Loading...
3102 Lateral Analysis & Beam Calcs LATERAL ANALYSIS & BEAM CALCULATIONS .��.�- �� �-��. �',y,�, �'F �1 S�j �y� ��c��"~ �v � � ,�, f�' 37172 ��'' ���IS T Eg�� ��'� i'�' ��Sr��AL E���� �'6 � IF THIS SIGNATURE IS NOT IN COLOR, DO NOT ACCEPT FOR PERMIT SUBMITTAL. Project: Plan 3102 December 27, 2010 2009 TNTERNATIONAL BUILDING CODE 85 MPH WIND, EXPOSURE B, Kn 1.00 SOIL SITE CLASS D SEISMIC DESIGN CATEGORY D 3206 SOt'' Street Court NW, Suite 210-B Gig Harbor, WA 98335 Phone: 253-858-3248 Fax: 253-858-3249 Email: myengineer@centurytel.net � _ F _.._..... ..� +. ..__. m �-._......,.,� . . . 9 { i ._..L � �._,. .r .._. �:'11y.�......_»__'---�-----'_' Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3102 Fax: 253-858-3249 Gig Harbor, WA 98335 Emaii: myengineer@centurytel.net DESIGN LOADS: ROOF DEAD LOADS 15 PSF Total ROOF LIVE LOADS 25 PSF (Snow) FLOOR DEAD LOADS 15 PSF Total FLOOR LIVE LOADS 40 PSF (Reducibie) STAIR LIVE LOADS 100 PSF WOODS : WOOD TYPE: JOISTS OR RAFTERS 2X. -----_W_�_____ ----HF#2 BEAMS OR HEADERS 4X -6X OR LARGER--- ----DF#2 LEDGERS AND TOP PLATES--------- ----------HF#2 STUDS 2X4 OR 2X6------------------ -- –_--_–HF#2 POSTS 4X4------ --_-----_���------_—____--------------------HF#2 4X6-----------------___�__.._______________________�__�_____ w_�HF#2 6X6---------------------------_------------------ ----DF#1 GLUED-LAMINATED (GLB) BEAM & HEADER. Fb=2,400 PS1, Fv=165 PSI, Fc (Perp) =650 PSI, E=1,800,000 PSI. PARALLAM (PSL) 2.OE BEAM & HEADER. Fb=2,900 PSI, Fv=290 PSI, Fc (Perp) =750 PSI, E=2,000,000 PSI. MICROLAM (LVL) 1.9E BEAM & HEADER Fb=2,600 PSI, Fv=285 PSi, Pc (Perp) =750 PSI, E=1,900,000 PSI. TIMBERSTRAND (LSL) 1.3E BEAM, HEADER, & RIM BOARD Fb=1,700 PSI, Fv=400 PSI, Pc (Perp) =680 PS1, E=1,300,000 PSI. TRUSSES: PREFABRICATED WOOD TRUSSES SHALL BE DESIGNED BY A REGISTERED DESIGN PROFESSIONAL REGISTERED IN THE STATE OF WASHINGTON. TRUSS DESIGNS SHALL COMPLY WITH THE REQUIREMENTS OF IBC 2303.4. SUBMITTAL PACKAGE SHALL COMPLY WITH REQUIREMENTS OF IBC 2303.4.1.4. UNLESS OTHERWISE SPECIFIED BY LOCAL BUIIDING OFFICIAL OR STATUTE, TRUSS DESIGNS BEARING THE SEAL AND SIGNATURE OF THE TRUSS DESIGNER SHALL BE AVAILABLE AT TIME OF INSPECTION. ENGINEERED 1-JOISTS -FLOOR JOISTS & BEAMS OF EQUAL OR BETTER CAPACITY MAY BE SUBSTITUTED FOR THOSE SHOWN ON THIS PLAN, "EQUAL" IS DEFINED AS HAVING MOMENT CAPACITY, SHEAR CAPACITY, AND STIFFNESS WITHIN 3% OF THE SPECIFIED JOISTS OR BEAMS. 3102.xmcd Mark Myers, PE 12/22/2010 � Myers Engineering, LLC 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3102 Phone: 253-858-3248 Gig Harbor, WA 98335 Fax: 253-858-3249 Emaii: myengineer@centurytel.net LATERAL ANALYSIS : BASED ON 2009 INTERNATIONAL BUILDING CODE (IBC) Lateral Forces will be distributed along lines of Force/Resistance. Lines of Force/Resistance will be investigated for both wind and seismic lateral loads. Roof and Floor diaphragms are considered flexible. SEISMIC DESIGN: SEISMIC DESIGN BASED ON 2009 IBC CHAPTER 16 SECTION 1613 SINGLE FAMILY DWELLING, LIGHT FRAME CONSTRUCTION LESS THAN THREE STORIES IN HEIGHT ABOVE GRADE. Seismic Desiqn Data• --Soils Site Class D (Assumed) -Seismic Design Category D�/D2 [E:= 1.0 For Seismic Use Group I occupancy (ASCE 7-OS Tabie 11.5-1) R:= 6.5 Light Framed Walls w/ Wood Shear Paneis (ASCE 7-05 Table 12.14-1) SS:= 1.58 Mapped Maximum Considered Earthquake Spectrai Response Acceleration Short-Period Si := 0.40 Mapped Maximum Considered Earthquake Spectral Response Acceleration 1-Second Period Fa:= 1.00 Site Coefficient based on Site Class & SS (ASCE 7-05 Table 11.4-1) F,,:= 1.5 Site Coefficient based on Site Ciass & S� (ASCE 7-05 Tabie 11.4-2) W,w� Seismic Weight of Overali Structure, Seismic Weight of Structure above Level x (LB.) Equation 16-37 Sms:= Ss'Fa Sms = 1.58 Equation 16-39 2 SDS = 3•Sms SDS = 1.OS Equation 16-38 Sm� := S�•Fv Sm� = 0.6 Equation 16-40 2 SD1 �= 3•Sm� SDI = 0.4 Roof Slope Adjustment Factor: � I ,,,5��= r5 S = 1.08 �.= 4 S� = 1.05 cos�atanl �211 co atan — Plan Ar ` JJ � (12)) ea for Each Level: Plan Perimeter for Each Level: Ai :- 2118ft2•S P� := 2(40ft) + 2(52ft) (Upper Roof) (Upper Floor) AZ:= 1788ft2 + 61]ft2•S� (Upper Floor) Pz�= 2(SOft) + 2(52ft) (Main Floor) 3102.xmcd Mark Myers, PE 12/22/2010 � Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3102 Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net Weight of Structure at Each Level: Story Weight at Upper Fioor: Weight of floors include weight of fioor wl := 15�psf��At� + 12�psf�4�ft•�P�� framing, flooring material, insulation, and 5psf for miscellaneous pa�tition walls. Story Weight at Main Floor: wz:= 15•psf•�A2� + 12•psf•�5•ft•�P�� + 4.Sft•�P2�� Shear at each Levei: F=1.0 for one-story building F=1.1 for two-story building F=1.2 for three-story building F:= l.l � �F•SDS'wt� \/�E;- VIE= 77O9.51b Story Shear at Upper Floor Main R u2E�- �F•SDS•`wzl� VzE= 10434.SS Ib Story Shear at Lower Fioor Main R Total Base Shear: VE:_ �V�E+ VZE� VE= 18144.05 Ib 3102.xmcd Mark Myers, PE 12/22/2010 � Myers Engineering, LLC 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3102 Phone: 253-858-3248 Gig Harbor, WA 98335 Fax: 253-858-3249 Email: myengineer@centurytel.net WIND DESIGN USE ANALYTICAL PROCEDURE OF ASCE 7-05 SECTION 6.5 ENCLOSED BUILDING LESS THAN 60 FEET IN HEIGHT WIND EXPOSURE = B h := 23�ft Mean Roof Height as per Sec. 6.2 I:= 1.0 Impartant Factor(Table 6-1). ,�:= 85 Wind Speed Miles per Hour(Figure 6-1). z�:= 1200ft Per Table 6-2: z9 = 1200ft & a = 7.0 for Exposure B Kd:= 0.85 Wind Directionality Factor(Table 6-4}. a:= 7.0 z9 = 900ft & a = 9.5 for Exposure C h (°`) Kh := 2.01�-1 Kh =0.65 Velocity Pressure Exposure Coefficient (Table 6-3). Zs� Topographic Factor(KZt) (Figure 6-4): 2-D Escarpment with buiiding downwind of crest for Exposure B. x:= 1 ft Lh:= 1 ft H:= 1 ft z:= h 7 := 2.5 µ:= 4 H (-1'�z) Ki := 0.75 Lh 1 K� = 0.75 KZ:= I -L KZ = 0.75 K;:= e Lh K3 = 0 J ( µ n) . � z KZt.= 1 + Ki•Kz•K3� Kn= 1 Therefore use: K�.= 1.0 Internal Pressure Coefficients (Figure 6-5) GCp; :_ .18 +/- External Pressure Coefficients w/ Roof Pitch = 5/12 (23 degrees) Front to Back & 8/12 (34 degrees) Side to Side Taken from Figure 6� (w/ G=0.85 per Section 6.5.8.1) Front to Back: Side to Side: L�, Lrb�= 52fr Brb:= SOft - = 1.04 h =0.44 Lss h B� L� LSS:= SOft Bss�= 52ft - = 0.96 - = 0.46 BSS Lss GCPt7 :_ .8 Windward Wall G� g Windward Wall PS� '- ' GCptz:- .12 Windward Roof GC 2g Windward Roof PSZ'- ' GCP�;:_ -.6 Leeward Roof GC 6 Leeward Roof ps3�- -• GCPra�_ -.5 Leeward Wail GC 5 Leeward Wall ps4�- '• Velocity Pressure (qh ) Evaluated at Mean Roof Height (h) (Equation 6-15) qh:= 0.00256•Kh•K�•I{d•VZ•I qh - 10.21 Design Wind Pressures p = qhGCP -qhGCP� (Equation 6-18) 3102.xmcd Mark Myers, PE 12/22/2010 �� 329 SF 2 - - -- --- ---� ----------- � a 395 v� a - _ m � ---- - - --- ---------- � �RON7 ELE�/A710N ❑ ❑ ❑ ❑ e � ■ �� �� � � � ��� f �1� S �65� �4�� S� 4� S� �19 S� ao � ��� � � � ��� � �� a ❑ � ���� � � � ��� � �� 6 329 SF 2 5 SF �34 SF - FRONT EL�VAT(ON , � '� ,�c�,� �"�', ' s rJ/`� ❑ ❑ ■ � B � � �� �� � � � ��� f �1� � 66S� �- ��5 SF �4 SF 519 S� �� � ��� � � � ��� f �1� 0 � � I��� �� � ��� I �1� � ��` ✓����e�� � Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3102 Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net The Internal Pressures on Windward and Leeward Walls & Roofs will offset each other for the lateral design of the overall building and wiil therefore be ignored for this application. Front to Back: Side to Side: Pr� �= 9n'�GCpfl��Psf pfl = 8.17ft 2•lb Windward Wail Ps� = qn��G�ps���Psf ps, = 8.17ft 2.Ib Windward Waii Ptz�= 9n��GCPtz��Psf p�= 1.23 ft 2-Ib �Nindward Roof psz:- qh•�GCpS2��psf pS2 = 2.86 ft Z�lb Windward Roof Pr��= 9n'�GCp�;��psf p�_-6.13 ft 2�Ib Leeward Roof ps3�— qh'�GCps3��Psf ps; _ -6.13 ft 2�Ib Leeward Roof Pf4�= 9h'�GCPf4��Psf Pfa=-5.1 ft Z•Ib Leeward Wall ps4�= 9h'(GCps4�•Psf P5a =-5.1 ft 2•Ib Leeward Wall Wind Pressure at Upper Floor Wall & Roof (Front to Back): V�w �_ �Ptz—Pf3�'329ft2 + �pfl — Pfa�•222•ft2 Vi W = 564.73 Ib Wind Pressure at Main/Lower Floor Walls (Front to Back): Uzw �_ �Pt�—Pt3�'SSft2 + �Pfl —Pfa��434•ft2 V2�, = 616432 Ib Wind Pressure at Upper Floor Walls &Roof (Side to Side): v3w �_ �Psz — ps��•1 lOft2 + �ps� 'psa��405ft2 V3�, = 6363.41b Wind Pressure at Main/Lower Floor Walls (Side to Side): Vaw = �Psz— Ps3�'�ft2 + �Psi — Psa��519ft2 V4�, = 6888.15 lb But not less than 10 psf over the projected vertical plane. �V�= 551 ft2•I Opsf V 55101b iw = 3102.xmcd Mark Myers, PE 12/22/2010 / T --._-"� � �_- __ _,..