.,._,..,...',.... ,.?..,.,..._�_.,...mi.,._.,_.�,.....,..w..,..._ .w._..�....,._,..,_ ....._h�..,._,�,.,._�.�..,.. .&............�F FOR 3 I r73 � DATE ������" JOB Z� BY �� Myers Engineering LLC 3206 SOth St Ct NW, Ste 210-B Gig Harbor, WA 98335 MYERS ENGINEERING (253) 858-3248 Fax (253) 858-3249 myengineer@centurytel.�t a ��_.�� _' _�_ _�►�,.� H�1....�__�l�- _.�µ__� � �_ __�- X .�� � __ .� ��`„�. _-� _ �� .` . � ' l. , � �_ _ � �. _____ _.._ ._ �_� _ . .� � � Z �_ �_ �. .__�._:_ � � r _ _ _ ...���:=�v_ .�.5...�.__.�_.��.� .-_.�Y_ ._l� .._..�.._. _�_.. .. _._�..�._�..�.._..�. .._..�__._� ..��t..__...... . _.�._.�.._. � . .;._. , ; ; y t � � � � � � � x � � � �� k ., .,._,,, !._._ �.,_ �.,._.� u_ .�:..... �.._.....�..____ ___��/.�_,.._� �.___�.� _�__,�. __ . ._,� _ __� __�,,_ _,�._ .�, ._..� . �.,_.._. _�_. _N._ � , . � a � d / o Y � P A J� y S �(j7� j{ t � � V /./ ��......... A, If/�/'L�. " �..._ . ..�„� , r.�,,.�..._.., ..#.t..,,.,...�,....n_�4-_...,. .&...._._.... .�,..___ .,_.....,.6 ..._d & , � F RIS � ' �._ �5.�11 � �" _, � _��,w..,� � � ._ �. __��s���.� „�s,� � _ ' � ; p , ._t�1.�;�_ �.�Q'���._ _�____ __. .....,�_.,_ ..__ ,_ _ .. __ _..�.._.. ._ ��_..,. __. � ,._,.�__ ,�_... . . � r ���.� m� W�_ �__ �.. _-�._ __� ���._.�. �. y _.� ^� . . ` � a � d yq . ......,, g .,�..,.,.,. ..w......._,.�.�_ _,� ,...�,._,.. ..,___,_� ....° .. .__..,._� �._, ,..�__ _...._.i.._ ....,.� ___ � .... , _ _ ...,._...A� ,.,� _.. .._, , �_...__�., y . ..�.. _, � .�._ " �.. .�.__ �._._ O �.. _.�._� �__ ' � � �. __, ._�.. .., � _.. _ �..�._... �_.�..�?��,�___�� �.�`��_ . . . �!� ,.�� ..�. .__ __�.._�w� _..�.�.._._�_... . _�._ _. ' . _, .__.__ ___. .. .. � __ _._ �' � � � � � � -�- � � l � � � �� � � � � , .,..... .i;.w � _,.r_�... �._.._.�___�._.....� �_.... ,.__.� _. ....._. _,�w._._�._ ._�_..,_.w ._�._.._� . ,m._� �.h.m �m.._._ . �.___�.pA ;._ �q� q �_..+� C X 6 � �..�.,..v� ... �.__��.ylr.� . ..,�..,..,_.,�.._,.., .,... �,...,_�,.m,.__,.�. � � 4 � R •� �.... fl Ay, ...,.,...,.. 1` . .p,,..._. .�.. »,...,1-.w..._� .."� 7..J� ,.M„» ,.._..w_. ..._..� � ���,....m� ..,1,._.. ,,,..._._�.�, �.'.�. ..._,� ._�_��..w,.. F�r„7-�, Z 3 � s � � f ' " ...�.. . _ �._... � _.. � z B�,Sb � �......�,�.-M d_ .. ;m z�'"__...,��_ _._ ._. _�__�"_.p --�.___�'_.,. � _�� _� _�.... , ., .��n. .,..� .., � �6� 0�_ b � k _ . _N ____. _, _.___.�... � � `._�.� % sy � .�"'����= o � _. _._. ___ _�;_ .. � _._� � �� ` �. ._� _ ___ ._ .M_�.�_._ ° .__ ..__ _ _ __ __ M__.__ _,._ __ _' q �_ o � � + '� � ,� ..�" �.=. "�.�°.__ .y�.�Z�..m.. m= `�o�w..F..°_._.�.�_.._�..�._�m_.__.�_., _..�..�._..��.�_.:�_...�_�_� �._....�.� __....__�_.._ ��' __'' ' �� :�s� �- `'�'�� � r�� � � � � � --� �7p � �� �q � � � ; . .. _ .... i..,... 7.�.__�... .......� '.�r.. , ..,,.� .L. � ,Y,.....,....�,..... ..._...,,�.__.......� .�,.�..,.....�,...,,.,y_.........°_ � ,,...5..�......,.� . �. � .�`...,....... ", � � 4 .....,.� .__.�.. ,.« .,....,. r �_____v ... � ....�, . ' � = 1A � Zr � ��'� z� ImO��F'� '-� 2 6. 9� � �.�_ "� w`° z . _. ' �. � _. � .. �,�z _,-_ _.�,�_..�� .._.. __.;_.��_. ____. _��w..�- .___�.__�._�..�___ �_.� , .... ��r }�L� o..._Wi .. _, ' � � " �.� � � 3 �� � � � � � � � � # ` ° � 4 � � � _ .__.. _ ____ _ _. � __.__ __ ___ � � .__;__ .... � _, � y/,�� -�..?�a��...�.s � � zt�rv.. . ��.... � � �. .�._. .�._._� � �....w,.� V . � � � � � � a , , � {{ , ; �.q. � ' �... � � � �_.._. � ¢ � � � 4 q /J� „ z �__.,_ M _. „S,/.;.�J ,y� ..,...._ .y...� ,..� ..�..,., .� . ..�.. �,.,. �.. ,..�. ,�._..,...�„ :g . � �. � �. ...�.„ , �w.�, � ., � . � � � ` , b ` � P � fi G t s w ; i � � 1 y � ° . ,. �.....,: w . ,. �..... .r�...... ..��. ,..�.. .w..��.„,,.,. �...,�., . ,.,.�,.,,. ......�.<. . � ...,..l..,,.�....,_#_.w. ... .... .A.... ,. .„,_. .. ..... N._.. ,.. _ - �__.,. .�. _ , _.�.yµ..� .$.w . .�„. _.�., .�_ .� . ....u... .�,.- �,��G-�.�G�` ,�,_.���_� ..__� _� __ .....�_, _ ,.�,___.. " �...__�.. , _. . .. �� _..... .,_,,..� .�..,.....« '''Y .�.....,.. ..�..... ,,.,%y ,. IX y tl ° g q � g g � . � � � 0 9 M � � 4 � � �., � �__�.� ,�,, � � By y l X � �....,.�_. _r..,�^�...�.. .,..��. ....�..�._� w,.�_,� ._9...,. _ ,.�..�._ �.__ _ �. . .� . � .__ ...,��. .�� _ .r _ w i { � �.. �_, ....p... ¢ .,�, , y.._ .�.. .�,. , i. ....�. a:.� � g _ _,_ ..._ � � .� � � .�.�.....W�, �Z�- �,._.������.,��.. �.._��..�__�._..�°�_`!�. � � � X _. � ___.�__.�_._...._ __° .� ..._...' ._.r g _, ' � � � � ,� � � ' ,, � ,,,r ...��_� � � __�._._.$ . � ' �..._. ._„_.�__ _,.�,,....�,�,_... _.._,.....__ . ..�,.._,._'_..._�_..__,a..__ �,,..__... ..__�_.__.,„ Ww �._.�._�__,..� �..,. _�._.,__.�. + _.._..�._._„ __........,.. �.. ,_,�.._. ...x .,.�,_,. � 9 g � � u � � w � , � ._.. .._� � �. C � r � $ � ` � � � [ � ..__ _.._.�_.._ ...__.�__._..�_� ;� ,. �.____ ,�_,._ �._ . �.._... �_.__ .�_w .� .� .__.�.__�..__. _�.. ,t_.._..� ...: � � � � � � � � �g , .� d � � .� �� � ti � 9 �.__.�.. , ��� � �4 i� C i � � � � 4 a � � , z � � � s � � �°; i; _ ..,._ _�._,. _..� ,.,. �..... .�-._..,_., ...,,.,.�.__ .. .. � , � .__�_.... . _,_ .. .� �. . a , ,; � � ; ��� .__„ �- _�...v. �. � �_.�_ � � �__. �.-� �- ���� a ; � � .: � ;__. .,..f��,..'�..._�1��'� ..._�_.__� _.___� .._a ___ _� __ _. _ � ._w. �.,. _ _. � _�_�___.� .� _ p. .,�� _#y . �. . . � k ... .�. .�. � � d t �yy � � � .....�.�. ,__„_����.��..,._,..._ � � , �..__,.._ . �� C � � � � C ���� �����a�� e � p { ,„� k �._... M..�__.. ..._.�.. � � :, ., ...a .�... � . ! � . ,.�i p_„...„.p . .. .y , �.. ...�.�.......,..y, i.,,..,. �„.,_ .. .�. P ...g,. "4 ---� � � ..�..__..__� _c. ...� � ..._�_ � ..___�._. � ._�. . �_.._.�.�_—�.___� �.�... �. � �_ ._�__._� �._�� _� � g � � � w .,,. � ..�.. � ._.�. �. �. . __ _._.. _.__� ____ ._.��.._� � __.._ _. �._..... ....__.�..w�..�._.._.__�. _..... _.....__�.�..__� z ,. ,.W. �. � � ;�.� .�.� .. . � ..�..__. _. . �— ` � i— � � � 6 l � � _.a 4 z .. _.. z — �.__.�JA`'._�.1�� s�.. �,��`� .�.�.. ac�'_. �� ' � l�` ._ �. $_..._.�. _ ._ _ _ _ _. " , -�_._ ____ , 5 � � � -; � � - 9 R I � �,�.. .��.. � > � � 5 `.�'�" �,�t �� � ... _ � ., __ � .. ,. . � �� ,..... �Ja...�. �3a �_.� �n __..�_. .s._ _.. � ..� ._ ___.�. � � ' . �_ �.. �.�.. q !—� ,� � � � � , a. .�_. ,�..�. � .�,.. ..�_. �.. , a � � .��.. _ .�,`,. z _..� .w�, ,�._.� ?_.,�,�. .M a,,�... .� .,._w ... �. . ... _� _ �.�._._ . .�..... � _ ;�,,. �� .w� .�. ., .__ � _ , _ Y , � @ � � � � R � .� E . � �, � �� ..� ¢-__._�...,. � 3 � � k „, � M ' � �. ' � � � � � � . � � � � � ��. � � � � � � x � . .� , u , " ' � � �.._._� .�.{ . _..,._ ,, . �.. .�.. .� _r��� �_...._.� .� . � _ � �... �_... �_ a �g�_.__.� � . � � � wm � ; �. � � � � P � � � $ � k 4 2 � � �. � N � � , ..__.... .�._..�...., t.., .. : _..�..,..,,_w_.„__�,..,.,.,.q _,�_._..._-1 __...,.�.,,.,..,,_,...�,.,.....�.,_,._�.,,.,, __. .,._...,5..,_.__.,.��.,_.y,.....,R....._,p.,, � . � q� -._,f. ..,.F».�.,... %......_, 6 .. � � .. „ x � ��, � g . , .,: � " �' G � z ., � , g � _. ._ ,_..�,. � r ' � � _ _.. .,' . .� �, � � .�„, , y �, � �, ,� �, � � � � �_,. � � � g._ � c t , � qp f _ .,.,._ ._,�.. �._._s w Y .., .�, ....L.... ...m.. � ..� _._�,_..,..,,.� . . �.,.� � 9{...., �. ,..,_�� � wr.�� , _.. � ... .... .y, , .......?.. ...�.. y,_...,_ ...A......,...,3 .��.�,......... �. , � � F X �.W..., � � { M1 .o... �, .�. ..y�. 4 p� d d �., p y R . ._..,...._.. �u , ,.�.._.,.__,.a_,.....'.. ..o-..........�..,�..�,w...,..,_......�,_....�,....,._�,.,,_....�,.,_,._.,.,.G.. ,.,.s._,...,_.,....,ti......,..1,,.._.,._i...,_..,�...,..,.11.....,.,..a...�._..,«... ,..._.....:,,.....,.....,�._ ..,..».,.%.,.w m........,.._.._ ..',..._......... .�. FOR 3I�� �� DATE �'"I'I Z— JOB Z�^`( BY �� � Myers Engineering LLC 3206 SOth St Ct NW, Ste 210-B MYERS ENGINEERING Gig Harbor, WA 98335 (253) 858-3248 Fax (253) 858-3249 myengineer@centurytel.net _ .y,_._ ._.._ � .'� _. _�'�� __,y.,_. _ o �__ %. ...�_�.�....,_ y ^_.... .�. .._..,g,.._._a b t,J % d 1 s ��._ !7� . ���� .����__�_�.__w�_.._ °.__. ` --�__ .�..__��_.__ �q _._ ._.� _� � �. � -- � � � �_� _ � , �.. �. .�..___W__._. � , ` �3�//� -��,. /� a � � a � � __ _ _ ._.�._..� ./ � 4��,..,.,�� �......a........ ._{/ ........� �� . . . ,., _�. , , .. � .�. ,.... »... ....,. ...,..,.. .. _,.. .. W � , � � " � � � � _ _.�..._ _. �. .�._ �._ _�� .. _��l __�_.���.___._�._.�.__.,...__�._. �__. _�.. __ __�__ _ _ _ ___., _.. ��.,. _. , ._.._�_.�_�.___ __._.� _. � �.. _ � � � "'�" �' -�-� y � � � � r. � r " + � ry � � .., __ � ".._... _,� ,._. _ �..j;_._... __d ..____4- __._....,_._,o � �. ..,.� 4 .,�......,.. ,_.�,�_,�..���.... � � .... a,..,.. ,�, a.... � .,�_,�. �..__ _ -�.__. `� � ' `�" � a ,� -9-- � � ��---�_._,_.._ . m_._ , � w ' i , _" a _�..,..._..� �__...�___ �_.,,..�__. � _- �..., .__._ " _.,��,._.�,_�.__..�.__' _....__ �.,.., _w...... �, ..�.. �._.w � . � .� m �—. �.....__�_,_ w___—�__._�.. . �____.° __� � w . .�.�.�. �..�.� �.��g. ...�..__',M�._%_____�_.--�-__---� � � � " �--,_..__'.�.._ s_-- ___ 9 c � r .g y „_a w � 7 � � � � � �- � -� � .,� y ; �_..s�.� � ,Wn� .._.ti.._ ._._.�_��._ _._._ __.� �_�W.__._�. . _ .__ _ . �� ... ; � � ..._ .