__. _ . �hhf3'1 _ :_ � N � �I , � �� �I 'i ,�i1"3�� �i 4/Ox4/0 FX 2 6x3/0 SHI 16'�F oX � /Dx3/ �,� I j�y t"7 i �� V/ �� _._._ I 5'b� �f yl V� HWR � o P�`2 rI \\����� � �'� / 2/6 SROSSH EGRESS � EGRESS � � �L 2/6x5A0 SH ��;�,� � (2) 3/Ox5/0 SH 1 1A \� \ � O ____-'�_-�" � r \\ \____-_��``yC/ �� ` I \ Z� � 0 �, O / � p�_ 1 / 'I O 2/0 �{, +�caiGla_LE �v �2/4 HC o� ` // a 1 < SITTRJCs OPTIdJ �.�('•�� �� I ^ \ � � ,� M'C'STElZ 411��+ `� 2io� /✓ � ' � li \\\ � I � � �� �� " s . i I "��. I I � '. .o � � � \ I I \ N Y ry �I = � ___ --__ I \ ___ � jl I � , .n \ R6S � cr' OO.� SOFFIT DN B• � `--_---=JI = 4—rz --------------� ti � R&S \ \/ 5/Ox2/6 � "' � I , TUB & SHWR I� � PROVIDE STAIRIJAT ILLIMMdTIGN . x u j � PER SELiILN R303b IRL �, . � ��I � � I I .� i j I I DN 16R. _�� � � "u N ���'�— N \ N II � O ' p N � K � II \ � N W il � � \\\ O / � � ��o ,---- 2i6 HC I�' 6/0 BI-PASS /2/6 HC _\� yC` � � \ \ . I, �� \ ' /�\ Q / \ OPT. CLOSET i�. __' < . i --- R&S --- \\�8 HC S'C LINEN N�� ��N �I I � \ �� /� �� � I�� 5 SHELVES II ' � II fio� �—� u ��� ��� 'i �Q� i i = i �x �o �� p ti �i ��� li �` '�-� �' I � I 2/o HC i � i �I� - li 2/0 HC���4 Ox3/0 (2) 2/Ox3/0 FX EGRESS __ _ sg a - --d ����-.�� ,i (2) 3/Ox5/0 SH �` ,� N ,� i / EGRESS �'�� ',, . (2> 3/Ox5/0 SH � �� ��" ''�j� ,� ��� , � �, � �b ,� �,r �,s �y B� , � i ;�,�"��'� � UPf'E R FL OOR f'L�4N 10 �5�3� � 'I 1���-�; � �s '� a/Dxa/0 PX 2 6x3/0 SH � - � . � . /Ox3/ � �.� ��,�•�7 � in — J� � �. a Vo � SHwR � ° d-��� EGRESS EGRES� ������! �� EGRESS in SOP � 2/6x5/0 SH 2/6x5 SH ���"<�' ��� (2) 3/Ox5/0 SH I �� �,L1a � `� � ------ \ `----\— \ r— �-- �� O \ � ` m; I �. �' Q� 0 2%o np � � / / �� Z � O �2/4 HL ol � � <\ '� J7 ��qj _ SITTMG OPTION s � MAST�R 5U11'E � 2io� `'�. �� �� ,� �, �� n�a ire � ,/y �I �\ i I 8''0' CEILWG �, P/��,'. �� ' � � � x x II �I ... � ��i� � W.IL. � N � N j � , � III I . x \ R6S_- � I I � \ I I� 1 ti S�FFIT DN 8' i N 4— —————' S/Ox2/6 L-_-_-_-J x rz --------- R6S ° �� ° TUB & SHWR —____..___--__ .. N � N I i . ',. I'' DI� 1�6R. _�\ D x . \ FaIL N N J p ON l� x � � L7 V� � \ O� /�� /`=o ---` 2/6 tiC ��. �2/6 HC I yC � � � � ----- �3 6/0 BI-PASS �i—�� � � _ � _ ------- .o � 0 Q �� \� OPT, CL�SET 2/8 HC tiC LINEN N � ��N `II � � —_=R&S=_— \ � II /\ II — \� 5 SHELVES II �� �� II � ro ` �� `� ��3 !�F U ��ry���y �G� �—�. S / R/IR��lil I. � �Q� �I � � I�X�� �� " �--y � 11TILITY eio r+c, I mII -= ' �I 2io Hc��8EDR001'1 4 i / /Ox3/0 X <2) 2/Ox3/0 Fx EGRESS "� /}/� ; --- -----_ � � D17 �� • �"� �z> sioxsio sH � ��"�s'71"� v ,.� ------- -����-_;..� � 3 EGRESS 17..._.. NE�,BELOW ..��J...` G 5 i c2� 3io.5io SH � '1i.�� ' �b,b� � � �,.���5��1�bR� i ,��������"� � - ----- ' COVERED PpRCH LINE BEL�W UPPEi� FLO�fi� i�L,4N � ��r �,=7",���,I-.� �� Myers Engineering, LLC 3206 SOth Street Ct NW, Ste 210-B PROJECT : Plan 3102 Phone: 253-858-3248 Gig Harbor, WA 98335 Fax: 253-858-3249 Email: myengineer@centurytel.net WALL AA: Story Shear due to Wind: V;�, = 6363.41b Story Shear due to Seismic: V i E= 7709.516 Bldg Width in direction of Load: Lt:= 48.S�ft Distance between shear walis: L� :_ �8.5•ft Shear Wall Length: Laa�,:_ (6 + 6.5)ft Laas:_ (6 + 6.5)ft LaaN,= 12.5 ft Percent full height sheathing: o�_ 10�ft ��� o�o = 100 Max Opening Height = Oft-Oin, Therefore Co:= 1.00 10�ft) per AF&PA SDPWS Table 4.3.3.4 V3w Li UlE LI Lt 2 0.7p• L . 2 Wind Force: vaa:= Seismic Force: — �. t Laa�4. P=— � Eaa= Laas vaa=254.54 ft �.►b vaa _ 254.54 ft— �-lb — 1 Eaa C Eaa = ?15.87ft �Ib C = 21�.87ft— �•Ib 0 0 Overturninq Moment on 6ft Wall Plate Height: Pt:= 8�ft P1-6: 7/16" Sheathing w/ 8d naiis a�? 6" O.C. Laa�= 6•fr OTM := vaa•Laa•Pt OTM - 12217.72 ft•Ib Wind Capacity= 339 pif Dead Load Resistinq Overturnina� Seismic Capacity = 242 pif WR:= 0.6(15•psf)•2•ft•Laa+ 0.6•(10•psf)•Pt•Laa + 0.6•(lOpsf)•Oft•Laa DLRM:= WR. �aa DLRM = 1]88 ft•Ib Holdown Force & Net Uplift� HDFaa:- OTM - DLRM HDFaa= 1838.291b Co'Laa Base Plate Nail Spacinq (2005 NDS Table11N) Anchor Bolt Sqacinq (2005 NDS Table 11E) 16d Common (0.162"x3.5") Nails � 1-1/2" Plate Hem-Fir 5/8" Dia. Bolt{6" Embed) 8 1-1/2" Plate Hem-Fir ZN:= 122•Ib Cp:= 1.6 AS:= 860•Ib �:= 1.6 Z� := AS•Cp Z� = 137616 Cp•ZN•Co Bp� vaa Bp° 0.77 ft Per Nail As:= zB C0 As= 5.41 ft Per Bolt vaa Shear Wall Summa : Wind Force: Seismic Force: B.P. Nailinq Spacina A.B. Spacinq Holdown Force: Holdown Tvpes: vaa — 1 Eaa — 1 B = 0.77ft Simpson MST37 =254.54ft •16 - -2�5,87� •lb p As= 5.41ft HDFaa= 1$38.29�b Co Co 16d @ 8" o.c. 5/8"A.B. @ 60" o.c. 3102.xmcd Mark Myers, PE 12/22/2010 �Z Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3102 Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net WALL BB: Story Shear due to Wind: V3W = 6363.41b Story Shear due to SeismiC: V�E= 7709.516 Bidg Width in direction of Load: L�:- 48.5•ft Distance between shear walis: �:- 48.5•ft Shear Wali Length: LbbW:_ (3.4+ 3 + 2•233)ft Lbbs:= L3.4(881 + 3�g� + 2•2.33(4�8���ft Lbbw = 11.06 ft ` � ` 10�ft Max Opening Height = Oft-Oin, Therefore C�.= 1.00 Percent full height sheathing: ��— ]00 % = 100 (10•ft per AF&PA SDPWS Tabie 4.3.3.4 V�� L� V3W L� 0.7p•L•2 Lt � 2 c Wind Force: vbb:— Seismic Force: �:= 1.0 Ebb�- Lbbw_ Lbbs E vbb =287.68 ft �.�b vbb _ 287.68 ft 1•16 Ebb= 343.29 ft �•I b bb = 3�13.29 ft ��Ib Co Co Overturninq Moment on 2.33ft Wall: Plate Height: P�:= 8•ft P1-4: 7118" Sheathing wl 8d nails @ 4" O.C. Wind Capacity= 495 plf Lbb:= 2.33•ft 0��:= Ebb'Lbb'Pt OTM = 6398.86ft•Ib Seismic Capacity= 353 plf Dead Load Resistinq Overturninq: W�:= 0.6(IS•psf)•2•ft•Lbb+ 0.6•(10•psf)•Pt•Lbb+ 0.6•(IOpsf)•Ofr•Lbb D�RM�- WR•�bb DLRM= 179.15 ft•Ib 2 Holdown Force & Net Uplift: OTM — DLRM I-�IDFbb:= HDFbb =2669.41b Co'Lbb Base Plate Nail Spacinq i2005 NDS Tab1e11N) Anchor Bolt Spacina (2005 NDS Table 11E) 16d Common (0.162"x3.5") Nails 8� 1-1/2" Plate Hem-Fir 5/8" Dia. Bolt(6" Embed) 8� 1-112" Plate Hem-Fir Z�:= 122•lb �.= 1.6 A�:= 860-1b �.= 1.6 Z�:= As'Cp ZB = 13761b Z C $ •- CD ZN C� B =0.57 ft Per Nail As:= B � As= 4.01 ft Per Bolt M�An Ebb p n�n Ebb Shear Wall Summarv: Wind Force: Seismic Force: B.P. Nailinq Spacinq A.B. Spacin4 Holdown For�e: Holdown Tvpes: Simpson MST48 / vbb _ Z8�68 ft �.Ib Ebb _ 343.29 ft �•1b Bp- 0.57 ft As=4.01 ft HDFbb = 2669.4 lb MSTC4863 cO C0 16d @ 6" o.c. 5/8"A.B. @ 48" o.c. 3102.xmcd Mark Myers, PE 12/22/2010 1� Myers Engineering, LLC 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3102 Phone: 253-858-3248 Gig Harbor, WA 98335 Fax: 253-858-3249 Email: myengineer@centurytel.net WALL CC: Story Shear due te Wind: V�W = SS101b Story Shear due to Seismic: V�E = 7709.5 Ib Bidg Width in direction of Load: �:= 40•ft Distance between shear walis: L :_ �O�ft � Shear Wail Length: Lccw:- (20.g)ft Lccw.=20.8 ft Lccs:_ (20.8)ft Percent full height sheathing: ��_ 10•� �pp ��o = 100 Max Opening Height = Oft-Oin; Therefore C�:= 1.00 � 10•ft) per AF&PA SDPWS Table 4.3.3.4 V��, L� V�E Li Lt 2 0.7p� L � 2 Wind Force: vcc:= Seismic Force: t Lccw ,�:= 1.0 Ecc= Lccs vcc = 132.45 ft �•]b vcc _ 1�2.45 ft �•Ib — 1 E�� C Ecc = 129.73 ft •I b C = 129.73 ft �•I b 0 0 Overturninq Moment on 20 8ft Wali� Plate Height: Pt:- g.ft P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C. L�c�= 20•8•� TM := vcc•L��•Pt OTM =22040R•Ib Wind Capacity= 339 plf Dead Load Resistinq Overturning_ Seismic Capacity= 242 plf ��:= 0.6(15•psf)•2•ft•L�� + 0.6•(10•psf)•Pt-L�� + 0.6•(lOpsf)•Oft•Lcc D��:_ WR Lcc DLRM= 14277.12ft•Ib 2 Hoidown Force & Net Uplift� HDFcc:- OTM —DLRM HDFcc= 373.22 Ib Co'Lcc Base Plate Nail Spacinq (2005 NDS Table11N Z Anchor Boit Spacinq (2005 NDS Tabie 11E) 16d Common (0.162"x3.5") Nails� 1-1/2" Plate Hem-Fir 518" Dia. Bolt(6" Embed) � 1-1/2" Plate Hem-Fir ,Z,�,�',,:= 122•lb C�:= 1.6 A�:= 860•Ib �:= 1.6 �:= AS•Cp Z� = 13761b B ._ CD'ZN'Co ,�w,� Bp= 1.47 ft Per Nail As:= ZB�CO vcc ,w,M As= 10.39ft Per Bolt vcc Shear Wa►I Summarv� Wind Force: Seismic Force: B.P Nailinq Spacinq A.B._ Spacfnq Holdown Force: Holdown Types: vcc _ � E�� No Holdown Req'd = 132.45 ft �lb - - 129.73 ft �•►b Bp- 1.47ft As= 10.39ft HDFcc = 373.221b Co Co 16d @ 16" o.c. 5/8"A.B. @ 72" o.c. 3102.xmcd Mark Myers, PE 12/22/2010 1'� Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3102 Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net WALL DD: Story Shear due to Wind: V��, = SSIOIb Story Shear due to Seismic: V�E= 7709.5 Ib Bldg Width in direction of Load: �:= 40•ft Distance between shear walls: �:_ 40•ft Shear Wall Length: Lddw:_ (19.17)ft Lddw.= 19.17 ft Ldds:_ (19.17)ft Percent full height sheathing: o�_ 10•ft 100 % = 100 Max Opening Height = Oft-Oin, Therefore C�.= 1.00 - (�p.�) per AF&PA SDPWS Table 4.3.3.4 V��, L� viE Lt 0.7p-L• 2 LL 2 t Wind Force: vdd :- Seismic Force: �:= 1.0 Edd�- LddS Ldd�, vdd = 143.71 ft 1.�b vdd _ 143.71 ft t•lb Edd= 140.76 ft �•lb Etld = I 4U.76 ft �•Ib Co Co Overturninp Moment on 19.17ft Wall: Plate Height: P�:= 8•ft P1-6: 7/16" Sheathing w/ 8d naiis @ 6" O.C. Wind Capacity = 339 plf Ldd:= 19.17•ft O�T,M�,:= vdd•Ldd•Pt OTM =22040ft•ib Seismic Capacity - 242 plf Dead Load Resistinq Overturninq: W�:= 0.6(15•psf)•2•ft•Ldd+ 0.6•(10•psf)•Pt•Ldd+ 0.6�(lOpsf)�Oft�Laa D�LR�,NMN= WR•L2d DLRM = 12127.13 ft•lb Holdown Force & Net Uplift: OTM -DLRM HDFdd:= HDFdd = 517.1 lb C o'Ldd Base Plate Nail Spacinq (2005 NDS Table11N) Anchor Bolt Spacinq (2005 NDS Table 11E) 16d Common (0.162"x3.5") Nails 8� 1-1/2" Plate Hem-Fir 518" Dia. Bolt(6" Embed) 8� 1-1/2" Plate Hem-Fir Z�:= 122•Ib �= 1.6 A�,:= 860•Ib �C��.'= 1.6 Z�:= A,�Cp Z� = 13761b �D'ZN'�o ZB �0 Per Bolt B �= B = 136 ft Per Nail A�:= As= 9.57 ft ""'z'^ vdd p vdd Shear Wall Summarv: Wind Force: Seismic Force: B.P. Nailinq Spacinq A.B. Spacinq Holdown Force: Holdown Tvpes: No Holdown Req'd vdd - 1 Edd — 1 Bp= L36 ft As= 9.57 ft HDFdd = 517.1 lb — = 143.71ft •]b — = 140.76ft •Ib CO CO 16d @ 16" o.c. 5/8" A.B. @ 72" o.c. 3102.xmcd Mark Myers, PE 12/22/2010 1� r �c..�.. _ �� i � �.�.____ STF�4)�RS, _ ..---- __ �3� ���j � � ;b/���'��}'��b�v .-__ ���,� ' / 7: � t`t,�.,. (2) 3/6x6/0 SH �����'"$��� . � � � �� //��J � � . �. �� . � � ' .. ' ... � � ; � ± � J`�. � �� M 8/Ox6/10 SGD ' � � � J � 5/Ox6/0 SL � 5/Ox6/0 SL ' � m � ' I ,�� N �`� i � ��,� � , �� � � � q � r q�1 ' E��-�ar rmaH �p 0 i' ��� Z� ��4 d��> y I � �I I�, � ! �, �� • 1 P � � j' � I �� � �� � 47'OPEN R41L _____— ,� � REL'ER �i i I � , BAR OPTION ` � �____—_— \ I � _—_ �I I il _--_— �� � , � � � l � � � I � � � � . � � SOFFIT DN 8' � I I I I � � � � i � � ', o � ! I � � r; ;4� i --,-�— _._.._—. � � � ! I I � � . f,. — ...,� I � I I I I � �, .�� ii � ` n � Izl � 6%___ i• t'1 � " !��� I "' ��d ��I �� �.� � i� , � � Q� y \ i �/�p , j I � � � I `�° � ✓"1�1%rV°��"�,�� . � I o N I n ` �i � � I � I I I C�/B $C 4�C/irl�3Ai�d/_� , I i � ' � ��� x`, �� � ��� :o � � lal � i ,I o � i� i� ni `\�!N p � ��. i � OFFIT Drv e.� ��� H t �----� ic.r , � � /P/ ————_ . i —_ R&S '� �Y� I � SL �F ✓ • p ---� ! ��'y1,p1�R Pa �� � �.�_� � 4 � V � r--------------------� , i6'1? 's�,,' ' � � ; �; �� � � � ' ' BLDG_LN. ABV, ' I � I �, — — — I I FLOOR LINE ABV, I , I � —�--------- I � � � � i i "��Y`R%;J J• .,. � �iTr1DIoRs � � � � -—-- --—— + - �_SO�FIT DN 8__J 16/Ox8/0�.H. SECTIONAL GARAGE DOOR � �. � � ' EGRESS EGRESS ,� � , ,� -;---._...______,� , �\' ' „ � c2> 3/Ox6i0 SH -�' �,� _--_.' bZ5 � ' i;��-°� , � � � 0 FLOOR PLAhI CALCl1LATION �� MAIN FL��R� 1,314 S�. UPPER FL�OR� 1,788 SF. � T�TAL� � � 3,102 S.F. ,,.,,.;,-�.:�.�,J ���� ��,L%J�R� GARAGE/SHOP� 501 SF. J ' ' �'P v M,4 f N �L OOR PL�4N �� ������� � , � ��D � _____._.__ .__ , _7 I �'�� ��� �jj�����J , .. . �- � I � �, � �����e�!� c2) 3/6x6/0 SH PATIO � � 7 x � � o) � .4 ._. _ . . . n 4 � .o � , a � x , :� �. _, .. � � m 8/Ox6/10 SGD 5/Ox6/0 SL �'�, j 5/Ox6/0 S� j - � �� x ^'� ti �, /`���,1;`��`�l ��„'/y .,( �i i y}.. � I I I 3 � " F�'�+�D CsREAT RDOI� ��f� I - l 1 � E:3��> N � n J /I�1��, ��/ � --"_�.� ' � . i i a`. � . i � I � aroeQ+�L ------ 'r , — � I i eAR oPnaN --- i � �' ----- � L___--_ � I . � R � � , t � �," �� I i I I — --� � � �� x � S�FFIT DN 8-, �� � ✓ I I I � 0 i .o i' i , � � �p_„✓ x ' ' ..T..._ �� i _ �I I lul �� ,�V�"3 N ��. � �QI N � � ' � I N � ���� �D I ✓ � � i � 3-l...Q CsAR�C� �� X , i i e�e sc ��' � ' J i�i s'. �� � � i � iai � � �i �� i� N `�1 y � ...� vi OFFIT DN 8'� �C,�j� _____ �—___J �PQj R&S j / J __——___� _ ^ 4, �-- � o i i n . / C� ° � � K vlG� � V� -------------------� �' I s� ��,� ,��° � � � � � , _,;�i , i �i��7 �o �'� � '� , -:'1�`r����' � � , i 5TN0���5 ; c� 5Tt1DY �� � � � � n.l� B�DG. �N, ABV. �I I, � FL�OR LINE ABV, � I I ��'N — — — — i —i--------�` — � � � I �` ,,��pb�� `_SOPFIT DN 8' _J I 16/Ox8�0�H.SECTIONAL GARNGE D�OR � 8/Ox8/0 O.H SECTI�NAL GARAGE DO�R �� ----- f ., EGRESS EGRESS , ,�'�� ��E. �F, � _-- _� (2) 3/Ox6/0 SH � �� -.- ,„�,�f; � ; ,s ��-_ . >.., �-�vEt�D Fl�oNT PoRGH =� b � ��1 J',��i, � _..__ ....Y • a � � FLOOR PLAN GALCl1LATIONS MAIN F�OOR� 1,314 SF. �y UPPER FL�OR� 1,768 SF. 5���°�7��i;j TOTAL� 3,102 S.F. « n GARAGE/SHOP� 898 SF. M��I� �L�O� I 1��1� , ��, ,;�,- f; . _ �� Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3102 Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytei.net WALL A: Story Shear due to Wind: V4�, = 6888.i51b Story Shear due to Seismic: V,E = 104;4.5516 Bidg Width in direction of Load: L�;- Si�ft Distance between shearwails: L :_ '7•ft � Shear Wall Length: LaW:_ (3.33 + 3.;3 + 4)ft Law.= 10.66 fr Las:= r2•3.33�6�6�1 + 4(g llft L 9 J �9JJ Percent fuil height sheathing: ��_ i0�� 100 % = 100 Max Opening Height = Oft-Oin, Therefore C�:= 1.00 10�ft) per AF&PA SDPWS Tabie 4.3.3.4 vaa�LaaN,+ v4W L1 VZE L� Lt 2 Eaa'LaaS + 0.7p• L • 2 Wind Force: va:= Seismic Force: t Law. �:= 1.0 Ea:_ Las va= 469.52 ft �•Ib �a =469.52 ft �•Ib E — 1 a C Ea= 545.47 ft •Ib - - 545.47 ft �•Ib ° Co Overturninq Moment on 5 1ft Wall� Piate Height: PM:- 9�ft P1-2: 7/16" Sheathing w/ 8d nails @ 6" O.C. I-a= 5•1•� OTM:— E �L �Pt Wind Capacity= 833 pif �,,,,M,,,,,,,— a a OTM =25037.1 1 ft•Ib Seismic Capacity = 595 pif Dead Load Resistinq Overturnina� W�:= 0.6(15•psf)•2•ft•La+ 0.6•(]0•psf)•2Pt•La+ 0.6•(lOpsf)•1 ft•La L �n nnR�wM�= WR'2a DLRM= 1716.66 ft�lb Hoidown Force & Net Unlift� OTM — DLRM HDFa:= HDFa =4572.64 Ib Co'La Base Plate Nail Spacinq (2005 NDS Table11N) Anchor Bolt Spacinq (2005 NDS Table 11E) 16d Common (0.162"x3.5") Nails 8� 1-1/2" Plate Hem-Fir 5/8" Dia. Bolt(6" Embed) � 2-112" Plate Hem-Fir Z�:= 122•Ib �:= 1.6 A�:= 1070�Ib �= 1.6 Z := A -C Z ,�,, 5 p g = 1712 I b C�ZN CO Z C „B,�„�= Ea BP= 0.36 ft Per Nail A�s.�- E ° As= ;.14 ft Per Bolt a Shear Wall SummaN' Wind Force: Seismic Force: B.P. Nailinq Spacinq A.B. Spacin9 Holdown Force: Holdown Tvpes: va _469.52 ft— �•Ib Ea — � $p=0.36 ft As= 3.14 ft HDFa =4572.fi4 Ib Simpson STHD14RJ C� Co =545.47 ft •16 16d @ 4" o.c. 5!8"A.B. @ 36" o.c. 3102.xmcd Mark Myers, PE 12/22/2010 �� Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3102 Fax: 253-858-3249 Gig Harbor, WA 98335 Emaii: myengineer@centurytel.net WALL B: Story Shear due to Wind: V.