� �_..__ _ .. .�___��._. ,_b ..,� ___..._. . � ; �; , � �.�_�m.� ; , � � -�._�_ � ---�__�-__�-. , G _._.� _ �_ ..�. __� __..__.� �.. , Y .. _�.... � ri ;_ .��.._.__�,_...� �._._..__. �._.__.�_�_ .___ ..___. � �..__...� .�..�..__. �.... ___._� ��.._..�_��_.�._�..�.,� � p. ..... �.....�._ �____.�_ _„0.�.__�_w_,._�____._. _____�.__ �.._.__.1__ .k ._.,�_. ._.�.._...�_ �,.._..... _�..__�_..."�.__� _ __ ._.. �_._...�°!� �.____� , a , __ _, , , G.._ , ;.. x. + �.....' , � _.._ .�....�..�.,.�_�_.. .__�...__.. �....�._ _. ___ _.._ _.W_.�.. _._t_w_ .._i .._ �. ,� _, ____ ......��... `�-_ r � � i f � , ,� " 3���`�-l. �+�.._�. ...�� ..�:�.��� . �..�.� � ¢ �� �,�+��"�� ..__�,.._ � �..�.__._��S�j � 0 .� .„�.,. R .,_ � _. ._�...� __ � ,.. ._.5..,....� .. ' _ .�_.�.._J _ � ._. �Sl�' ._.��il�;-.__-�C-.-.� �'� ��--�_.,�_ .-�_ . -�__w�..�. ._�. �._$__._�-- _-�__..�. __�_ ...�.,_....� , �-�__`�'._ 6 l �;i1 e- ,�ot? 1� � ?1 �F..��.�.���- ����_.�._. _,�_ w_�,M�.�. . ��.�...___ _� _ s_._..._-� � . _ ,� - � �'.� � _ .�r -�- .-r�—�_ —�._____�.�_.� � �.-M..� � � � ,� � � �.� ��. � � __. �__� , _ �__ _._, .___ _.__. _w _ , , �..�..._�.._ .ry_.__� ��._ .�.__. �_._. ._ -�._._._—�—__.� �_.___�___�.�,... ._.�. .. � _�.��._....�.__ .�.�_._�„� N . � � �_..�. � � � � � �� � ._ _ ,_,._.�.�,_..,_�_,.�_____.�. .,�.,____.�. _.._�_...��._.._�___ j._..,._ ,. .;� �.__._,. _��.__.__ _ . , _ _ _ . �; __� �. � .�. ..�_ ___�._ _...�___ ._.�. � � � �. � , ; ; � , 4 � .� � $ � p ". �� � � r , � � _.� ... _....,..� . , .�. . � .._.. _ 4 �..,_W�.._._ ___. _ _. �.__._ ..._._.�._._ _ _._�-.__. ...._. .., „ .. ....__,�. ._ __��._.....�.___ �___ F �,.....�. � { �. ._�_ � � � —�— � � d __..� � �_ � � � ._� � , , & __..�..�_... _._. ..._.. � . �._. .,. N._.._,� , � . � . . -�_.___�� M._���_.,�.� ._ �,��__.. � ,� ..� �� M ___.____ _, ,...�.,..__. __._ �w,.__.._.�.,._ , ... _,._.�„� � " , �r .. �. , � � � �._ � _ ...a._ " f __4._ ...,�._....� ��..._�,..i _._�.___�_..�__..�__ �... -�_._ � � �.__ ..�__-_.� t____.. � � � � � � ��� � � � � , � ^ x ( � � " � ° � Y �� A � �._ �_��.�. �_.._�..__. � ____._� __� ____. _ _ ._._W r � � . a , _ , , � x .�, �. ___._�_ —� x �-�.__�_.- —�—_ � q 4 � � . � , k � , � e � � � � � 3 4 , " . __�.»... � ,..,.�a.. F_,.... �_.,_,_ ,�..�.,W__ ,.�.._.. . .. ..,_}......_�___ ._ ___ _ ---�___—__ _ _. _ � ._ _M...,.�. �_ _ __�,.... . � #' � M1 4 s � , � � � x �_, ' ...„, � ._ �_ ` _ . _ �______�. _ ._ _.� $ .s _ � ..__� __. �.__x ..�_� ,�.._�__�,� ____ ___.�._�._�.._.. .�.�_._.�.�__� __..��_.__.� _. d _ w..w_ �_�. �.�._..� .,w �. �._w.. ,...�.. �.�.. ___�—_._� �_. _ �.�. 1 � � �- �_. . �- � � � � � " � _._ 'a ._._�.�.._ ____.r �.__��..�____�___..�_.....��.� �___,�._._ __. � ._.�__ ._�__._.�._..._. ...... ,.. �_. _.�.. �__�.. �.._._�� � .� �.�_ � � �_.___ __.�____.�.__a__. � __�_. � �._____�___.�... " _ __,_�__.�._. __ .__ ._� � �� , . � __.,._ . � „.�� -t . �. � -� � �- � � m-�--- -�- � � � � � �- -�. � _� __�,u_� �. � � � __4 s �__��....._ __._ .��__.�_.�.�w,�p___..�,___.�..._ � __�..._ �,._._..� , � _ __ __. . ... "`" ._ ....�...__. _ ^. _ ,..�,. ._.._,. ,�._._.�... ."_____,._. __.._��,_. _,__,_._,_._."�._w_�___...�._.,_..'.,� � _.._� _,_�_ __._` _.�_,�." �.. 1 � ._. � _�a_._� a � -� � t �__._ � � � ��Y _. .�.__ __.-�_ �__° _ . g � �- � � �d � �` � �"�' �'" n � � . � � � s , w_ �. _� _,,___ �—_.�.. ,_�.�.�,__.._� ,..�.__,�_._._�.._--�___.�_.._ ,�..._.�..�.._�......�.,..�.�.,r.,, �,.���..�...���....�.�_�.._.....�..,,�....� a__4 . .. ^ ._M �_� � � , � � � �_ .._.�_.�.��� . .._, �___-�._�_.___ _.-��-- ��.._ .�w�. .�..__� __. . _�. �- � A � ---�— � ---� — � __ _ .� � � � .�__ �.�._�_ �_.___ �. �_ , _ ._ .,_.v�. .___.. _s „____ ___� _._ „.w.__ __._�._ .._�____' . _. �.___ � � _._�._.__ � � ,_.._. .�..� � ,� __�._.__�___.._� M_ � .. .__-__ � � � � � _� � _� � � � � _w�._.. _ �. � ; , � � a � � � � & .__ .. , � b � �` � � �. �._ �.. �.�_...�_� � —�. � �. ._�_��.,._�._�, _�_ �. .__� . � __�_._.� �.. __� ^ � a.._�_rv.,_._ ___�__._.. P,._ _ �_. a�,._�._.___.�___�.,_ �, _ ,_,_;�.,_.._.� _. _, _�__�@ ..... ... . ... ry.._ ,..y x � '�._.�..� � � � ___ _ _,p._.__.�w...,...__� 4`. � ...�.__ �3 k�_"_.� � � � M � �yg � .r,,,.. w_ "�._, � ....;.._. .� _.�.___ � ..__. �. �.. _._�.... �._ . . . . .. .� _ .. ; � M .��_.�_ � .� � � � ...�_ �.�_,.�,�. �_ _�--�--.__�� ...�_ �— � .. , �w .._._. � q � _. � ,�_..� � ' _._,_�._.,..� �__.�._ ,8 , .�„ � . � � � _.._.��.�._� ___�___� W d ._�_�__._.�_.._—�—__._�_� �� _�_��.,. ..� � � .._� .._.� � , � w � � -�__.� �._,�....�.,,_,,_ �. � � . ,_... ..1 ..._ � �_.,_.�_.._ � �.._� a � � z � � .._. _�_�.� � � ; � , , d , „ � � . ._.. r.. _._.�.. _� ._..�.._.__�.__��. _u..._�. � �.__ .____.� .__._�,_�.�._..° .�__._..�.. ,� N_ .._..�_�_.�.._ , ._�.._�__.� �._..,,.� _,_ q � � � � � � � � . a 0 y h a a � � � k � � � . I _.... . �..,:,,_ � ..,.. ,w__._,_ ...,�_..__.}.___�,__�w._.�._w,...,�__._ .__._�.x.. .�. __� . .�._..�.. ,� ..�._ _.��- _.�-_ _..�._ _�-_. __.�..w.._.�w.. _.�.._,�_� u „ + , � � � � � � � _ � � . _ 4 --. � y , , ._ _....�...._..._._d._.._,w. .�_�_._.__�_._._�..._... ___�...._�__.�__,_�w.___..�__w_����..___�._____�_. ._��......a.___�..___.�.�__�.._��.._.. _.__.��_.�.� ..._�___. __.�..__.� FOR �l�3 '3� DATE ��I �� Z JOB 3O BY � Mark Myers,PE Title: Job# , Myers Engineering LLC Engineec 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph;253-858-3248 fx:253-858-3249 E-mail:m en ineer centu el.net ���.-� z�uczci2.�z�s�r,4 �OQC� B�c1117 ': EI�I�SI-�.I1�IC.f�3-2E1t4,$tiikkfi.12.4.24,'Wer.5.12,4.24 :: - •- . _ • �.t�: Description: 1.Upper Floor Neader Material Properties Calculations per NDS 2005,ASCE 7-05 Analysis Method: Allowable Stress Design Fb-Tension 875 psi E:Modulus of Elasticity Load Combination 200916C&ASCE7-05 Fb-Compr 875 psi Ebend-xx 1300 ksi Fc-Prll 600 psi Eminbend-xx 470 ksi Wood Species : Douglas Fir-Larch Fc-Perp 625 psi Wood Grade : No.2 Fv 170 psi Ft 425 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling __.._............................................_..........................._._...................................._._.__....................._............................_..............._................................................................................................................................................................................................................................................................, D 0,36 S 0.6 6x8 ; Span=5.0 ft !. _....._........__._---- —--------- - -- Appli2d L03dS Senrice loads enfered. Load Factors wiil be applied for calculations. Uniform Load: D=0,360, S=0.60, Tributary Width=1.0 ft DESIGNSUMMARY _..__._.._.._.._.__-.-- ------- ---._.._....__._..----_.-- _'' • • , i Maximum Bending Stress Ratio = 0 79� 1 Maximum Shear Stress Ratio = 0.390 : 1 Section used for this span 6x8 Section used for this span 6x8 fb:Actual = 698.18psi iv:Actual = 66.33 psi , FB:Allowable = 875.00psi Fv:Allowable = 170.00 psi Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span = 2.500ft Location of maximum on span = 4,400ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.034 in Ratio= 1773 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.054 in Ratio= 1108 Max Upward Total Deflection 0.000 in Ratio= 0<240 _...___ -- ------_. _...--- Overall Maximum Defilections-Unfactared L.oads ` Load Combina6on Span Max.""Defl Location in Span Load Combina6on Max."+"Defl Location in Span p+S 1 0.0541 2.525 0.0000 0.000 VertiCal Re8Cti0l7S=UItf1C€OTet! Support notation:Far left is#1 Values in KIPS Load CombinaUon Support 1 Support 2 Overall MAXimum 2.400 2.400 D Only 0.900 0.900 S Only 1.500 1.500 p+S 2.400 2.400 �) Mark Myers,PE Title: Job# INyers Engineering LLC Engineer: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-$58-3248 fx:253-858-3249 E-mail:m en ineer centu el.net �;n��zauczc�2:�z:�saM 1Naod!Be�m �����c:s��=z���;sw��s:+z 4:za;u�s:rz4.�a . " �.t�: . _ _ Description: 1.Upper Floor Header Materiai Properties Calculations per NDS 2005,ASCE 7-05 Analysis Method: Allowable Stress Design Fb-Tension 900 psi E:Modulus of Elasticity Load Combination 20091BC&ASCE7-05 Fb-Compr 900 psi Ebend-xx 1600 ksi Fc-Prll 1350 psi Eminbend-xx 580 ksi Wood Species : Douglas Fir-Larch Fc-Perp 625 psi Wood Grade : No.2 Fv 180 psi Ft 575 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling ........................................................................................ __..._..---....._._........._.................................. _....._......................................................................................................................_.. , D(0.36)S(0.6) �,��•� „• ;.�,�; ' 4x10 Span=5.Oft Appli@d LOadS Service loads entered.Load Factors will be appiied fiar caiculations. Uniform Load: D=0.360, S=0.60, Tributary Width=1.0 ft DESfGN S�MMARY '- • • ----._...---..._..--------------------- - Maximum Bending Stress Ratio = 0.668 1 Maximum Shear Stress Ratio = 0.432 : 1 Section used for this span 4x10 Section used for this span 4x10 ', fb:Actual - 721.28 psi iv:Actual = 77.84 psi FB:Allowable - 1,080.00psi Fv:Allowable - 180.00 psi Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span = 2.500ft Location of maximum on span = O.00Oft ; Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 ! Maximum Deflection Max Downward L+Lr+S Deflection 0.023 in Ratio= 2605 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.037 in Ratio= 1628 Max Upward Total Deflection 0.000 in Ratio= Q<240 _. ___. . ......_....._ _.--....... .. .. _..... ---- ._... --.._.... ......_......._.__...._........._.... .........__.......--- - - --------------......._..------._.__...... .. . _........--.. Overall Maximum Deflections-Unfactored Loads Load Combination Span Max.""Defl Locatlon in Span Load Combination Max."+"Defl Location in Span D+S 1 0.0368 2.525 0.0000 0.000 Vertical Reactions-Unfactored support noravon:Far ieft is#� Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 2.400 2.400 D Only 0.900 0.900 S Only 1.500 1.500 D+S 2.400 2.400 �Z Mark Myers,PE Title: Job# , Myers Engineering LLC Engineer: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858-3249 E-mail:m en ineer centu el,net ���w� z�uczc�2,�z:�s��+ NVOOd B�2C1'�1 �_..�nrr���.,�ic.�83=���:ew�,s.��.�.2a;ve�:s.�2.�.za ' . �:E�: - -- - - Description: 2.3rd Car Garage Door Header Material Properties Calculations per NDS 2005,ASCE 7-OS Analysis Method: Ailowable Stress Design Fb-Tension 2400 psi E:Modulus of Elasticify Load Combination 20091BC&ASCE7-05 Fb-Compr 1850 psi Ebend-xx 1800ksi Fc-Prll 1650 psi Eminbend-xx 930 ksi Wood Species ; DF/DF Fc-Perp 650 psi Ebend-yy 1600 ksi Wood Grade :24F-V4 Fv 265 psi Eminbend-yy 830ksi Ft 1100 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling ........................... _...._.........................._.......................................__---.._........_..._....._..._............................_..._.................................................__....._..............._...................................._.................................................................................................._..................._........................................................._.........................., D 0.36 S 0.6 � .,�. �� ,.. �-� � >, , 5.5x7.5 ' Span=9.0 ft : _._..__ _______ _....---- .....-- - -- -----___.._ ----- Applied LOadS Service loads entered.Load Factors will be appiied for calculations. Uniform Load; D=0.360, S=0.60, Tributary Width=1.0 ft DESIGN St1MMARY � � � __ .._. ......_ _...._ .. ------.__...._...._.__._.-.-- --...._.__ ______ - !Maximum Bending Stress Ratio = 0.943 1 Maximum Shear Stress Ratio = 0.516 : 1 Section used for this span 5.5x7.5 Section used for this span 5.5x7.5 , fb:Actual = 2,262.11 psi fv:Actual = 136.67 psi FB:Allowable = 2,400.00psi Fv:Allowable = 265.00 psi Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span = 4.500ft Location of maximum on span = 8.415 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 ' ' Maximum Deflection Max Downward L+Lr+S Deflection 0257 in Ratio= 421 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.410 in Ratio= 263 ' Max Upward Total Deflection 0.000 in Ratio= 0<240 ---- ----------••-- ____.... -- - -- -- Overall Maximum Deflections-Unfactored Loads Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span p+S 1 0.4104 4.545 0.0000 0.000 VettIC81 Re3Cti011S-UnfBCtCted Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 4.320 4.320 D Only 1.620 1.620 S Only 2.700 2.700 p+s 4.320 4.320 7� Mark Myers,PE Title: Job# Myers Engineering LLC Engineer: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858-3249 E-mail:m en ineer centu el.net P*inted'2AUG2012 12:20'PA 1Noad'Bear�t .�,.��t:�;�.i��z���,��:,z a.2a,:��:s tza�a '' i.ei:: Description: 3.Rear Cov'd Porch Roof Beam Material Properties Calculations per NDS 2005,ASCE 7-05 Analysis Method: Allowable Stress Design Fb-Tension 2400 psi E:Modulus of Elasticity Load Combination 20091BC&ASCE7-05 Fb-Compr 1850 psi Ebend-xx 1800ksi Fc-Prll 1650 psi Eminbend-xx 930 ksi Wood Species : DF/DF Fc-Perp 650 psi Ebend-yy 1600 ksi Wood Grade :24F-V4 Fv 265 psi Eminbend-yy 830ksi Ft 1100 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling _......_............._.....................___.........._............ ............................................................�.........._.........................._.._....................................................._......................................................................__......._....__..__........................_........_........................._.................................., D 0.0975 S 0.1625 ��, ,... � ; , , ' .�,��� > �„ ,��,� t a��;,� ,,;r w, >, 5.5x12 Span=22.0 ft , _.._._... _.....--- ____-------- --- ------- Applled L08dS Service loads entered.Load Factors wiil be appiied for calculations. Uniform Load: D=0.09750, S=0.1625, Tributary Width=1.0 ft DESIGN SUMMARY, �� ' � !Maximum Bending Stress Ratio = 0.603 1 Maximum Shear Stress Ratio� = 0.223 : 1 ' Section used for this span 5.5x12 Section used for this span 5.5x12 fb:Actual = 1,430.00psi iv:Actual = 59.15 psi FB:Allowable = 2,372.05psi Fv:Allowable = 265.00 pSl Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span = 11.00Oft Location of maximum on span = O.00Oft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 ' Maximum Deflection Max Downward L+Lr+S Deflection 0.606 in Ratio= 435 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0<240 Max Downward Total Deflection 0.969 in Ratio= 272 Max Upward Total Deflection 0.000 in Ratio= 0<180 _.._._.__. ----_ _...---- -._.... _ � Overall Maximum Deflectians-Unfactored Loads Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span p+S 1 0.9690 11.110 0.0000 0.000 V8t'tlCal RP.aCt1011S-U(1f8CtOfed' Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 2.860 2.860 D Only 1.073 1.073 S Only 1.788 1.788 D+S 2.860 2.860 >� Mark Myers,PE Title: Job# , Myers Engineering LLC Engineer: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph;253�58-3248 fx:253-858-3249 E-mail:m en ineer centu el.net Pnnfed 2AUG2G12,1227PM1A Wood Beam , ; ° E���.�.,�icc::����,,-B��s��.a>�a v�:s.,24�� : �:��: Description: 4.Front Cov'd Porch Roof Beam Material Properties Calculations per NDS 2005,ASCE 7-05 Analysis Method: Allowabie Stress Design Fb-Tension 900.0 psi E:Modulus of Elasticity Load Combination 200916C&ASCE7-05 Fb-Compr 900.0 psi Ebend-xx 1,600.0 ksi Fc-Prll 1,350.0 psi Eminbend-xx 580.Oksi Wood Species : Douglas Fir-Larch Fc-Perp 625.0 psi Wood Grade : No.2 Fv 180.0 psi Ft 575.0 psi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling _........................_....................__........................................_..__._....._................_...----..............................__�..................................................._._...._........__......................................__..............................................................._._................................................................................................................................, D(0.0825) S(0.1375) � ��..� . 4x10 Span= 12.0 ft Applied LO�dS Sen+ice ioads entered.Load Factors will be appiied for calculations. Uniform Load; D=0.08250, S=0.1375, Tributary Width=1.0 ft DESIGN SUMMARY ---- ��' � - Maximum Bending Stress Ratio = 0.$$2 1 Maximum Shear Stress Ratio = 0.299 : 1 Section used for this span 4x10 Section used for this span 4x10 fb:Actual - 952.09psi fv:Actual = 53.82 psi FB:Allowable = 1,080.00 psi Fv:Allowable = 180.00 psi Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span = 6.00Oft Location of maximum on span = O.00Oft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 ' Maximum Deflection ' Max Downward L+Lr+S Deflection 0.175 in Ratio= 822 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0<360 ' Max Downward Total Deflection 0.280 in Ratio= 514 ' Max Upward Total Deflection 0.000 in Ratio= Q<240 ... ....- ----- ---...__-- -.._.... ------ Overall Ma�cim�m Deflections-Unfactored Loads Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span p+g 1 0.2801 6.060 0.0000 0.000 Vertical Reactions-Unfactored Support notation:Far left is#1 Values in KIPS Load Combination SuppoR 1 SuppoR 2 verall MAXimum 1.320 1.320 D Only 0.495 0.495 S Only 0.825 0.825 p+s 1.320 1.320 �� �'LOOR SPAN TABLES . t, L/480 Live Load Deflection � s���� � ��n� - - �����s ���-��� f� . . ���F� -��""����. 16'-11' 15'-6" 14-7" 13'-7" 16'-11" 15'-6' 14'-3" 12'-9" °,.s'�' '' `�"r 'r � 17'-9° 16'-3" 15'-4" 14'-3" 17'-9" 16'-3° 15'-4° 14'-0" ol,o�'��O�ni- '' ;m' �,�. _ _,., - 18'-3" 16'-8" 15'-9" 14'-8" 18'-3" 15'-9" 14'-8" � �- �.. - ; 20'�" 18'-5" 17'-4" 15'-9"�u 20'-2" i7'-8" 16'-1"ci� 14'-4"a� . � �1�/° 21'-1° 19'-3" 18'-2" 16'-11" 21'-1" 19'-3" 17'-8" 15'-9"ci� 1 Zl'-8° 19'-10" 18'-8` 17'-5" 21'-8° " 18'-1" 16'-1"cu J— 22'-11" 20'-11" 19'-8" 18'-4" 22'-11" 20'-11" 19'-8" 17'-10"�l� li/a"-1�/a" � 26`-1" . 23'-8" 22'-4" 20'-9" 26'-1° 23'-8" 22'-4" 20'-9"�i� � 22'-10" 20'-11" 19'-2" 17'-Z"�I� 22'_2" 19'-2" 17'-6"tl� 15'-0"�i� 91/z" 23'.