�W - 6888.15 Ib Story Shear due to Seismic: V,� = 10434.�516 Bidg Width in direction of Load: �:= Sl�fr Distance between shear walls: �:_ �4•ft Shear Wall Length: Lbw:_ (6.17 + 1.625 + 1.625)ft Lb„= 9.42 ft Lbs= (6.17 + 2�I.625)ft 10�ft Max Opening Height = Oft-Qin, Therefore Cw�.= 1.00 Percent full height sheathing: °�_ (10�ft) 100 °/a = 100 per AF&PA SDPWS Table 4.3.3.� V4�,�, L� v'-� L� vbb•LbbW.+ L �2 Ehh�LbbS + 0.7P� Lt � t Seismic Force: :- 1.0 E Wind Force: vb:_ � b� Lbs Lb�� E vb = 509.81 ft �•ib �b = 509.81 ft �-Ib Eb= 468.89 ft �•Ib � = 468.89 ft �•lb C Co Overturninq Moment on 6.17ft Wall: Plate Height: P�:= 9�ft P1-2: 7l16" Sheathing w! 8d nails @ 2" O.C. Wind Capacity = 833 pif Lb:= 2.8•ft O�TM„��= vb�Lb�Pt OTM = 12847.29ft�16 Seismic Capacity = 595 pif Dead �oad Resistinq Overturninq: Restraint Panei Height = 9ft Maximum W�:= 0.6(15�psf)•O�ft�Lb+ 0.6•(l0�psf)•Pt•Lb+ 0.6•(]Opsf)�12ft�Lb Restraint Panel Width = 1ft-7 1/2in Minimum L Allowable Shear per Panel = 968 Ib p��- WR•b DLRM = 493.92 ft•Ib � (3.25ft•vb) Holdown Force & Net Upiifit: Shear per Panel: vh:_ 2 OTM - DLRM �' g2g.45 Ib I-iDFb:= HDFb= 4411.92 Ib b= Q,�. Co'Lb See APA Technical Topic TT-1006 "A Portal Frame with Hold Downs for Enqineered Applicatiors" (Emphasis Added) SEE PORTAL FRAME C4NSTRUCTION DETAIL ON STRUCTURAL SHEETS FOR FRAMING, NAILING, AND HOLDOWNS AT EACH GARAGE PORTAL FRAME PANEL Base Plate Nail Spacinq (2005 NDS Table11N} Anchor Bolt Spacinq (2005 NDS 3able 11E) 16d Common (0.162"x3.5") Naiis 8� 1-1I2" Plate Hem-Fir 5/8" Dia. Bolt(6" Embed) 8� 2-1/Z" Plate Hem-Fir Z,�:= 122•Ib �.= 1.6 A�:= 1070•Ib C�:= 1.6 Z�,,= AS•Ci� Z� = 17121b $�= CD ZN C� Bp=0.38 ft Per Nail �= ZB bc� As= 3.36 ft Per Bolt vb Shear Wail SummaN: Wind Force: Seismic Force: B.P. Nailinq Spacinq A.B. Spacinq Holdown Force: Holdown Types: Simpson vb = 509.81 ft �•Ib Eb =468.89 ft �•�b Bp=0.38 ft As= 3.36 ft HDFb = 441 1.�32 Ib STHD14/RJ �0 �O 16d @ 4" o.c. 518" A.B. @ 36" o.c. 3102.xmcd Mark Myers, PE 12/27/2010 �� Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3102 Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net WALL C: Story Shear due to Wind: V2�, -6164.321b Story Shear due to Seismic: VZE- 104;4.55 Ib Bldg Width in direction of Load: �:- 40�ft Distance between shear walls: �:_ .�O�ft Shear Wall Length: LcW:_ (19.5)ft Lc�ti = 19.5 ft Lc5:_ (19.5)ft Percent full height sheathing: o�_ 10•ft �00 % = 100 Max Opening Height = Oft-Oin, Therefore C�:- 1.00 ��•�/ perAF&PA SDPWS Table 4.3.3.� vcoLccN + v2W•L� E Lcc + 0.7 v'� L� Lt 2 cc' s P'L' ? Wind Force: vc:= Lc Seismic Force: �;_ �,p E�:= t µ Lcs vc= 29934 ft �.�b vc _ � E _ � C =299.34 ft •lb E�_ ;25.66 ft- �•Ib � = 325..66 ft •Ib ° Co Overtumina Moment on 19 5ft Wall� Plate Height: P�:- 9•ft P1�: 7/16" Sheathing w/8d nails a�4" O.C. L�:= 19.5•ft O�TM��= E�•L�.pt OTM = 57153.77ft�ib Wind Capacity = 495 plf Seismic Capacity = 353 pif Qead Load Resistinq Overturninq� ,�:= 0.6(15•psf)•2•ft•L�+ 0.6•(]0•psf)•2Pt•L�+ 0.6•(lOpsf)•1ft•L� L D,�N= �'a•2� DLRM =25096.5 ft•Ib Holdown Force & Net Upiift� OTM - DLRM HDFc := HDFc = 1643.96 lb HDFc HDFc + HDFcc HDFc - 017.18 Ib Co.L� � :_ � _ � Bas_e Plate Nail Spacinq (2005 NDS Table11N) Anchor Bolt Spacinq (2005 NDS Table 11Ej 16d Common (0.162"x3.5") Nails � 1-1/2" Plate Hem-Fir 5/8" Dia. Bolt(6" Embed) & 1-1/2" Plate Hem-Fir Z�:= 122•Ib �= 1.6 �:= 860•Ib �:= 1.6 Z := A.•C Z ,,,�„ , p � = 137616 CD ZN CO Z C ,�,��= BP =0.6 ft Per Nail �= B ° As=4.2;ft Per Bolt E` E` Shear Wali Summarv Wind Force: Seismic Force: B.P. Nailinp Spacinq A.B Spacinq Holdown Force: Holdown Tvpes: vc - i E� As=4.2;ft HDFc = 164;.�)6 Ib Simpson STHD8RJ — = 29934 ft •Ib — =325.66 f[ �•lb Bp= 0.6 ft Co Co 16d @ 8"O.c. 5/8" A.B. @ 48" o.c. HDFc� = 2017.1816 3102.xmcd Mark Myers, PE 12/22/2010 �� Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3102 Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net WALL D: Story Shear due to Wind: VZ�, =6164321b Story Shear due to Seismic: VZE = 10434.SS lb Bldg Width in directian of Load: L�:= 40-ft Distance between shear wails: �:_ .�0•ft Shear Wail Length: Ldw:_ (6.5 + 34)ft Ld��.= 40.5 ft Lds= (6.5 + 34)ft Percent full height sheathing: o�_ 10•ft �00 %- 100 Max Opening Height = Oft-Oin, Therefore�C�.= 1.00 - (IO�ft) per AF&PA SDPWS Table 4.3.3.4 u2W L� �zE Li vdd•Lddw.+ •— Edd'Ldds + 0.7p•L•� Lt 2 t Wind Force: vd:- Seismic Force: �:- 1.0 Ed:_ � - Ldw L vd = 144.13ft �•Ib Va = 144.13ft �•Ib Ed= 156.8ft �•Ib Ed = 156..8ft �•lb Co Co Overturning Moment on 6.5ft Wall: Piate Neight: P,�t,:= 9�ft P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C. Wind Capacity = 339 plf Ld:= 6.5•ft O�TM:= Ed•Ld•Pt OTM = 9172.83 ft•lb Seismic Capacity - 242 plf Dead Load Resistinq Overturninq: W�:= 0.6(15•psf)•2•ft•Ld+ 0.6•(10•psf)•2Pt•Ld+ 0.6•(l Opsf)•1 ft•Ld L D�N= WR�� DLRM = 2788.Sft•Ib Holdown Force & Net Uplift: OTM - DLRM HDFd:= HDFd= 982.21b Co'La Base Plate Nail Spacinq (2005 NDS Table11N) Anchor Bolt Spacinq (2005 IVDS Table 11E) 16d Common (0.162"x3.5") Nails 8� 1-1I2" Plate Hem-Fir 5/8" Dia. Bolt(6" Embed) 8� 1-112" Plate Hem-Fir Z�:= 122•lb �.= 1.6 �A�,:= 860•Ib �.= 1.6 ��,= Ay'Cp Za = 13761b CD'ZN'Co ZB��O Per Bolt g •- B = 1.24 ft Per Nail A�:= As= 8.78 fr ^^^a^� Ed p Ea Shear Wall Summarv: Wind Force: Seismic Force: B P. Nailinq Spacinq A.B. Spacinq Holdown Force: Holdown Types: No Holdown Req'd vd _ �44.13ft 1•Ib Ed = 156.8ft �•Ib BP 1'24fr As= 8.78ft HDFd = 982.2:b cO �O 16d @ 12" o.c. 5J8"A.B. @ 72" o.c. 3102.xmcd Mark Myers, PE 12/22/2010 �� Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3102 Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net WALL D(3 Car Option)• Story Shear due to Wind: VzW = 6164.321b Story Shear due to Seismic: V,�= 10434.5516 Bldg Width in direction of Load: L�:- 50-ft Distance between shear walis: �:- 40�ft L,:= l Oft Shear Wall Length: �;_ �6.5 + 6.17)ft LdN:= 12.67ft �= (6.5 + 6.17)ft Percent full height sheathing: o�= IO�ft ��0 0�0 - 100 Max Opening Height = Oft-Oin, Therefore C�:- 1.00 10-ft) perAF&PA SDPWS Tabie 4.3.3.4 vdd•Ldd�,,+ vzW.�L� + L2� V L + L 2E � I 2) Lt 2 Edd'Lc�ds + 0.7p.—. Wind Force: �= Ld Seismic Force: �:_ �.p E ._ Li 2 w �' ds L vd = 460.71 ft ��lb �d =460.71 ft �•Ib Ed - 501?2ft- I,Ib Ed = 501.22ft �•Ib CO Co Overturnina Moment on 6 17ft Wail� Plate Height: P�:- 9�ft P1-2: 7/16" Sheathing w/ 8d nails @ 2" O.C. �:= 6.17•ft O�M�= Ed•Ld•Pt OTM =27832.58ft•Ib W�nd Capacity= 833 pif Seismic Capacity = 595 plf Dead Load Resistinq Overturnina W,�:= 0.6(15�psf)�2•ft�Ld + 0.6-(10•psf)•2Pt•Ld+ 0.6•(lOpsf)�1 ft�Ld Ld �,�w= �'R�— DLRM =2512.55 ft•Ib 2 Holdown Force & Net Uplift� OTM - DLRM HD�Fd�= HDFd =4103.731b Co'Ld Base Plate Nail Spacinq (2005 NDS Table11N} Anchor Bolt Spacinq {2005 NDS Table 11E) 16d Common (0.162"x3.5") Nails & 1-112" Plate Hem-Fir 5/8" Dia. Bolt(6" Embed) 8� 2-1/2" Plate Hem-Fir �:= 122•lb �= 1.6 A�:= 1070•Ib �.