-11" 21'-10" 20'-8" 18'-10"ci� 23'-11° 21'-1" 19'-2°c'� 16'-7°�l� �/e" 11�/e" 14" 24'-8" 22'-6" 21'-2" 19'-9"c>> 24'-8" 22'-2" 20'-3"�» 11'-6"cl� � 26'-0° 23'-8° 22'-4" 20'-9"�l� 26'-0' 23'-8° 22'-4°cl� 11'-10°�l� 29'-6" 26'-10" 25'_4" 23'-6" 29'-6" 16'-10° 25'-4"cl� 20'-11"�l> 26'-fi" 24'-3" 22'-6"cl� 19'-11"ci> 26'-0" 22'-6"ci� 20'-7°�l� 16'-7"�l� T��� ��� �OIStS 27'-3" 24'-10" 23'-6" 21'-1"�I� 27'-3" 23'-9" 21'-8"ci� 17'-6"cl� 28'-9" 26'-3" 24'-8"cl> 21'-5"c11 28=9° 26'-3"�l� 22'-4"�l� 11'-10"cl� 1 --{ �2�i6� _ 32'-8" 29'-8" 28'-0" 25'-2"ci� 32'-8" 19'-8" 26'-3"cl> 20'-11"�i� L/360 Live Load Deflection (Minimum Criteria per Code) 1— I . . _. - 1��-1�" � . ___. _. _. _. . . ' T_ .- - _. _ . _ _ , , . T 9'�" 18'-9" 17'-2° 15'-8" 14'-0" 18'-1" 15'-S" 14'-3" 12'-9" 3�„ 11�" 19.'-8" .` 18'-0.° 17'-0° 15'-4� 19'-8" > 17'2" 15'-8" 14'-0" 14" 20'_3" 18'-6" 17'-5" 16'-2" 10'-3" 18'-1" 16'-6" 14'-9° 16" .�'-3w" : 19'-4" 17��&; ;' 15`-g�ci� . 20=5" 17?-8° 16'-1°u� 14'-4"cu � 23'-4" 21'-2" 19'_4" 17'-3"cl� 22`-4' 19'-4" 17'-8" 15'-9"�i� 24`=Q• 21-11° • + ZO 5", :' :i8'r�3°. , :23=7' ` 20'-5" 18'-1° 16'-7"u� T��� 2�� �OIStS 25'-4" 23'-2" 21'10" 20'-4"�l� 25'-4' 23,-Z" 21'-10"r�� 17'-10"cl� .28-10" 26'-3"� . ;. 24`:9° '•; .:23:=A" 28'-ZO° 26'-3° 24'-9" 20'-11°cu 24'-4" 21'-0" 19'-2" 17'-2"�i� 22'-2" 19'-2" 17'-6"(1) 15'-0°�i� �--j �2�/ie" Z6'=6° 23'-1" ' 21'-1" I8`�lp°u� 24'-4" 21'-1" 19'-2"(1) 15-7°ti� �. � 27'-3" 24'-4° 22'-2" 19'-10"�>> 25'-8" 22'-2" 20'-3"(1) 17'-6"cl� 1'/a"-1�/s° � 28'-9° _ 26'-3" 24'.g•n� 21'-5°a� 18'-9° 26=3"n� 22'-4"n� 17'-10°cn � _ 32'-8" 29'-9" 28'-0' 25'-2"ci> 32'-8" 29'-9" 26'-3°ri� 20'-11"�i� 9�/2" 2$�_6" 24'-8" 22'-6"n� 19'-11'cl� 26'-0" 22'-6"ci� 20'-7"«> 16'-7"c�� �e" 11u 4 30'-1" 26'-Ou 23'-9" 21'-1"�i� 27'-5° 23'-9" 21'-8"c1� 17'-6"�l� 16" 31'-10° 29'-0" 26'-10"�i> 21'-5"ci� 31'-10" 26'-10"n� 22'-A"c?> 17'-10°c1� � 36'-1" 32'-11" 31'-0"cu 25'-2"�i� gg�.�• 3��spn� 26'-3"�i� 20'-11"ci� (1)Web stiffeners are required at intermediate supports at continuous-span joists when the intermediate bearing length is less than 5�" T11� 230 Joists and the span on either side of the intermediate bearing is greaterthan the following spans: 1 �{ �2�is" N.A. N.A. N.A. � 15'-4" N.A. N.A. 16'-0• 12'-9" N.A: N.A. 21'-4° ll'-0" N.a. 21'-4" 17'-9" 14'-2" 1— I N.A. N.A. N.A. 19'-2" N.A. N.A. 19'-11" 15'-11" • 13�� ' N;A. N.A. 24'-5° 19'-6" N.A. 24'-5" 20'-4" 16'-3" � 11�" N.A. N.A. 29'-10' 23'-10" N.A. 29'-10" 24'-l0u 19'-10� �" 14° • Long-term deflection under dead load,which includes the effect of creep,has not been considered.Bold italic spans reflect initial deatl 16" load deflection exceeding 0.33". � How to Use These Tables General Notes T11� 3601oists 1. Determine the appropriate live load deflection ■ Tables are based on: criteria. — Uniform loads. — More restrictive of simple or continuous span. �� �3�Z" 2. Identify the live and dead load condition. _ Clear distance between supports(13/a"minimum end bearing). 3. Select on-cente?spacing. ■ Assumed camposite action with a single layer af 24"on-center 1�� � 4. Scan down the column until you meet or span-rated,glue-nailed floor panels for deflection only.Spans � 11%" exceed the span of your application. shall be reduced 6"when floor panels are nailed only. �/�e" 14" 5. Select TJI�joist and depth. ■ Spans generated from ilevel�software may exceed the spans �� 16" shown in these tables because software reflects actual design � K ���.��o���������1� conditions. �"�"�h ����q, ■ For loading conditions not shown,referto software or to the load Tll� 560101StS ,F°r �. �. �°����°0� table on page 5. �$Ew.0ul7� F,R� �p.,gS'�'["�� .X._ . .z.._x_a:.'±.r'�...,s;. _��-, ' w iLevel Trus Joist�TJI•Joist Specifier's Guide TJ-4000 February 2009 Mark Myers,PE Titie: Job# , Myers Engineering LLC Engineer: • 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858-3249 E-mail:m en ineer centu el.net Fnnted'2AUG2G12,12:30�M11 Wo�d B+�t� ; „ � : ,. - ,: .'. .. ... ; �, . ���,�.�s�-�ti�>r..s�u�.-ssz.�:za�tr�:s.�z:a,za ' ,.'��, . .. - - DesCription: 6.Window Header at Great Rm Material Properties Calculations per NDS 2005,ASCf 7-OS Analysis Method: Allowable Stress Design Fb-Tension 875 psi E:Modulus of Elasticity Load Combination 20091 BC&ASCE7-05 Fb-Compr 875 psi Ebend-�c 1300 ksi Fc-Prll 600 psi Eminbend-xx 470 ksi Wood Species ; Douglas Fir-Larch Fc-Pe�p 625 psi Wood Grade :No.2 Fv 170 psi Ft 425 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling _.._._..........................................................._..._................................................................................................__.._........................_.............._........................... ..........................._....._...._...........................__..._..__.............................._............................................................................... D(0.5988)L(0.37)S(0.6} �� 6x10 Span=6.0 ft _____.______. Applied Loads Service loads entered.Load Factars wiil be applied for caiculations. Uniform Load: D=0.5988, L=0,370, S=0.60, Tributary Width=1.0 ft DESIGN SUMMARI' _ -- '' ' ' Maximum Bending Stress Ratio = 0.985 1 Maximum Shear Stress Ratio = 0.497 : 1 Section used for this span 6x10 Section used for this span 6x10 fb:Actual = 865.72 psi iv:Actual = 84.53 psi FB:Allowable = 875.00psi Fv:Allowable = 170.00 psi Load Combination +D+0.750L+0.750S+H Load Combination +D+0.750L+0750S+H ' Location of maximum on span = 3.00Oft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 ' Maximum Deflection Max Downward L+Lr+S Deflection 0.056 in Ratio= 129d Max Upward L+Lr+S Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.090 in Ratio= 797 Max Upward Total Deflection 0.000 in Ratio= Q<240 ', ------- ___� _- - _ __ _- — ---_ � Overall Maximum Deflections-Unfactared Loads Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span p+l.+,s 1 0.0903 3.030 0.0000 0.000 Vertical Reactions-U11f8C#Of@d Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 4.706 4.706 D Only 1.796 1.796 LOnly 1.110 1.110 S Only 1.800 1.800 L+S 2.910 2.910 p+L 2.906 2.906 D+S 3.596 3.596 D+L+S 4.706 4.706 � / Mark Myers,PE Title: Job# Myers Engineering LLC Engineer: 3206 50th St Ct NW,Ste 210-B Project Desc,; Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858�249 E-mail:m en ineer centu el.net �,n�a znucze,z.,z:s,�h+ Vl►ood`Beam E�ar�c:�.i�-��.ewi�:t�:a.za;v�-�.��.aza : �.��: DesCription: 7•Window&SGD header at Kftchen Materiai Properties Calculations per NDS 2005,ASCE 7-05 Analysis Method: Allowable Stress Design Fb-Tension 875 psi E:Modulus of Elasticity Load Combination 20091BC&ASCE7-05 Fb-Compr 875 psi Ebend-xx 1300ksi Fc-Prll 600 psi Eminbend-xx 470 ksi Wood Species : Douglas Fir-Larch Fc-Perp 625 psi Wood Grade ; No2 Fv 170 psi Ft 425 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling _...._..........._..........._...__......................_..._.................................................................._................._..............................................................................................................................................................._......................................._......._............_...................---............................................................................., ........................................._.................. D(0.55)L(0.04)S(0.725} �y ,;;�. 6x10 ; Span=6.0 ft_---,---- :...._ ..-- -- - --- --- ------ ___-- --..._ Applied L01dS Service I�ads entered. Load Factors will be appiied far calcuiations. Uniform Load: D=0.550, L=0.040, S=0.7250, Tributary Width=1.0 ft DESIGN St1MMARY '� ' � -------------—....--------------------- 'Maximum Bending Stress Ratio = p.951: 1 Maximum Shear Stress Ratio = 0.478 : 1 Section used for this span 6x10 Section used for this span 6x10 fb:Actual = 832.23psi fv:Actual = 81.26 psi , FB:Allowable = 875.00psi Fv:Allowable = 170.00 psi Load Combination +D+S+H Load Combination +D+S+H ' Location of maximum on span = 3.00Oft Location of maximum on span = O.00Oft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.044 in Ratio= 1635 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.076 in Ratio= 951 Max Upward Total Deflection 0.000 in Ratio= 0<240 __�.._.... _... ___ -- - - -__--- ---- OveraN Maximum Deflections-Unfactored Loads Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span D+L+S 1 0.0757 3.030 0.0000 0.000 Vertical Reactions-Unfactoretl SuppoR notation;Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 3.945 3.945 D Only 1.650 1.650 L Only 0.120 0.120 S Only 2.175 2.175 L+S 2.295 2.295 D+� 1.770 1.770 p+s 3.825 3.825 D+L+S 3.945 3.945 /D Mark Myers,PE Title: Job# , Myers Engineering LLC Engineer: 3206 50th St Ct NW,Ste 210-B Project Desc.; Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858-3249 E-mail:m en ineer centu el.net F•�,�a:za,u�lc,z,,z:s��n� WoOd Beam . =': E����e,_Ertc:tss�=�€►t�:�;;i�.�.�2.aia:v�:s:t2.a:za ' _ �:��: . .. - - Description: 8.Floor Beam over NooklGreat Rm Material Properties caicuiat�ons Per N�s 2oos,ASCE 7-05 Analysis Method: Allowable Stress Design Fb-Tension 2900 psi E:Modulus of Elasticity Load Combination 20091 BC&ASCE7-05 Fb-Compr 2900 psi Ebend-xx 2000 ksi Fc-Prll 2900 psi Eminbend-xx 1016.535ksi Wood Species : iLevel Truss Joist Fc-Perp 750 psi Wood Grade :Parailam PSL 2.OE Fv 290 psi Ft 2025 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D(0.135) L(0.36) _ � • , �, y .; � .,. v, _. , �� � ,� w , , yY�s � � :< ` �� ,, , �r';;k,k�`�y�'Gt4 u^�"r+� : , i �` „ �<.�;� ,x. � . . � �.• JF- � : .. , �,",�"�^',,.:...#; ,,,.<v. � „'.. „ ,... ,.. .�� 5.25x11.875 ' Span= 18.083 ft _ ___.._ ....-- - --------- Applied Loads Service loads entered.Load Factors will be appiied for calcuEaEions. Uniform Load: D=0.1350, L=0.360, Tributary Width=1.0 ft DEStGN SUMMARY '" ' � -------_._._..---------- --------- ----- Maximum Bending Stress Ratio = Q.67H 1 Maximum Shear Stress Ratio = 0.334 : 1 Section used for this span 5.25x11.875 Section used for this span 5.25x11.875 , fb:Actual = 1,967.71 psi fv:Actual = 96.91 psi FB:Allowable = 2,900.00psi Fv:Allowable = 290.00 psi Load Combination +D+L+H Load Combination +D-�L+H Location of maximum on span = 9.042ft Location of maximum on span = 17.179ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 ! Maximum Deflection Max Downward L+Lr+S Deflection 0.596 in Ratio= 364 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.819 in Ratio= 264 Max Upward Total Deflection 0.000 in Ratio= 0 <240 - -. ---- ----- --_...._ _.�_--- ----_ Overall Maximum Deflections-Unfactored.Laads Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span p+� 1 0.8193 9.132 0.0000 0.000 Vertical Reactions-Unfa�fared Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 4.476 4.476 D Only 1.221 1.221 L Only 3.255 3.255 D+L 4.476 4.476 �� �lark Myers,PE Title: Job# Myers Engineering LLC Engineer: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858-3249 E-mail:m en ineer centu @I.flet Printed�2AUv^2G72.12�Sr°M Wood'Bear�i ����ca�.c:u�c��=�n,.s���s:tz.��vEre.,z.aza :': �.��: - -- - - DesCription: 9.Header over Entry Hall Material Properties Calculations per NDS 2005,ASCE 7-05 Analysis Method: Allowable Stress Design Fb-Tension 2,325.0 psi E:Modulus of Elasticity Load Combination 20091BC&ASCE7-05 Fb-Compr 2,325.0 psi Ebend-�oc 1,550.Oksi Fc-Prli 2,050.0 psi Eminbend-xx 787.82 ksi Wood Species : iLevel Truss Joist Fc-Perp 800.0 psi Wood Grade :TimberStrand LSL 1.55E Fv 310.0 psi Ft 1,070.0 psi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling _..._............. _............................................�...........................................................................__................................................................._..._................�..........................................._......................................................................................................._......................................_......................................................., D(0.92)L(2.45) D 0.15 L 0.4 ' D 0.0825 L 0.22 ��,. �� ' 3.5x11.875 ; Span=8.0 ft :..._. ----__ --- -.._ .�.__ _._...___. AppllEd L08dS Service iaads entered.Load Factors will be appGed for caicuEations. Load for Span Number 1 Uniform Load: D=0.08250, L=0.220 kfft,Extent=0.0-»4.0 ft, TributaN Width=1.0 ft Uniform Load: D=0.150, L=0.40 k/ft,Extent=4.0-»8.0 ft, Tributary Width=1,0 ft Point Load: D=0.920, L=2.450 k o(�,4.0 ft DESIGN SlIMMARY �� � � _____ __��_ - _..-------..__ __._..__... __.__._ —.—.----..._..__ __..___ , Maximum Bending Stress Ratio = 0.63T 1 Maximum Shear Stress Ratio = 0.362 : 1 , Section used for this span 3.5x11.875 Section used for this span 3.5x11.875 fb:Actual = 1,480.69psi fv:Actual = 112.22 psi FB:Allowable - 2,325.00 psi Fv:Allowab�e = 310.00 psi ' Load Combination +D+L+H Load Combination +D+{-+N ' Location of maximum on span = 4.00Oft Location of maximum on span = 7.040 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection ' Max Downward L+Lr+S Deflection 0.098 in Ratio= 97$ Max Upward L+Lr+S Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.135 in Ratio= 711 ', Max Upward Total Deflection 0.000 in Ratio= 0<240 ........................................................................... _....._......_.._....._............................_............._....._...._..............................._......._.__.........................._......_____._................................._...._._........._......................................................................_..................._........__._....---..._.._........................_................................_....._..............._...........: Overalt Ma�cimum Deflections-Unfactored Laads Load Combination Span Max.'"Defl Location in Span Load Combination Max."+"Defl Location in Span p+� 1 0.1350 4.040 0.0000 0.000 Vertical Reactions-UnfBCtOfed Support notation:Far left is#1 Values in KIPS Load Combination Support 1 SuppoR 2 Overall MAXimum 3.143 3.638 D Oniy 0.858 0.993 L Only 2.285 2.645 p+� 3.143 3.638 �D Mark Myers,PE Title: Job# . Myers Engineering LLC Engineer: ' 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph;253-858-3248 fx:253-858-3249 E-mail;m en ineer centu el.net Frint�'2AUG2C12.1239PM1i Wo�d Beam �EdERC,4LC,a1QG.t�32D11.Build:6.42.4.34;Ver.fi.12.424 • �.et: - •- . . Description: 10.Rim over Garage Materiai Properties CalCUlations per NDS 2005,ASCE 7-OS Analysis Method: Allowable Stress Design Fb-Tension 2325 psi E:Modulus of Elasticity Load Combination 20091BC&ASCE7-05 Fb-Compr 2325 psi Ebend-xx 1550ksi Fc-Prll 2050 psi Eminbend-xx 787.815ksi Wood Species ; iLevel Truss Joist Fc-Perp 800 psi Wood Grade :TimberStrand LSL 1.55E Fv 310 psi Ft 1070 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling ................................................__...................._...... _...._...............................__.............................................................................................._........................._...................................................._...................._.........................................................................................................................................................................., D(0.145) L(0.04) S(0.05) D(0.145) L(0.04)S(0.05) ' � � � . . �: . �.; : ., ' ,. �, feI?���� k ' '. ��:. .ekP ,l::�r:'i: 1.75x11.875 1 J5x11.875 ' Span = 14.50 ft Span = 11.50 ft �._._........ _.___...--.---__ _......- ---.._________ App112d LOadS Service loads entered.Load Factors will be applied for calculations. Load for Span Number 1 Uniform Load: D=0.1450, L=0.040, S=0.050, Tributary Width=1.0 ft Load for Span Number 2 Uniform Load: D=0.1450, L=0.040, S=0.050, Tributary Width=1.0 ft r , DESIGN SUMMARY-----�..._.._ . - � _. _.__��_ .......� _.._....... _........................................ . .. .................. . ..................... ...._...........��' ' � Maximum Bending Stress Ratio - 0.586 1 Maximum Shear Stress Ratio = 0.39fl : 1 � Section used for this span 1.75x11.$75 Section used for this span 1.75x11.875 fb:Actual = 1,362.05psi fv:Actual = 120.76 psi FB:Allowable = 2,325.00psi Fv:Allowable = 310.00 psi Load Combination +D+0.750L+0.750S+H Load Combination +D+0.750L+0.750S++i Location of maximum on span = 14.500ft Location of maximum on span = 13.608 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.122 in Ratio= 1427 ' Max Upward L+Lr+S Deflection -0.005 in Ratio= 27404 Max Downward Total Deflection 0.318 in Ratio= 546 Max Upward Total Deflection -0.013 in Ratio= 10495 _ _...__. _...--------- ------ ------ Overall Maximum Deflectiorts-Urrfactored Loads Load Combination Span Max."-"Defl Location in Span Load Combination Max."+"Defl Location in Span p+�+g 1 0.3183 6.469 0.0000 0.000 D+�+g 2 0.0579 7.342 D+L+S -0.0131 1.238 VettIC31 Re8Cti0115=Ut1fa�OFed Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 1.348 3.860 0.902 D Only 0.832 2.382 0.557 L Only 0.229 0.657 0.154 S Only 0.287 0.821 0.192 L+S 0.516 1.478 0.346 D+L 1.061 3.039 0.710 D+S 1.118 3.203 0.749 p+�+g 1.348 3.860 0.902 �I Mark Myers,PE Title: Job# Myers Engineering LLC Engineer: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858-3249 E-mail:m en ineer centu el.net ���a znu�zo,z.,z:a�Ph, �OOf� B@2i1� . El�r����C.'�3=�1�.B�akkS>i��24;Vecs.12.4.24 , ��1e� - -- - - DesCription: 11.Header at Den Window Material Properties Calculations per NDS 2005,ASCE 7-05 Analysis Method: Aliowable Stress Design Fb-Tension 875 psi E:Modulus of Elasticify Load Combination 20091 BC&ASCE7-05 Fb-Compr 875 psi Ebend-xx 1300 ksi Fc-Pril 600 psi Eminbend-xx 470 ksi Wood Species : Douglas Fir-Larch Fc-Perp 625 psi Wood Grade : No.2 Fv 170 psi Ft 425 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling _... _.............................................................................................._................