= 1.6 �:= AS•C� ZB = 17121b CD ZN C° Z C ,�,�= E BP= 0.39 ft Per Nail A�:- B ° As= 3.42 ft Per Bolt d Ed Shear Wall Summary� Wind Force: Seismic Force: B.P. Nailinq Spacinp A.B. Saacinq Holdown For�e: Holdown Tvpes: vd - 1 Ed - 1 BP = 0.39 ft As= 3.42 ft HDFd =410�.73 Ib Simpson STHD14RJ — = 460.71 ft •Ib — = 501.22ft •(b Co Co 16d @ 4" o.c. 5/8" A.B. @ 40" o.c. 3102.xmcd Mark Myers, PE 12/22/2010 �� Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3102 Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net WALL E: Story Shear due to Wind: V4�, =6888.15 Ib Story Shear due to Seismic: V�E= 10434.55 Ib Bidg Width in direction of Load: L�:- 51�ft Distance between shear walls: �:_ 27�ft �:= 24ft Shear Wall Length: LeW:_ (9.17 + 10)ft Leµ = 19.17 ft Les:_ (9.17 + 10)ft Percent full height sheathing: o�= 10•ft 100 %= 100 Max Opening Height = Oft-Oin, Therefore C�:= 1.00 (10�ft) per AF&PA SDPWS Table 4.3.3.4 Vy�, �L� + L2� V2� �L� + L,� C)Jp--- Lt 2 Lr 2 Wind Force: ve:= Seismic Force: �:- 1.0 Ee:_ Lew. Ley E ve= 179.66ft 1•lb Ve = 179.66ft 1•Ib Ez= 190.51 ft ��Ib e = 190.51 ft ��Ib Co Co Overturninq Moment on 9.17ft Wall: Plate Height: Pt:= 9•ft P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C. L • 9.17•ft OTM := E •L •Pt OTM = 15722.86ft•Ib W�nd Capacity= 339 plf e•_ ,,,,�,�„�,,,,, e e Seismic Capacity = 242 plf Dead Load Resistinq Overturninq: W�:= 0.6(15•psf)•0•ft•Le+ 0.6•(10•psf)Pt�Le+ 0.6•(lOpsf)•(3.Sft)•Le L D�LRwMw= WR•e DLRM = 3153.33 ft•Ib 2 Holdown Force & Net Uplift: OTM - DLRM HDFe := HDFe = 1370.72 lb Co'Le Base Plate Nail Spacinq (2Q05 NDS Table11N) Anchor Bolt Spacing (2005 NDS Table 11E) 16d Common (0.162"x3.5") Nails 8� 1-112" Plate Hem-Fir 5/8" Dia. Bolt(6" Embed) 8� 2-1/2" Plate Hem-Fir Z,y�,:= 122�Ib �.= 1.6 A�,:= 1070-Ib �:= 1.6 MZ,�,\:= As'C� Z� = 17121b C B�:= CD ZN C� BP= 1.02 ft Per Nail A�s,:= Z� � As= 8.99 ft Per Bolt Ee E� Shear Wall Summarv: Wind Force: Seismic Force: B.P. Nailinq Spacinq A.B. Spacinq Holdown Force: Holdown Types: ve — 1 Ee — 1 BP= 1.02 ft As= 8.99 ft HDFe = 1 i70.72 Ib SimpSOn STHD8RJ — = 179.66ft •lb — = 190.51 ft •lb CO CO 16d @ 12" o.c. 5/8" A.B. @ 72" o.c. 3102.xmcd Mark Myers, PE 12/22/2010 �� Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3102 Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net WALL E (3 Car Option)• Story Shear due to Wind: V4�, -6888.15 Ib Story Shear due to Seismic: V 10434.55 lb 2f - Bldg Width in direction of Load: L�:- 51•ft Distance between shear walis: �:_ ?7.ft �- 24ft Shear Wall Length: L�:= (9.17 + 20)ft Lew= 29.17ft L�:= (9.17 + 20)fi Percent full height sheathing: o�= 10•ft 100 % = 100 Max Opening Height = Oft-Oin, Therefore C�:= 1.00 10•ft) per AF&PA SDPWS Tabie 4.3.3.4 Vq�, �L� + L2� VZE �Li + L2� Lt 2 0.7p•L• 2 Wind Force: �= Seismic Force_ �= 1.0 E _ - ` LeW '�^ 'we�' Les ve= 118.07ft 1•16 Ve = 118.07ft �•lb Ee= 125.2ft �•Ib E` = 1252ft- i.ib C� �.o Overturninq Moment on 9 17ft Wail� Piate Height: P�:- 9�ft P1-6: 7/16" Sheathing w/ 8d naiis @ 6" O.C. L -= 9.17•ft OTM := E �L �Pt Wind Capacity = 339 pif � ,w�,,�„N„ e e OTM = 10332.78 ft�lb Seismic Capacity = 242 pif Dead Load Resistinq Overturninq_ W�:= 0.6(IS•psf)•0•ft•Lz+ 0.6•(10•psf)Pt•Le+ 0.6•(lOpsf)•(3.Sft)•Le Le D,,,,,,�R,w„= WR•— DLRM = ;153.33ft•lb 2 Holdown Force & Net Uplift OTM - DLRM H��= HDFe = 782931b Co'Le Base Plate Nail Spacinq f2005 NDS Table11N) Anchor Bolt Spacinq (2005 NDS Table 11E) 16d Common (0.162"x3.5") Nails 8� 1-1/2" Plate Hem-Fir 5/8" Dia. Bolt (6" Embed) � 2-1/2" Plate Hem-Fir Z,�:= 122•Ib �= 1.6 A�:= 1070•Ib �= 1.6 Z�:= As�C[� ZB = 17121b cD ZN CO Z C ,��= E BP= 1.56 ft Per Nail ^A�s-.= E ° As= 13.67 ft Per Bolt e e Shear Wall Summarv� Wind Force: Seismic Force: B.P Nailinq Spacinq A.B. Spacinq Holdown Force: Holdown Tvpes: ve - l Ee As= 1;.67ft HDFe = 7g2.93�b No Holdown Req'd = 118.07ft •Ib — - 125.2ft �•Ib Bp= 1.56ft Co Co 16d @ 16" o.c. 5/8"A.B. @ 72" o.c. 3102.xmcd Mark Myers, PE 12/22/2010 �� Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3102 Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net WALL F: Story Shear due to Wind: V��, = 6164.321b Story Shear due to Seismic: VZ�= 10434.55 Ib Bldg Width in direction of Load: L�:- 50•ft Distance between shearwalls: �:_ t0�ft Shear Wall Length: Lfw.:= (25.8)ft Lfw.= 25.8 ft Lfs:_ (25.8)ft Percent fuli height sheathing: o�= 10•ft 100 % = 100 Max Opening Height = Oft-Oin, Th�erefore�= 1.00 C 10•ft� per AF&PA SDPWS Table 4.3.3.4 VZW (Ll) V2E \L'�/ 0.7p•L•� Wind Force: vf := Lt 2 Seismic Force: �:= 1.0 Et:_ � Lfw. Lfs vf =23.89ft �•lb vf = 23.89ft 1•Ib Et= 28.31 ft �•Ib E� = 28.��1 ft �•Ib Co C� Overturninq Moment on 25.8ft Wall: Plate Height: Pt:= 9�ft P1-6: 7116" Sheathing wl 8d naiis @ 6" O.C. Wind Capacity = 33Q plf Lt-:= 25.8�ft O�T,M�= Ef•Lt�Pt OTM = 6573.77ft�1b Seismic Capacity - 242 pif Dead Load Resistinq Overturninq: W�:= 0.6(15•psf)•2•ft•Lt+ 0.6•(]0•psf)•Pt•Lf+ 0.6•(lOpsf)•Oft•Lt L D�N= WR•f DLRM= 23963.04 ft•lb 2 Holdown Force & Net Uplift: OTM - DLRM HDFf:= HDFf =-674 Ib Co•L�• Base Piate Naii Spacinq (2005 NDS Table11N) Anchor Bolt Spacinq (2005 NDS Tabie 11E) 16d Common (0.162"x3.5") Nails 8� 1-1/2" Plate Hem-Fir 5/8" Dia. Bolt(6" Embed) 8� 1-1I2" Plate Hem-Fir Z,�:= 122•lb �= l.b A�:= 860•lb �.= 1.6 �:= AS•Cn Za = 13761b Cp•ZN•Co ZE3'Co B •= B =6.89 ft Per Nail As:= As= 48.6 ft Per Bolt ,w3L: Et P ,wN^ Et_ Shear Wall SummaN: Wind Force: Seismic Force: B.P. Nailinq Spacinq A.B. Spacinct Holdown Force: Holdown Tvpes: vf - 1 Ef - 1 Bp= 6.89 ft As=48.6 ft HDFf = -674 Ib No Holdown Req'd — = 23.89ft •Ib — =28.31 ft •Ib C0 C0 16d @ 16" o.c. 5/8" A.B. @ 72" o.c. 3102.xmcd Mark Myers, PE 12/22/2010 Z� 4x10'DF#2 ax1D-D�p2 � 1 � � I _ _ GIRDER RUSS #1_ _ 4x10'DFn2 4x10'OFa2 ax10'r+FU2 nz10'HFx2 4 x 10'DF a -���� �� ti. ' ', OVER FRAME �I I� �I I� I " o o .. z Q � � � � � o a Z u a �z N � G p� Q S N d' m N N Y� � Z � � O W � � Z K� � V Z U W Q � Z � f � �� I�?�I �Q\ Ff� j��i �-:y .S V ❑vER FRAME ,�60VER FR ME �'� ,�'' `� �' �i�� � GIR➢ER� USS a2 4x10'DFq2ax10'DFp GIRDER RUSS N3 � I � xT0'Fl�A 4x10'HF ,. — I � � I � 4x10'HFk 4x10'HF#2 I ���� ���� ���� I��I �L J� � L J � �--�---------�--�--------�L J� ROOF F�,4M I NCx fi=L AN �� rr—=—-- 'S'�.�x��� ��-�" �an �_._�,---_�-_-____� �� � � �+ � � � � 4x12'DFq2 4x12'DFU2 ! ;� /. „� � � !�� �'� �✓'�� � a V.�w 1� � sJ i ° m�' 3%zx! %g[.SC. '� 5% 5 " � '�?` ��/o� �x/� 1�,� %I� � --- � � ---\���,ry�I �-__ $,_�_ - �o� �- U ❑ � Ol � � O I o� "'u SW o '-, z J = F � a � s v (�� i � 3�zx11 /$Lc�L. �s�ll�YLSL � �T� B.B.O. <HELD FLUSH> — — -�) —1�,- / _ _—� ���_ —'_ _` � I ti �I m f� 1 vl � 4� I �j� j „�,"�l N;� �� _�.��; �� _ ___ o i� � ;�-, �, � i e, `��^ 3'/-L�I1/g ' �, A\w B.B.Q (HELD H) " �� � � � °ti �� I � � � ¢� !Q � j ,'� �j M �@. �L (�XJ��� _ �,nQ — �1'Y�� 3�zX 11%rd - _�. _�,n,�_ --- - —= ax12-DFa — -- _ _—_ID�B��--����_—� �� �'8.�'� B.B.�. �� �.��X� UPPE i� �L 00� FR�M f NCx fi�L�4N ��'G 5/��,� r�-� z�� _�._��� ,, � �e ° ` � � � � � .� 4x12'DFH2 4x12'DF#2 N .- w � -_- ---- �o ��;; �� a � �� � m m�� 3i�z�J1 �(LS�-- �� 5%�" Gx�a� ���e� % �'= -�_ Q � L a _� �-�—��•_—__ — =I P� � ml �o x� U ❑ � N � N � I o� ^u �w p �. Z �a � � F � gg8r.9�B�E`� �/��� ,.�.8"B�'�iC, {,-B-" F1UxS�//��SL B.B.�. CNELD FLUShi> � � � � � �pL'y.� \` /\/ ' "!� I�- � � �: :- - _ _ � zx�ois u '����i7 `�i- ro I� i _,,, �dbA'� Qi � ' - o�� ' S%x�� � �;I Im —y---;., �� --- P �:� ,� ;� � -. a� � _ � W i' � i . � � � Q i , .�� � 3%v�l�' _ � � � PL � 9 yp� \ ' py V \\� g _ � � � ` , I :, . / /. 3/�1 � L 5�x1�6�>��;_BB_o — --- P — ---�--= _ -- ��---- _---_ ----- � �l,�/�... 4x12'DF#2 � �� � �I ��,�'�',t ����� .HS�6� � t�8'B'�� —6x _ _ 6x� UPPEiz FLOOF Fiz�41"ifNG� PL�N �� , 40'-C"" 14'-0" i� -�" .J a v e.o. r s.o � � . J � _" — C I o �� � r — —' — — — — — a' CONC. SLAB OVER 4' GRANULAR FILL � � ► r - - - - - - -, ► � „�o I I 24 2< z � � �. I , dnj�H 2 GIRDER� � L,_ �� Q�) �Tg �B _ _ _ — _ _ — _ - - - - - � � F.e.a. LL - - - - - - - - - - - - - iil — � i'-0" 7'-0" '�j� III � III � �� � � � 6 ' -0 7 -0 -0' - - -: III � � f - � � ��b'��;! `^III �IIL?- uis _ _� 24 z4 24 z4 2q ni��� 2a� I � I � ���z10'��Fp2�IRDER �- � � 1 III I ' ' J <TYP.) ��� J % -t--�� ���.��L��III � I I � c � I I�{� � J I �� � I I �YUJ III i � �� GR4WL SPACE "' II 2�K _f7IS1� � I�—� r I I 6 MIL.BL?C!C V15G7UEEN ^ ° VGPOR BARRIER `'�o I I � � � I I-6- e -z.. 4�-5z�_ :��-5z � -e� - - -;;� iii � I ° I I �- � iii 24 r � t� z4 z< 24 iii_ � I � i i-----�-�-�-- � - .�L,�.z� - - - ��� � �BLOCKOU� � r � � I I �d �FURN� � � I ;� ° I I � r —_ � I � � � � � �� � � � � � �,� � � � ��� 4z10'HfM2 GIR➢ER �2\4 �24 � � o � � I I �_criP.