_..._.�._...................................._.._......_......_..._......................................----..................................................................................................................................................._..�_.�._...._.............__....._.._..............._._._.............................._......................, D 0.2$ L 0.28 S 0.125 &�;�;, �^,V� �. ,,� �.• 3>� 6x10 i Span=7.50 ft ------ -- _....__.� _ ---—__---- � AppliQd L08dS Service loads entered.Load Factors will be applied for caiculations. Uniform Load: D=0.280, L=0.280, S=0.1250, Tributary Width=1.0 ft DESIGN SUMMARY �� ' ° `Maximum Bending Stress Ratio = 0.68Q 1 Maximum Shear Stress Ratio = 0.292 : 1 Section used for this span 6x10 Section used for this span 6x10 fb:Actual = 595.36psi iv:Actual = 49.65 psi � FB:Allowable = 875.00psi Fv:Allowable = 170.00 psi , Load Combination +D+0.750L+0.750S+H Load Combination +D+0.750L+0.750S+H ' Location of maximum on span = 3.750ft Location of maximum on span = 6.713ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.057 in Ratio= 1581 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.096 in Ratio= 935 Max Upward Total Deflection 0.000 in Ratio= 0<240 _�_ ---- ... _...-- --.., -- ---- -- _- Overal!Maximum Deflections-:Unfactored Loads Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span p+�+S 1 0.0962 3.788 0.0000 0.000 VePfIC81 R@8CtF011S-UtlfaCtO[ed Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 2.569 2.569 D Only 1.050 1.050 L Only 1.050 1.050 S Only 0.469 0.469 �+g 1.519 1.519 p+� 2.100 2.100 p+g 1.519 1.519 D+L+S 2.569 2.569 y� Mark Myers,PE Title: Job# , . Myers Engineering LLC Engineer: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253�58-3248 fx:253-858-3249 E-mail:m en ineer centu el.net Printed:2AUG2C12:12:43?Pn Wood Beat�'t , ! ; , , �c�n�c.j�3��i,s�3�:a.i�.�za,u�:s.t2.a:ia ' ' �; . ., _ �: '�� ����,�ru�� . �.F�: . . Description: 12•Beam over Garage Material Properties Calculations per NDS 2005,ASCE 7-05 Analysis Method: Allowable Stress Design Fb-Tension 2400 psi E:Modulus of Elasticity Load Combination 20091BC&ASCE7-05 Fb-Compr 1850 psi Ebend-xx 1800 ksi Fc-Prll 1650 psi Eminbend-xx 930 ksi Wood Species : DF/DF Fc-Perp 650 psi Ebend-yy 1600ksi Wood Grade :24F-V4 Fv 265 psi Eminbend-yy 830 ksi Ft 1100 psi Density 32.21 pcf Beam Bracing : Beam is Fuily Braced against lateral-torsion buckling D 0.195 L 0.52 �2•38) S(0.82) D(0.165) L(0.44) .. � . �� :�;�: 5.5x16.5 Span =2l.Oft Applied Loads Service loads entered.Load Factors will be appiied for calculations. Load for Span Number 1 Uniform Load: D=0.1650, L=0.440 k/ft,Extent=0.0—»9.0 ft, Tributary Width=1.0 ft Uniform Load: D=0.1950, L=0.520 k/ft,Extent=9.0—»21.0 ft, Tributary Width=1.0 ft Point Load: D=2.380, S=0,820 k a(�,18.0 ft DESIGN SUNIMARY' '' � • ----......------------_-__— --------- - ------ � 'Maximum Bending Stress Ratio = 0.85� 1 Maximum Shear Stress Ratio = 0.521 : 1 ! Section used for this span 5.5x16.5 Section used for this span 5.Sx16.5 fb:Actual = 1,969.99psi fv:Actual = 138.17 psi FB:Allowable = 2,308.42psi Fv:Allowable = 265.00 psi Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span = 11.235ft Location of maximum on span = 19.635ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 ' Maximum Deflection Max Downward L+Lr+S Deflection 0.613 in Ratio= 411 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.922 in Ratio= 273 , Max Upward Total Deflection 0.000 in Ratio= 0<240 ...................................................................................................................................................................... _.................._......................................................................................................................................._....................................................................................................._.............._........................................._....................................; Overall Maximum Deflections-Unfactored Loads Load Combination Span Max.""Defl Location in Span Load Combina6on Max."+"Defl Location in Span D+L+S 1 0.9217 10.815 0.0000 0.000 Vertical Reactions-`Ut1f8Ct0��d Support notation:Far left is#1 Values in KIPS Load Combinafion Support 1 Support 2 Overall MAXimum 7.187 10.038 D Only 2.175 4.030 L Only 4.894 5.306 S Only 0.117 0.703 L+S 5.011 6.009 D+L 7.070 9.335 D+S 2.293 4.733 D+L+S 7.187 10.038 y� Mark Myers,PE Title: Job# Myers Engineering LLC Engineer: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858-3249 E-mail:m en ineer centu el.net Printc-�:2AUG2G12.12.4oPM V1100t1 B�t'1'1 ���r.��.e�t�c:���=�itr.:�s.�z.a.za.ver.s.t2aaa > �.��: Description: 13.Garage Door Header Material Properties Calculations per NDS 2005,ASCE 7-05 Analysis Method: Allowable Stress Design Fb-Tension 2400 psi E:Modulus of Elasticity Load Combination 20091BC&ASCE7-05 Fb-Compr 1850 psi Ebend-xx 1800ksi Fc-Prll 1650 psi Eminbend-xx 930 ksi Wood Species ; DF/DF Fc-Perp 650 psi Ebend-yy 1600ksi Wood Grade :24F-V4 Fv 265 psi Eminbend-yy 830ksi Ft 1100 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling ---........................................_.._......._.._..........................._......................................................._.............................._........._............................................................................._........._.._...._........................................._........................._..................................__......................................, D(2.363)S(3.938 D 0.2463 L 0.31 S 0.05 D 0.5463 L 0.23 S 0.6 �.,� ,�;., �x,,� � ... � q' ,,;, �'�' �.�t��,�.,, .. �� �' 5.5x12 Span=9.0 ft __... pp ...__-— -- ._._.._ ------ A lied L08dS Service foads entered. Load Factors will be appiied for caiculations. Load for Span Number 1 Uniform Load: D=0.5463, L=0.230, S=0.60 k/ft,Extent=0.0—»4.50 ft, Tributary Width=1.0 ft Uniform Load: D=0.2463, L=0.310, S=0.050 klft,Extent=4.50—»9.0 ft, Tributary Width=1.0 ft Point Load: D=2.363, S=3.938 k an,4.50 ft DESIGN SUMMARY ' •• • • __ �_.._.._________.._�.._.�.------......_..._..................._..__.....__...__..._..---._..........�...._...._.._...------._..._....................__...____.�.__ Maximum Bending Stress Ratio = 0.81� 1 Maximum Shear Stress Ratio = 0.533 : 1 Section used for this span 5.5x12 Section used for this span 5.5x12 fb:Actual = 1,952.76psi fv:Actual = 141.31 psi FB:Allowable = 2,400.00psi Fv:Allowable = 265.00 psi Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span = 4.500ft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 , i Maximum Deflection Max Downward L+Lr+S Deflection 0.135 in Ratio= 798 ' ' Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 ' Max Downward Total Deflection 0.220 in Ratio= 489 ' ' Max Upward Total Deflection 0.000 in Ratio= 0<240 ........................................................................................... ......................................._................................._.........._._...................._......................................................................................................................................................................................_.._......._._............_._......_....._.._.............................................................................................._....; Overall Maximum Deflections-llnfactored Loads Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span D+L+S 1 0.2204 4.455 0.0000 0,000 VeY'CIC81 R28G'rI0t1S-Ut1f1Ct0[2d' Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 8.478 6.745 D Only 3.302 2.627 L Oniy 1.125 1.305 S Only 4.050 2.813 L+S 5.175 4.118 D+L 4.427 3.932 D+S 7.353 5.440 D+{.+S 8.478 6.745 �� Mark Myers,PE Title: Job# , Myers Engineering LLC Engineer: ' 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253�58-3248 fx:253-858-3249 E-mail:m en ineer centu el.net Fnnted:2AUG2012,1249?hh �OdC� 8�1� ENERGA1f�'fhIC.1�2tl�1,Build.�6:12.d2?l,Uer;6.42.4,2d . . �.��: - -- . . Description: 13a.Garage Door Header Material Properties Calculations per NDS 2005,ASCE 7-05 Analysis Method: Allowable Stress Design Fb-Tension 2400 psi E:Modulus of Elasticity Load Combination 20091BC&ASCE7-05 Fb-Compr 1850 psi Ebend-�oc 1800ksi Fc-Prli 1650 psi Eminbend-xx 930 ksi Wood Species : DF/DF Fc-Perp 650 psi Ebend-yy 1600 ksi Wood Grade :24F-V4 Fv 265 psi Eminbend-yy 830 ksi Ft 1100 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling _.._..................................................._.__............ __.........................................................................................._......._............................................................................................................................................_.............._....................................................................................................._..........................................................., D�(868)S(0.�9�) D 0.2463 L 0.31 S 0.05 ' >�. �,,, ' S.5x12 ' Span=9.0 ft ' . ._... _.. _---- __._. Appll@d L08dS Service loads entered.Load Factors will be appiied for calcuEations. Uniform Load: D=0.2463, L=0.310, S=0.050, Tributary Width=1.0 ft Point Load: D=2.363, S=3.938 k a(�,8.0 ft Point Load: D=0.560, S=0.190 k an,8,0 ft _DESIGN SUMMARY __ :._� ..:.._ _......_ .......:........ _..�' � , 'Maximum Bending Stress Ratio = 0.328 1 Maximum Shear Stress Ratio = 0.627 : 1 Section used for this span 5.5x12 Section used for this span 5.5x12 fb:Actual = 788.20psi fir:Actual = 166.08 psi FB:Allowable = 2,400.00psi Fv:Allowable = 265.00 psi Load Combination +D+0750L+fl.750S+H Load Combination +D+S+H l.ocation of maximum on span = 5.805ft Location of maximum on span = 8.010 ft ' Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.063 in Ratio= 1717 Max Upward L+Lr+S Deflection 0.000 in Ratio= d<360 Max Downward Total Deflection 0.107 in Ratio= 1013 Max Upward Total Deflection 0.000 in Ratio= 0<240 ....................................................................._.. _............._.......................................................................................................................................................................................................................................................; Overall Maximum Deflections-Unfactored Loads Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span D+L+S 1 0.1065 4.770 0.0000 0.000 Vertica�Reactions�UttfBCfofed Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 3.512 8.996 D Only 1.433 3.707 L Only 1.395 1.395 S Only 0.684 3.894 L+S 2.079 5.289 D+L 2.828 5.102 D+S 2.117 7.601 D+L+S 3.512 8.996 y5 Mark Myers,PE Title: Job# Myers Engineering LLC Engineer: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858-3249 E-mail:m en ineer centu el,net a���� zAUCZC,z.,zss�r,� �OOC� B�'1it7 t-tuE�2CALG kt�iC.'��2it9t;$uild:s.�2.d.T4�er612424 : �.t�: - -- - - DeSCfiption: 14.Main Floor Joist Material Properties Calculations per NDS 2005,ASCE 7-05 Analysis Method: Allowable Stress Design Fb-Tension 900 psi E:Modulus of Elasticity Load Combination 20091BC&ASCE7-05 Fb-Compr 900 psi Ebend-�oc 1600ksi Fc-Prll 1350 psi Eminbend-�c 580 ksi Wood Species : Douglas Fir-Larch Fc-Perp 625 psi Wood Grade : No2 Fv 180 psi Ft 575 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling Repetitive Member Stress Increa5e , D(0.019995) L(0.05332) - � . E�� � .>.. e � �;,�. ��. � �.��a�`� n , � •,, ,,. �.. .%��'���� �, ��a"s� Y Tu�4 w� g ��:,'�''.� �� ����.�<• •s�. �e 2x10 Span = 14.0 ft ._.......... __... _ Appli2d L08ds Service loads entered.Load Factors will be applied for caicuEations. Uniform Load: D=0.0150, L=0.040 ksf, Tributary Width=1,333 ft ,..._DESlGN SUMMARY...:....� ... _. ....... _::. .............. .......................... ........ ..... ..__ - �- • L"'�, Maximum Bending Stress Ratio = 0.88� 1 Maximum Shear Stress Ratio = 0.274 : 1 Section used for this span 2x10 Section used for this span 2x10 , fb:Actual = 1,007.67psi fv:Actual = 49.38 psi FB:Allowable = 1,138.50 psi Fv:Allowable = 180.00 psi Load Combination +D+L+H Load Combination +D+�+H Location of maximum on span = 7.00Oft Location of maximum on span = 13.230ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 ' Maximum Deflection Max Downward L+Lr+S Deflection 0.293 in Ratio= 572 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.404 in Ratio= 416 Max Upward Total Deflection 0.000 in Ratio= 0<240 _.__.......... .._. Overall Maximum Deflect�ons-tinfactored l.oads Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Locadon in Span p+�, 1 0.4035 7.070 0.0000 0.000 Vertical Reactions-UnfdCtOf2d Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 0.513 0.513 D Only 0.140 0.140 L Only 0.373 0.373 D+L 0.513 0.513 �16 Mark Myers,PE Title; Job# , Myers Engineering LLC Engineer: ' 3206 50th St Ct NW,Ste 210-B Project Desc,; Gig Harbor,WA 98335 ph;253-858-3248 fx:253-858-3249 E-mail:m en ineer centu ei.net F���a zAU�zo,2.�z:s��h+ �OOC� B8`�rCE EPIER�P,t:C.,{NC..'i�3�t41,8uildfi.i2.�.24,Ver.6.12424 ` ��,���_- . .. _ , . DesCription: 15.Crawl Beam at Bearing Wall Material Properties Calculations per NDS 2005,ASCE 7-05 Analysis Method: Allowabie Stress Design Fb-Tension 900 psi E:Modulus of Elasticity Load Combination 200916C&ASCE7-05 Fb-Compr 900 psi Ebend-xx 1600 ksi Fc-Prll 1350 psi Eminbend-xx 580 ksi Wood Species : Douglas Fir-Larch Fc-Perp 625 psi Wood Grade : No.2 Fv 180 psi Ft 575 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling _....._..................... _..._....._.........................................__........................................... _......................................................................................_................................................._.................................................._................................................._.., D(0.745)L(0.785) : ...� 9�liN• ��.�.�7� . �� �,, '���I.:,. 4x10 ' Span=3.250 ft Appll@d LOaaS Service loads entered.load Factors will be applied for calculations. Uniform Load: D=0.7450, L=0.7850, Tributary Width=1.0 ft DESIGN S(lMMARY '' • • ------------._�__._._.._.._..._.__._.._.__..—_.__..._.....----...--- — ; Maximum Bending Stress Ratio = 0.45{2 1 Maximum Shear Stress Ratio = 0.339 : 1 Section used for this span 4x10 Section used for this span 4x10 fb:Actual = 485.68psi fv:Actual = 61.05 psi FB:Allowable = 1,080.00psi Fv:Allowable = 180.00 psi Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span = 1.625ft Location of maximum on span = 2.486 ft ' Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 ' Maximum Deflection Max Downward L+Lr+S Deflection 0.005 in Ratio= 7251 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.010 in Ratio= 3720 Max Upward Total Deflection 0.000 in Ratio= 0<240 _. __.._...._ . Overail Maximum Deftections-Unfactored Loads Load Combination Span Max.="Defl Location in Span Load Combination Max."+"Defl Location in Span D+L 1 0.0105 1.641 " 0.0000 0.000 VettiCel R23Cti0t1S-=13t1faCtO�ed SuppoR notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 2.486 2.486 D Only 1.211 1.211 L Only 1.276 1.276 D+L 2.486 2.486 �� Mark.Myers,PE Title: Job# Myers Engmeering LLC Engineer: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858-3249 E-mail:m en ineer centu el.net ����a:2.�uczo�z, �:es�h+ Wood!Bearr�. � ���. � �'� ��' �. ,. � �_. �� �a,ve�:�.,z.a.za ``� ; , .:,: E{�RCFkEE-�iG.�I�3=�4i;Buiki.'S:i2:4. . �.r�:� _ _ _ DeSCription: 16.Crawl Beam NOT at Bearing Wall Materiai Properties Calculations per NDS 2005,ASCE 7-05 Analysis Method: Allowabie Stress Design Fb-Tension 900.0 psi E:Modulus of Elasticity Load Combination 20091 BC&ASCE7-05 Fb-Compr 900.0 psi Ebend-xx 1,600.0 ksi Fc-Prli 1,350.0 psi Eminbend-�oc 580.0 ksi Wood Species : Douglas Fir-Larch Fc-Perp 625.0 psi Wood Grade : No.2 Ft 585.0 psi Density 32210pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling _.. _..__........................................................................................................................................................................................._....._._... ...... . ............ ... . . .. . ... ................._........�....................................__... .. ............................ � �. .............................. .......�................_............................................. D(0.1725)L(0.46) 4x10 Span=7.50 ft AppliBd LOdds Senrice loads entered.Load Factors will be appiied for caiculations. Uniform Load: D=0.1725, L=0.460, Tributary Width=1.0 ft DES/GN SUMA9Al2Y �- � • --�_...--------___...---.._— _.._..._ _ ';Maximum Bending Stress Ratio = 0.99Q 1 Maximum Shear Stress Ratio = 0.488 : 1 Section used for this span 4x10 Section used for this span 4x10 fb:Actual = 1,069.24psi fv:Actual = 87.92 psi ' FB:Allowable = 1,080.00psi Fv:Allowable = 180.00 psi Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span = 3.750ft Location of maximum on span = 6.750ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 , Maximum Deflection Max Downward L+Lr+S Deflection 0.089 in Ratio= 1006 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.123 in Ratio= 732 Max Upward Total Deflection 0.000 in Ratio= 0<240 __._....._____----.._.__�---- ---------------------______---------- Overall,Ma�cimum Defle�tions-Unfactored Laads Load Combination Span Max,""Defl Location in Span Load Combination Max."+"De8 Location in Span D+L 1 0.1229 3.788 0.0000 0.000 V8!'tIG14 RP.aC#i0E1S-Uf1f8GtOP@d ' SuppoR notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 2.372 2.372 D Only 0.647 0.647 L Only 1.725 1.725 D+L 2.372 2.372 G� v Mark Myers,PE Title: Job# , Myers Engineering LLC Engineer: ' 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858-3249 E-mail:m en ineer centu el.net F�,rea:2auczciz, �:ii�tii IlYood �eam ���ca�c,t�tc.tsa��tt,e��.