�'—�-1 _ � � -3 �-��� �'-0" 3 S -2 � �� I I I I �y 4'CRlC.SLAB 0/ I � ��� � � I I 2�-5"' 4._8,. ._8,. _ �� 4'CQIP.FILL I I �', SLOPED 3'TOVARD DOOR I z4 24 24 I I I 4x10'HFp2 I�1 E I - - \ \ (TYP.) � � J I I I I I � � � � v � I I� � Vb� � j� � I ` s, � 6 2 3 4 ���� � � L..� � F.. L�xZH � � �I ,T � - . IL —r — — — — — — — - - U _ -� 4' COnIC. SLAB OVER I L _ _ _ � _ � 4' GRANULAR FILL — �— — — — — — _ � _ — _ — — _ _ _ _ � u c � �F9,d � F.BA. .' c F �5 - 4 - 9'-6" 11'-0" :9 -S 40�-0° FOUND�4TION PL�4N � SC-C' 14'-0" 15'-8" - - v.e.o. r e,o. I � � � r- - - - - - - - - 4' CONC. SLAB OVER . 4' GRANULNR FILL I � r _ _ _ _ _ _ � � � �( I 24 �24 2 I I� L e4x10'HF%2 LI E _�e � _ _ _ _ _ _ _ _ — _ — — _ _ — � _ (T�) T � � - - - - - - - - - - - - - —� — � � � ���-o~ ��-o~ �' �jf� iii ;,. c I I-6" 7'-0" 7'-0" 7'-0" 7'-0" - -C III I I � � ��G��� �III °���2= ots � � �,III – _ =� -- I 24 24 24 24 24 24� I � I� ; I J _ ���x10'NFq2 GIRDER ���� � III I I J �rva� �� J _ J ���l c' ' � ������.�•�I II J I i - \ / I I CR4WLSPACE 11�2x JOIS� � I�=� -- I I 6 MIL.BLACK VISGSJEEN o III i vAPOR BARRIER ti z III - I -6" 8 _2 4'-9�'� z 4'-9�C 3 -8" S -1 ;; III I I y� � � � III "I r a.o. za r -1 � zn ea z< �zn m � 8�---�—�— L--�� �Z� — — — — — — — — — --� � � - - - - - - - - - - � I I � � — � � 0"�� �' � I � — � I BL�CK�UT I i ��' — �F�"� I I I ! I I � � —N � � � � II I � � � ; I � I I �z4 ��4 �z< � I � I I ��4z10'HFN�GI�OER���1� �� � I I I I QYPJ I I -3" -0" -D" 3'-� 9 _� � � ✓� I I I I � 4'CONC.SIAB 0/ I I ._ m 4'CUIP.FILL I I �'�I I I -5" C -8" -8" - SLOPED 3'T➢VARD DOQ2 I _ _ 24 24 24 ( I I � 4v10'HGk2 If�E I — — J (TYPJ J _�J I I I I F � \� � � i �^ � � I `o �(� I I � f;� � � � � � F.�rs,-= —, - - - - --� I 5 -2' 3'-4' / . � I F �� F,Bd. �` � P.B.O. � c r — — — — J � %, � i � q� � L —�' - - - - -- - - --� \ I I4' CONC. SLAB OVER _ _ _ _ _ _ - 4' GRANULAR FILL �� �— — _— r � �F.B.[]. r F.BA. � I F i � _-�� "�� �� �- -� � �_ 9 -6' -0" c -S � 5� -G., FOUNp�4TION PL�4N �� �, i Myers Engineering LLC 3206 SOth St Ct NW, Ste 210-B MYERS ENGINEERING Gig Harbor, WA 98335 (253) 858-3248 Fax (253) 858-3249 myengineer@centurytel.net Q x��.= 15���`��� - 3��,��1� � . . 4_.. � � 0 . .._ _. ._.. _ . , �,� , �, �. ., _.�.. �. �� , y ; � / n � ' $� A_ _ , rv � w 5(�$ � �` " �6� S� �� " . ,.r,.. .�Z, .._�,� . w.�. ,. � _. �_ _ , , ,. _.. , w ,.. ,.._... . , _ ;. , ._..�. , , v ,.� ,._ _� " ;Pl . . ... . ...... ......M ,. ...._.. � . ,,J ..._, , �` . _ . „. . .:_ ' � D , , �. .,, .e... ,..�,_.. _.�.__._ . �.�. _... . . , � � � � /� . .. . ... ,..,..,. . ...... �..... ��.., � ....... . ... ....w ... �......, . 4..., F � p . f _.��. �..... . ._�.,.�...,. .._..�M..v.... �„ .y.... � ,. , . � �I ! /^� I .. �..,... ,...� ,.W�, 5 . � '. �, .. . _... �.. ., .. . � � i � � Z w _ 15 f :; _ r.. .. y 1�` _. �. , r,, �,. � , , � - , � .� � � � ��.�� ; � �_ _.. .._�. . . _. .�. .�_ _ ... .. ; � �► . , , . .(� .. ... .. ; �,. _ w� % 7�SJ�5� '�.�z, � % ,�G Z.S� ... .... . .. . . ;. � , � .... i .. � .. . �. � , .. . . ,„ w .. W<<� �p � , , . e � .. .. , . �. . _ . � �� _ '. __ � . .. .. � . ,. _. ,.._. .,..a... � __.� ' � ; . _ ., �... ,..w. � _ .. . �... . .� . . . a �'" ..,.. .. . . , ...,...... ...r..,..,... ry� " ..... �,,. .....�........ .p ' .... . __ ., . � . � r (� w�; 15 ps-�'' � _��5 �' . .� . . , �. ; �._ . . ,. . ,... , _ � _._,.._ .. ,. _� ,. � �.._ , , . .. . . � - '�fl� Z�� .. =. �`�D��� ' 1� _ ` .. . : ; . . . ; , . , . .. � , ,. � �... . .. , . . . .. �z-� ..,.. '.Il���,L..SG. . ., .... , , .., , _� �_.W'� . d � _ _ .. . . . �_. :. . ; � . ,.... . .,�_.. . .. .. , .. � � , � .... � .. . . _ ,_ . _, , , , , w = ���s� � � ., , � . ,... � �_ �.._ .. . o_ _ . � 1 . , . wL' '�c?P5 ' ; � �. , 4 . , . , ,_ . ._ . . . . .,�. . , .� � ;. � ' �� 2—�=��s � � � .. ..w . _.._ . �r , � , , , ._. , ._.. �. � , , _ ,. . ... . , , . . a .. . .:. .. ..�.._ .. ,..�. � , � : ...,. ._,_,_ .�._ . � . �� '' �lr . _ . .. . .,. , + � / „ ... _ _ ,. . .. , ,. ,..�.. , ,.' „ i .. .. ._... ° ^ � ��� � ���r � ��, v �. � ; � ; � � ..s_. . � .. .... ...._..._ �_.. _ _ ����� � � �d J�Z y-� u z � Z�;����' ._ . ° � � ._ cv�-�" �`...3��Z. .� .6'� ���' _ - , i �p�' � °�' _.. . ;. , ... .. , . . ..!'� ` . .r _ . 0 ._ . �� � , , , � � , ; , � � . . ,. __ __ __ : __ _. � ; , � � � _.. ._.. . � . �.__..� �_...'�-�.��-����-�L-- _ . ,,� ..,. ...r, . ., ,.. u. _. .,., _ ....,. ... .; . 4 : . , � { , , . .,_ . ._ �. �.. . , y , , y .,,._ ,�.._a... . . . ,.. _,. � . .. . 6 �,o � �$ .5-� '� - �J�,S� ` _ ... � l� � � � � _ �.� .�_ �.. � .... .. ��. � .. , - -� w � � .F' 24; 2 ; = � " �� ; Y _ _ _., ._ . � ,. .w . . _,_ , , , � � ' Y � ___ � � :_ �.� _ M.._ . . � . . � `_. � w � _._.�. ..,r._. ��... ��., ' � . . „ e ..�, � ,n�.. k � u { , / � . Y^ , .n ....., il...,..:.. ...� ` �, y 0 . ., .._.... .. �.„.. . r. , '.. . . �. ...,... . .,... . .,.. q � 1 � .. ,...,... . . , , .,. .i . ...y..� .._._.y � . �����,�����;. . � . 4 , , ; � , � , __ . . � . . . _ . _ . . . w._ �.. . _� . . � , - , . _� � .,� �_.. � - _�_ . �.... : � _ . , �, , � � L✓ '� /fi�s �� ;��j � � -�' �1-�`m. 'SS7f� �F c. _ .y .. � � �' � r ° _ F . �. ., �� �. _ _ � . _ �_. . ..__�� . , � � �v = �l_D.�� �/� �Z �-` ��a�;1F " m. ` . ' � � _ . wy i ']� � w (��Z f , ,Z� �� ��� � . _., 4 , ' ` ,., µ � 0, �,0. .!� �, � ' ,. , �,...,. .. ..... . .,M... _. ., � ... � � � v � , � � - � — �-, � � � , — � � e �� . . ......_ ...,_, . . ..,. , , .._.. , . , .;.. _ : , ���� ��� —,� -, .,.... ,.., ,. , ,.., . ....;ti " __ „ w .,....,�, _.� ..�_... � . w , R ..�,.. , . .... . .: „ . ......._ . ......... . .. .......... . ..C,.,... , , ....:,... . .. �r . r ,,..,.. . .. .... .. .,., i, ..P....,. � , � � �.. ., ..., ,. ...s. ... ..........x ... � � � , . �, �. i y � ... ....... ..,�. ... r p ...... ,,..... „ . a . , � ..... .. . ........ . . .,....,, . ..,.... � � . .. ..�., , ,. ......u. ... ....... ........... ... .... , �:,. .. ;._.,....7. .. ar,.. ............ . .n.,. �IO Z- . _ � .. .. FOR DATE CZ"zZ=/D JOB �j Z BY i� Myers Engineering LLC 3206 SOth St Ct NW, Ste 210-B Gig Harbor, WA 98335 MYERS ENGINEERING (253) 858-3248 Fax (253) 858-3249 myengineer@centurytel.net �fJ r �,..,...x .. ..,.... . . ._,. . ., _,. ..... ... W .,. ........ �,.. 1 ... � � ls �� � ' ������� . �. , . . � . � � P � : � �� �_ �µ__ __�. _ . � � Q�tl,+.._ �, �.., .� m� ' p... � � y _..� ..,...,� .� . �. ..,..,.� .� �- „�.,.. '. � . i o i: _, �' .. .� .... / _, . ... ._,-� � �vy�._...�.�.0.�,._.�,�� � e M. ��� �� , _ .. .�. , ���� �1�� , . : ,J, �- 54 _ , ��/ - �C � c.f , �l M �Gp/��� ��q•� .r,,....._.,,� .`��,X�,.,,�J'� ,,.. .. . . \ ., IN�� ._, ....,,... _... - � �, � _.. ,,,. _..... .. �. ... ..,. .. E 23•o} ;� " �� u k �... . . , .►�. � ,,:.. �w,.., , � i ; 1 . _._. . - ; ' �,�G'�. . s� , �.,.. ,_. _ ._. . W , . a .. .. �. � �. � . .. �z. �' y . � , , .. a m .. � _� � �. �. � , , ; ,.._.� �.. o....... . �. ,,,� .. . . , ' ... : , � ... > � 4 �__._... . .,. �..., ._, �i . K { !�� . ....,,.., � � G 5 � `.r��. .,.. � 0� ,��1S.; C`�� 5�� . � " ;., .5 ... �.. /n/ � } r�' , ,..:... , kq Y . .. . . A . ar� 3 � /�� �f�„ ,. ,. �. .. .._.,V- .. y.,.. ,._. � °'`'�r I , �/ A __..._ ....�....� .� , � ; -� 1 ��� , w , � � ... ` !HJ : ��/�j�� .,�. ,.., N -� / {". � , .... ... .. , . ., � �! �� 'l,.�.._ {......,,,/�,�y......,� ..�,,.,._. T � k :. ;. . ., " .'" ...,. V . ��. _ ..,,r_ a , y�' �-1 '.��67,5 /�` , _ .. ��..,. r. ��. . . ,,�5�, z� �'...�. r.. � . - � � , _�. .� .. ... �, ,�F � _ .r. . . � � - . . __ � .��_ ��� , � , o , __ , o { . _ _ � , � �.. � .. _ ��.. , .__ � ,. , . e . ... . �� - �,��-��G� ,... . . � .. .... ,�. .. , � t � � � � .. . .,. ... � � / � .�. ..�. �. �„�,,�� .p,.. ,� . -,° Il,z � � �..... . ... , . �s�, �._._p _ � . . . . �,�,� r 1�' .. _ . , � yo ��F. .__ .