�s.,2.a2a,v�:s.,s.aza : .,. : �:��: ____._ _ . _ Description: 17.Cov'd Patio Roof Joist � Material Properties Calculations per NDS 2005,ASCE 7-05 Analysis Method: Allowable Stress Design Fb-Tension 850 psi E:Modulus of Elasticity Load Combination 20091BC&ASCE7-05 Fb-Compr 850 psi Ebend-xx 1300 ksi Fc-Prll 1300 psi Eminbend-xx 470 ksi Wood Species : Hem Fir Fc-Perp 405 psi Wood Grade : No.2 Fv 150 psi Ft 525 psi Density 27.7 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling Repetitive Member Stress Increase ................... ...-----.._.__.._._._..__.._..________...._..._..._.........__.......-----------------.._.__.._..__._...-------....---------------._...._..______..._....______�..�.---------..., D(0.03) S(0.05) :� � :., .. , ,,;.. �� � � ; �� , , . , �.. � „ o-.��r ��,,; ���. �.. ... ... r�l'� ��i,. 2���. ' p, i,» �. ,... ,w., : �. , t...... >�iti �...5.... 3��,�n.�.•� . 2x8 Span= 10.0 ft ............................................................�......_................._................_....._......................_................................_............._....._.................... . .................................................................................................................................................._.............................._...._................................................................................_: Appll2d Li3�dS Service loads entered. Load Factors will be applied for calcu(ations. Uniform Load: D=0.0150, S=0.0250 ksf, Tributary Width=2.0 ft DESIGN SlJMMARY �' • • ................................._._._..._._........._.........._._._............_.............:.:................._._..._____......_..............._............_...................�::................_...................................................................................................................................................................................................._...... !Maximum Bending Stress Ratio = d.773 1 Maximum Shear Stress Ratio = 0.324 : 1 Section used for this span 2Xg Section used for this span 2X$ fb:Actual = 913.20 psi fv:Actual = 48.55 psi FB:Allowable = 1,173.00psi Fv:Allowable - 150.00 psi Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span = S.00Oft Location of maximum on span = 0.000 ft , Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 ', Maximum Deflection Max Downward L+Lr+S Deflection 0.183 in Ratio= 655 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.293 in Ratio= 409 Max Upward Total Deflection 0.000 in Ratio= 0<240 ' Overall Maximum Deflectians-Unfactored Loads Load Combination Span Ma�c."-"Defl Location in Span Load Combination Max,"+"Defl Location in Span D+S 1 0.2930 5.050 0.0000 0.000 Vertical Reactions-U11faCE01'ed SuppoR notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 0.400 0.400 D Only 0.150 0.150 S Only 0.250 0.250 D+S 0.400 0.400 y� Mark,Myers,PE Title: Job# Myers En�neenng LLC Engineer: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858-3249 E-mail:m en ineer centu el.net Fnnted:2kUu2Q12, L23?h1 �OOC� �a1ll EIdERC,�L�-ki�IC�7�3-2U11.Swhh#�'i.12:4.2d,Uer:fi.424.24 • �.e�: - •- . . DeSCripti0n: 18.Rim over Entry Material Properties Calculations per NDS 2005,ASCE 7-05 Analysis Method: Allowable Stress Design Fb-Tension 2325 psi E:Modulus ofElasticity Load Combination 20091BC&ASCE7-05 Fb-Compr 2325 psi Ebend-�c 1550 ksi Fc-Prll 2050 psi Eminbend-xx 787.815 ksi Wood Species : iLevel Truss Joist Fc-Perp 800 psi Wood Grade :TimberStrand LSL 1.55E Fv 310 psi Ft 1070 psi Density 32.21 pcf Beam Bracing : Beam is Fuliy Braced against lateral-torsion buckling _..._.._.................................._................................................................................................................................................................................................................................................................................. D{0.535}L(0.04)S(0.7) �y � � �-�- rJ�;�y" „ �, , ,� ; . � �� ����� ' �' �r� �� r �� � � � �� �� � y�m , , s a���� L � ��� P. � , x�.'�-__ i...n��m��.°`�'.. � �r�.>.a.. ��i,.,,�a� ,,� .. ,d,F%� ` 1.75x11.875 ' Span=7.0 ft Appli@d L0ad5 ' Service loads entered. Load Factors wiil be appiied for calculations. Uniform Load: D=0.5350, L=0.040, S=0.70, Tributary Width=1.0 ft DES/GN SUMMARY '' • • -- --....------..._..---------- -_._...�_..� _ Maximum Bending Stress Ratio = 0.943 1 Maximum Shear Stress Ratio = 0.725 : 1 Section used for this span 1.75x11.875 Section used for this span 1.75x11.875 , fb:Actual = 2,206.99psi fir:Actual = 224.64 psi FB:Allowable - 2,325.00psi Fv:Allowable - 310.00 psi Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span = 3.500ft Location of maximum on span = 6.020ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 , ' Maximum Deflection , Max Downward L+Lr+S Deflection 0.106 in Ratio= 7$g Max Upward L+Lr+S Deflection 0.000 in Ratio= D<360 ', Max Downward Total Deflection 0.183 in Ratio= 457 Max Upward Total Deflection 0.000 in Ratio= 0<240 _.... Overall Maximum De#lections-Unfactored Loads Load Combination Span Max."-"Defl Location in Span Load Combination Max."+°Defl Location in Span D+L+S 1 0.1834 3.535 0.0000 0.000 V81'tiC21 R2dCtIO11S-Ut1f8CtOPed Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 4.463 4.463 D Only 1.873 1.873 L Only 0.140 0.140 S Only 2.450 2.450 L+S 2.590 2.590 D+L 2.013 2.013 D+S 4.323 4.323 D+L+S 4.463 4.463 50 .. . - Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net Maximum Load For 6x6 DF#1 Wood Post s�f:_ ps' l�f:= psf•ft �Ib= plf•ft MH,Y:= 9•ft 144 F�:= 1000•psi �= 1 Cgb := 1 CM:= 1 Ct:= 1 CL:= 1 Cp�:= 1 E':= 1600000•psi 6x6 Wood Post Properties F��c= Fc'CD'CFc F"c= 1000•psi Kf�= 1 �'�f=0.6 for unbraced nailed Axial Load Capacity buitt up posts-0.75 for bolted) Slenderness Ratio (SL) �:= 5.5•in H t:= 5.5•in SL:= h C,:= 0.8 K�E:= 0.3 2 A:= t�h A=30.2•in KcE'E� ,vw F�E:= F�E= 1245•psi t h3 4 SL2 �I,v:= i2 I= 76.3•in 2 1 + FCE 1 + FcE FCE S:= I-2 S=27.7•in3 F" F" F" "''" h c c c Cp:_ - - •Kf 2-C 2•C C Cp= 0.76 F'�:= CP•F"� F'�=761•psi Pm�:= F'�A Pm�=23015•lb (Maximum post Capacity) Maximum Load For 6x6 HF#2 Treated Post sf:- PSl lf := psf•ft lb= plf•ft H�:= 9�ft '�'""" 144 ''�"^^' F�:= 460•psi �= 1 �;= 1 ('�.-= 1 �;= 1 �:= 1 �:= 1 E�:= 1045000•psi 6x6 Treated Wood Post Properties F„�6v= Fc'CD'CFc F�,c=460•psi Axial Load Capacity „��,"= 1.0 �Kf=0.6 for unbraced nailed built up posts-0.75 for bofted) Slendemess Ratio (SL) ,h�:= 5.5•in H �= 5.5•in SL:_ — C:= 0.8 K�.�= 03 � h � A:= t•h A= 30.2•in2 �vw E' F�= E FcE= 813•psi I._ t•h3 I= 76.3•in4 SL2 ^"' 12 2 I•2 FCE FCE FCE S\:= h S=27.7•in3 1 + — 1 + — — F"� F"� F"� '�" 2.0 2.0 C Kf Cp=0.85 �F'�,:= Cp•F"� F'�=389•psi P�,:= F'�A Pm�= 11760•lb (Maximum post Capacity) 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 5d , •. � Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Emaii: myengineer@centurytel.net Maximum Load For 3-2x6 HF Stud Built u Wood Post psi p ''�`""� 144 �'- psf•ft �= plf•ft H,;= 9•ft F�:= 800•psi C�:= 1 1C�= 1 C��.= 1 �.= 1 �:= 1 �:= 1.1 �E',�.= 1200000•psi F,�„�= Fc'CD'CFc F��c= 880•psi 3-2x6 Built Up Post Properties Axial Load Capacity ,�,'= 1.0 �Kf=0.6 for unbraced nailed buitt up posts-0.75 for botted) Slenderness Ratio (SL) ,M:= (5.5)•in H t�,'.= 3�(1.5)•in ,SL;= h �C,:= 0.8 �= 0.3 2 E, A�:= t•h A=24.8•in ,w�,,;= �E FcE=934•psi 3 SL2 "IN. t12 I=62.4•in4 2 1 + FcE 1 + FcE FcE s:_ I_2 S =22.7•in3 F" F" F" `�'`�' h � c c ""'�"� 2•C 2•C C Kf Cp=0.71 F�:= Cp•F"� F'�=626•psi P�- F'�A Pm�= 15486•lb (Maximum post Capacity) Maximum Load For 2-2x6 HF Stud Built up Wood Post s�f:_ p�� �;- psf•ft �= plf•ft H:= 9•ft F�:= 800•psi �= 1 �= 1 �= 1 �= 1 �:= 1 �:= 1.1 E'^= 1200000�psi F„�,;�,i= Fc'CD'CFc F���= 880�psi 2-2x6 Built Up Post Properties Axial Load Capacity %�,'= 1.0 �Kf=0.6 for unbraced nailed built up posts-0.75 for bolted) Slendemess Ratio (SL) ,�,�:= 5.5•in H �_ (2)•1.5•in ,�,�= h �C,�:= 0.8 I{�:= 0.3 2 �A:= t•h A= 16.5•in E' ,�„'= E FCg=934•psi t•h3 4 SL2 ,Ii= 12 I=41.6•in 2 1 + FcE 1 + FcE FcE S:= I� S = 15.1•in3 F�� F„ �� c � F� �;- — — 'Kf 2•C 2•C C Cp=0.71 �:= CP•F"� F'�=626•psi P�:- F'�•A Pm�= 10324•lb (Maximum post Capacity) 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 �v � . � _ Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3153/3T Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net Maximum Load For 4x4 HF#2 Treated Post s�f:= 44 �:= psf•ft �= plf•ft �H:= 8.5•ft F�:= 1040•psi r,�,�a,;.= i ,�;= 1 ,�,;= 1 ,�,�,,�.= 1 ,�,,:= i ,�:= 1 E'�= 1235000•psi 4x4 Treated Wood Post Properties F�,�;•= F�CD'CFc F,��- 1040•psi K�:= 1.0 tKf=0.6 for unbraced nailed Axial Load Capacity buitt up posts-0.75 for botted) h:= 3.5•in Slendemess Ratio(SL) "^^ t:= 3.5•in H '"� �;_ h �:= 0.8 MK�'.= 0.3 �:= t•h A= 12.2•in2 I{CE.E� 3 �_ F�g=436•psi �- tl I= 12.5•in4 SL2 F�E FCE 2 FCE I 2 S=7.1•in3 1 + — 1 + — — '�� h F"� F"� F°� �Kf C -0.37 �t^- 2.0 2•C C p- p�� C •F"� F'�=390•psi P��;= F'�A Pm�=4772•lb (Maximum post Capacity) ,�vNv' P 3153-3T Exposure B.xmcd Mark Myers, PE 8/2/2012 ti