�� � ��4 . . , . � � ��_ . - - ��. � _�. _ .. � � b � w. �� � . . _. . , , � ! ! ; , : � � . . . _ . � m � ��25�'DG�- ��7'���SG� �'`o� �� .. � �_..�.. �«/ �e/ �(` 4 ' �, �, _, �. m .._.. .,., . . .. � r G. . .... .. ... .. { '. . .... µ +... W r ' l a ( / .. a�r., �G .rb. p a . . ...� . _.. � i _�-� � , �... a _�6 F �r, D W ' I� S� y5 Z.�.�Z: �.� �����-�t.�Q,AS-C�._�b�� _. { �'�/� ;. ...,.� , � . �. �.._ _,�.., . - , ..= ..�' .!�' � , s�.°. , �,-_. . .. � � �- ,. . � .ti.. . , . � ti. w 0��.�� ., �� . -',. � ._ � u ���i ,. ��_ . ; .. � �� - �, , , .� , �s �5 � G � _.. � �'' . , --° -- � m 1v .� = .� .. - �6�� w . � q _ N��._ � �w. .._m ,; . _ .� ,.. t.. �.. �r,. ;,.��� 4��.� ^ ��..�. �... �- � � � a � � � �� _ �,�,... � � z , , y � , � ; , _ .,., ._ , � __,_.. ..M,. .�'�' �...�... , " . .. ._ .,._.._ . m � ; � , s ��r,!/�,� _�. �... . __._, ._ . .,_. _.. , , a ; .,. , , � C " ( 2� , .... _., � � .�x.... , k ? , . ' ,..... . � � " �. # '�. 1 X .1. 4.,......_,� ,.,_,. .....�__,. 4 �_ y..... . .. -T' . ' . . ,._.. ,.,.. , ' ,j_ . ......... ..._.w,.....,, . �^,....... ,. i....,._ �._. ,.�.... . .,, . .� 1 , .... . , , . , u ^ n d ; f �'� ` �, # . . .� — _ .,.,_ .,.. _.,,_. ...., M "° . F_.,.., _...... . Y 1 5...._.. j �.,,. , � .,. . � �,/,.. .,. .. ; _... �A/ / � � H . 11 ,��/ 1% �O �'� ( / {�' . � r { �....._.. _ ...,.., .L.,..,,, Y , .,..Y„ r..... " �' Y . ._.. _,... ... ...,,. -M � � ,� ._ .� .�__ � .��. 4 _ � . ., .. � D � .. � `'� S�!' b M�� _. � _. . .,, . .�... ��-! .. . .n.� .r .. . � �_� . , � , ,� , . �� �. _� �_ _ . ; „ F , . � � . . W ..�. u � � � r_ r �.. _ . _ � . .. � �. __ f .�.__... _ . , � r � .� w ___. . � � x . � : 4 .. : . . . .� .. �« . � , w� �m. _ � ��� � ..__ . .. _..._� .,_, .w � __,.. �. ..;.. _.., .._�. , . ,: .. __y � 4 x. , - . .. � .,.._., ..� 9 � . ,� " r � � " .. �-. , , ._ ., . " � z � i . , � . . y�.,�..� w _a_ ...�, ._ � . _�. ..,., --�- ,. ,_.. �_ ,....,. ..�.. ,.t ry, ..,. P ,i� �• . �i 1 ' g � ` /�� .. ...., .... . � .,., t ._ �JQ -, ���S�' , ; .;. � _ � p . � .. � � ... �' , .., ' . ._.�....,_ �. .,� ��..� _. ." � _ ., ' . 5, , , ,..... ._ _� � , �. , ,� . 4 . G� - - __ _ �._� .. � ..� ,�._ .h. . �,� t , ; �'...�,. � t � ... . _ - �. a .__:. ._ �� � �r a ; -s,�L. ., �.._ .. ... ° ..� � .. ... ..w... ._., ... ,.. ..� , y ., � � . - � . , + ° � ' � �.t-.._ . r.. � �� . a ..,.,�..,._. �_.. , ,..q ., ; .,,. .a ; � ,� _�,�_ .....�. 9. ,� ..,. .,,, .,..._ .. . � y i. h ; V �' . , ., _. —. ' Y Y � � � � � , ; .. .._ ., . � .'..., V � � '� �„ .�, x �• b � � y n M1 ... 4.._, p _ ' p.__.. � ., r� .. " s i Y � � � �� � ��� .,..� ,.�-- ��y --— � � � �� _.._. .. ....,� ' ._ � G (�,..�. . " % _.• � � � � :°; � �j w.� � p �/.�� .�9�n a ti , ..., „ ,� �... _.. �.M._ X ` �"4 ti ... .,. , . M ._��' a % v f� .. " r , - Z ` .. .. y. .,.� . ,_'�a .. � 1 4. ...... .n �_ }M. ...���. F � ��,.._, , � .,.,. ,... �d�, ». . ..� . `r . N ...,.,...� , „ .. - .,. � W. 4 ' , . ... ,. ._.. ,,.., , � a �.. , . .,_. — ._:.. ... .v _..�,..,..._. .. .».,.. m ,., .._ i . . ..,,. � .4......... ....�.._ .... v . , . ,.,_,_. ,� . � r � , h f � ; t � k �'� F ,.........i.,. i,.,.... „ __, . .. . _ . . ,.. � q c � ,..,.,_ ,i. i ., , . �,..._.., ,. .. , ..,_ .,. .,. . . .w;,...___ ..... .._..._.,.� . ..,, _. ... .,. .,....r, .,�.. FOR �fD �__ DATE I2� 2'IO �3 aY /� JOB Myers Engineering LLC 3206 SOth St Ct NW, Ste 210-B Gig Harbor, WA 98335 MYERS ENGINEERING (253) 858-3248 Fax (253) 858-3249 myengineer@centurytel.net , � , �� �,� ' l5�s��Z�� �� � �-�0�� !-�- ������ ... 1D '` . . .. . .. ... .. . . . _ . . _ � � . . � � s�' ' . � _ �._.... .,.... w. .�. .. � = p , �� �; : �D�/� � 4 � .�., ; � _.�!...�.. � . . . , . ,._.. . ... . ,.. � , � ( _ Z� , � � - w5 �s�.�Z . �Q�_!� ._.. .. . .... . ..�... . . . . _ _ , , � , . . � .�, �w .. ,...�3... _ , a . . , w k . .... . , ..., . .,.. ..,_.. . �..._ ..,., .., ". . .. .........., , . � � = I�ZO'�`�D� -D- y�ZU�L� � . _..��!`�. ��. ...� ;. a 5/`.'6�. ��� . . . � , ,.w. � . �� � ; _ . , _., , . . _ �. . _, .. . ._ .. .w_. ... r . ._� , �s . .. . 05 s� �� = Z�7,5 /�' , . . �. . �. wo.- 15� �..._ . . ..,_�... , � �,. ` 5 � � � r � � ; � � �t�,. � S�� ��,,,z� , �,�Z �, � ....,. . _. , . , , . . �_ � ,;w ., ..�_._.,�i. � ... ,,... , ° t .,,. .... ..,. ,. ..._ _ .. � ......_, . _ _....,....,w„,�/� .,_ . ,� , _. ..,_ .. . . ; y.. �_. ...._ . . , .. . .. . , ... ,_. .. . ....... .. .. ... . . _;,�,.. ...,..,,,.._... .. ., � � � � ti � _� . _. . �.. ., _. .� � F �6 u�o % JS�s ' . .� � .� . u . , , � ,. 1��= �U�� _. , - µ : . _ �� � . _ _. .. .1��5:.. � ... ; r . . . .� . . , ,_ . _.q . . ..A. _ � _ .. �.. ... ,._ _ , . ; , , � . ,2��~���.. .. .. _ .. , � , _. .. . '. _.. . . , ..,w ��, ��1 • �l' �� ...... ... .. p� r,✓,� = IS���� � �� dOD� - ?�Z,S�? . _ . . .. . �_ . , . . �1� �, , �,,� _ Q�,S�'('i��..-��z�lz, �. ..; ,����,F' . . , .�,1_�/o�D��Z .. � d �� , � . �. __ , ... ; � , l�� _ . , ; u . . .__ .. _ ,.. ;.. . , . . � -�-��`. , �'-S a � . w ._ �"`. . , ; .. . .. . , ._... , . , _ .,. � ._ � o� � ; ,, _,. _�. ,. _ . _._. �. . �r_. . _ ,.�. � . . .. W _ , .,. . ..., _ ., _. . � ... ._ . �.._ ,. .... lJ � � ' ; ' , ?j _',.._ p� �_—.)�i, 5 ..__ �� ;__ ..,�...����. . . . � ,. � , ��� , � x � � f � W`%.�.�5..._.. .._.../��) _ .3�tol'�` . _ .. ` _�..�f /�'?.��-�� ., � � . , .. , ��� , ,. . .. .. .w.. .._ , . . .M , ,, .�: .��.._ � ' , ,i� _..�, _ _� ._ .... _ . .. .. .w . . �_.... . . ..... u .. � _ � � . ; , .,... .,._ �, ..._ ..., _ .� _._ �.w. . �. ...,,. . _.._... ... . . .. . .� ._ .�. . _ .�. _ ..� . ._ :_ _... _�: ,.. ._.r. . _ ... �� . � , , . , _ , . , ._ , °� _: , , � -� : , : ,.. . . .w. . . _ .. _ , , . �� .�. . ��. _ . . �.. _ �_ �., . . __ . _.._. _ _.. . ;.... .� �� �� .._. . � . .. . � , � ._ .. ... . a. � ; . .. _ .. _ . .. � . . _. , . , , . _... ..... �._._�._ �. �r .._ .w _ . . �.. . . ,. , . . _ _� _ .... . .. . _. ... �....�..._.. . . . � , , , _ __ , _. _.. _, _ _ ___. r._ _. ! __.�,. ; __ , _ �. : .. .�.. .... . .. .... ......... ;_._.. .. .. _. � � . �. .. .... ,....._. .. .�....... .. .M. . . . G_ .. _ ., M1 , . d �. '� . � ., ..... . .... ......., . .... .,. ..„.... .. ,�......,. ,.. �.�,. y. ............ ......... ,... . .... ._........,,.., «,, ,:.,�. .��.... . .,.. .n.. ..... .. 'r. ..,. ,.�,.. . t... .r ..... �, � l .. . ....,... _...... . ............ . ... ............. ...:.. . .........�. . .....,.+. . �,,.�... . . ... .� . . .. ... _,...... . .... . . .. , .._...,y,,,. ...._ _�:.. , 1,........,.n. .. .......... .. ,.r.,..�,. (_ .. FOR �1 C�Z_-- DATE I Z"ZZ-I� JOB �� BY Mark Myers,PE Title: Job# Myers Engineering LLC Dsgnr: 3206 50th St Ct NW,Ste 210-8 Project Desc.: Gig Harbor,WA 98335 Project Notes: ph:253-858-3248 fx:253-858-3249 E-mail:myenqineer(�centurytel.net ?rr,�c:_2�occ2e�o_24a;,re_ Wood Beam Design ENERCALC,INC.19832010,Ver.6.0.22, N:39858 � ��• . DesCripti0n: 1.Upper Fir Header Material Properties Calculations per IBC 2006,CBC 2007,2005 NDS ___ _____ ------- --- ----- --- -- ---------- — Analysis Method: Allowable Stress Design Fb-Tension 900 psi E:Modulus of Elasticity Load Combination 200616C&ASCE7-05 Fb-Compr 900 psi Ebend-�c 1600ksi Fc-Prll 1350 psi Eminbend-xx 580 ksi Wood Species : Douglas Fir-Larch Fc-Perp 625 psi Wood Grade : No.2 Fv 180 psi Ft 575 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D(0 3375)S(0 4625) �..-------------s------ �— --- • --...-----� - 4x10 -" Span=6.0 ft Applied Loads Service loads entered. Load Factors wil!be applied for calculations. _ --___------ --- -- ------ _ — — Load for Span Number 1 Uniform Load: D=0.3375, S=0.4625 k,fft, Tributary Width=1.0 ft DESIGN SUMMARY �� ' � Maximum Bending Stress Ratio = 0.801: 1 Maximum Shear Stress Ratio = 0.463 : 1 Section used for this span 4x10 Section used for this span 4x10 fb:Actual = 865.53psi iv:Actual = 83.40 psi FB:Allowable = 1,080.00psi Fv:Allowable = 180.00 psi Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span = 3.00Oft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maxirnum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.037 in Ratio= 1956 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.064 in Ratio= 1130 Max Upward Total Deflection 0.000 in Ratio= 0<240 Overall Maximum Deflections-Unfactored Loads _ __ -_ _ ____._.__ —.-------- ------ ---— Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span - ---- _ D+S 1 0.0637 3.030 0.0000 0.000 Vertical Reactions•Unfactored Support notation:Far left is#1 Values in KIPS __--- __ - _----- - ---__-- --- ------------- ____.. Load Combination Support 1 SuppoR 2 -- -- _-- - --._ _._____---_-------- --------...-- ___. _ Overall MAXimum 2.400 2.400 D Only 1.013 1.013 S Only 1.388 1.388 D+S 2.400 2.400 �S Mark Myers,PE Title: Job# � Myers Engineering LLC Dsgnr: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 Project Notes: ph:253-858-3248 fx:253-858-3249 E-mail:m en ineer centurvtel.net ?rinied:23CEC2t';i0.9ScAh�; Wood Beam Design ENERCALC,INC.1983-201�,Ver.6.0.22, N:39858 �.�+• . Description: 2.Porch Roof Beam Material Properties Calculations per IBC 2006,CBC 2007,2005 NDS _ ------- ------ - --- ___----------- —— ------ Analysis Method: Allowable Stress Design Fb-Tension $75 psi E:Modulus of Elasticity 1300 ksi Load Combination 20061BC&ASCE7-05 Fb-Compr 875 psi Ebend-xx Fc-Prll 600 psi Eminbend-�c 470 ksi Wood Species : Douglas Fir- Larch Fc-Perp 625 psi Wood Grade :No.2 Fv 170 psi Ft 425 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D(0 0975) S(0 1625) �---- � — —L--- --- • -- J 6x8 Span = 10.0 ft Applied Loads Senrice loads entered. Load Factors wi11 be appiied for calculations. Load for Span Number 1 Uniform�oad: D=0.09750, S=0.1625 k/ft, TributarY Width=1.0 ft DESIGN SUMMARY _ _ _ _ •- • • Maximum Bending Stress Ratio = 0.86� 1 Maximum Shear Stress Ratio = 0.245 : 1 Section used for this span 6x8 Section used for this span 6x8 fb:Actual = 756.36psi fv:Actual = 41.60 psi FB:Allowable = 875.00psi Fv:Allowable = 170.00 psi Load Combination +D+S+H Load Combination +p+S+H Location of maximum on span = S.00Oft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.147 in Ratio= 818 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0235 in Ratio= 511 Max Upward Total Deflection 0.000 in Ratio= 0<240 Overall Maximum Deflections-Unfactored Loads ___.___- ____-_ .----- --- - - ____ _ ---- -- ----- ------------ -- --- -- --- Max."+"Defl Location in S an Load Combination Span Max."='Defl Location in Span Load Combinat�on P -------------- ----- _----- ----- -_ -- -p+s 1 0.2346 5.050 0.0000 0.000 Vertical Reactions-Unfactored Support notation:Far left is#1 Values in KIPS —____---- ---- ---- -------------- --__ -----_--- Load Combination SuppoR 1 Support 2 _ --------- ------------------—---------- -----_ --- - Overall MAXimum 1.300 1.300 D Only 0.488 0.488 S Only 0.813 0.813 p+g 1.300 1.300 �6 Mark Myers,PE Title: Job# Myers Engineering LLC Dsgnr: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858-3249 Project Notes: E-mait:mven_gi_neer centu tel.net _ __ _ _ ______ a�:�,ea:z3DEC2CIQ!O:COrd�,,__ Wood Beam Design ENERCALC,INC.198�2010,Ver:6.0.22, N:39858 � �.��: . . Description: 3.Beam over Nook Material Properties Calculations per IBC 2006,CBC 2007,2005 NDS -----_-------- ----- - -- ---- --___ ___ _ __---_. _..------ -- ----------- _ .. - Analysis Method: Allowable Stress Design Fb-Tension 2,325.0 psi E:Modulus of Elasticity LoadCombination20061BC&ASCE7-05 Fb-Compr 2,325.Opsi Ebend-xx 1,550.Oksi Fc-Prll 2,050.0 psi Eminbend-xx 787.82 ksi Wood Species : iLevel Truss Joist Fc-Perp 800.0 psi Wood Grade :TimberStrand LSL 1.55E Fv 310.0 psi Ft 1,070.0 psi Density 32210 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D(0.165) L(0.44) �__.- ----- • ---------- • _---- • - -----------..._.._.__.__.___� 3.50 X 11.875 Span = 13.Oft Applied Loads Service loads entered. load Factors will be applied for caiculations. -- ------ ----- --------_ - -- - --__ ------- ---- --__ ___ __.. ___- --- ------ - Load for Span Number 1 Uniform Load: D=0.1650, L=0.440 k/ft, Tributary Width=1.0 ft DES/GN SUMMARY �- • � Maximum Bending Stress Ratio = 0.802 1 Maximum Shear Stress Ratio = 0.389 : 1 Section used for this span 3.50 X 11.875 Section used for this span 3.50 X 11.875 fb:Actual = 1,864.44psi fv:Actual = 120.64 psi FB:Allowable = 2,325.00psi Fv:Allowable = 310.00 psi Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span = 6.500ft Location of maximum on span = 12.025 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Defiection 0.376 in Ratio= 414 Max Upward L+Lr+S Deflection 0.000 Itl Ratio= 0 <360 Max Downward Total Deflection 0.518 in Ratio= 301 Max Upward Total Deflection 0.000 in Ratio= 0 <240 Overall Maximum Deflections-Unfactored Loads --_ . --____ ._---- - ------- ---- ___ - - .._--- - ---- ---___ --_-- -------- _____ Load Combination Span Max.""Defl LocaUon in Span Load Combination Max."+"Defl Location in Span __ _ D+L _ _ __ _ - ___--� -- ----0.5177 -.._._ _-6.565 -__ - ---- _ .- _- —-----___._. 0.0000 0.000 Vertical Reactions-Unfactored Support notation:Far left is#1 Values in K1PS - _. _ _. _. -------_ -- - . _ _. ___.. .._ - _ -----__ Load Combination Support 1 Support 2 _ -- __...__._. .___----__.. . _ ___ .--- ____-- ---_ -—- ---__ _-- Overall MAXimum 3.933 3.933 D Only 1.073 1.073 L Only 2.860 2.860 D+L 3.933 3.933 37 -�� ,- — - —.<, '` = z�._ ��� `�� u,P,�P,f' �Imv�' So;��'' _f._=:� _.::�'' �..�ny ._�,�`e`:_.:._,... Some Tll�joist series may nvt Depth T�I� 40 PSF Live Load/10 PSF Uead Load 40 PSF live load/ZO PSF Dead Load be available in your reginn. �2°a.c. �s°o.c. �s.z^o.c. 2a°o.c. i2°o.c. �s°o.c. �s.2°o.c. 2a°o.�. ContactyouriLevelrepresentative 110 16'-11" ' 15'-6" 14'-7" 13'-7" 16'-11" 15'-6" ' 14'-3" 12'-9" forir�formation. 9Yz" 210 17'-9" ' 16'-3" 15'-4" 14'-3" 17'-9" 16'-3° � 15'-4" 14�-0" �" 230 18'-3" 16'-8" 15'-9" �. 14'-8" 18'-3° ; 1 '- " ' 15'-9" ' 14'-8„ 110 20'-2" 18'-5" 17'-4" ; 15'-9"cl� 20'-2" ! 17'-8" 16'-1"�l� ! 14'-4"�>> --{ �13/a" 210 21'-1" 19'-3" � 18'-2" 16'-11" 21'-1" - ' 17'-8" ! 15'-9"��� i I 11�/a" 230 21'-8" 19'-10" ! 18'-8" 17'-5" 21'-8" 19'-10" I 18'_7" I 16'-7"<<� 1'/a"-13L � 360 22'-11" 20'-11" ; 19'-8" , 18'-4" 22'-11" 20'-11" ! lg'-8" 17'-10"�i� � ? 560 26'-1" ! 23'-8" ! 22'-4" : 20'-9" 26'-1" 23'-8° i 22'_4" 2p'-9"cl� 9�/z" 110 22'-10" i 20'-11" ; 19'-2" i 17'-2"11� 22'-2" 19'-2" ; 17'-6"�i� i 15'-0"�i� 14" ! : i 19'-9"m 24'-8" I 22'-2" 19�-2"�u ! 16'-7"ii� 3�g' � 1P/a" 14" 230 24'8" ' 22�6" I 21'-2" 18'-10"tl� 23'-11" 21'-1" � 20'-3"ut ! 17'-6"tn � 360 26'-0" 23'-8" 22'-4" � 20'-9"tl� 26'-0" ' 23'-8" ! 22'-4"111 ' 17'-10"«� r�: 560 29'-6" 26'-10" ; 25'-4" i 23'-6" 79'-6" i 26'-10" ; 25'-4"�>> 20'-11"�i� 210 26'-6" 24'-3" i 22'-6"�t� ; 19'-11"c11 26'-0" ' 22'-6"�l� � 20'-7"cl� I 16'-7"�i� . �5 y �"'S�� 230 27'-3" : 24'-10" 23'-6" ; 21'-1"ci� 27'-3" ' 23'-9" i 21'-8"�I� !. 17'-6"�l� . �s� 360 28'-9" • 26'-3" ; 24'-8"�i� � 21'-5"�i� 78`-9" i 26'-3"�t� � 22'-4"�l� ' 17'-10"�?� 560 32'-8" 29'-8" ! 28'-0" � 25'-2"�i� 32'-8" 29'-8" � 26'-3"��� ' 20'-11"��� ��'j �2�16� ,5nry�e� � _ . p� . /� •i^ x � � '+ . : I i�'11"�f3f " =:kv ':t�;a al�0e�+53iFi� ;�Yeei3�',�;4� iJY�bY?�`f Fl�E �vu�? 1'/a°-13�8" � Depth TJI� 40 PSF Live Load/10 PSF Dead Load 40 PSF Live Laad/20 PSF Dead Load � 12"o.c. 16"o.c. 19.2"o.c. 24"o.c. 12"o.c. 16"o.c. 19.2"o.c. 24"o.c. 9Yz" 110 18'-9" ; 17'-2" 15'-8" 14'-0" 18'-1" 15'-8" I 14'-3" ! 12'-9" 3�8� lU/s" 9�/z" 210 19'-8" i 18'-0" i 11'-0" � 15'-4" 19'-8" 17'-2" • 15'-8" 14'-0" 14" 230 20'-3" 16" 18'-6" � 17'-5" 16'-2" ZO'-3" 18'-1" ' 16'-6" 14'-9" � 110 22'-3" ; 19'_4" i 17'-8" i 15'-9°11� 20'-5" ll'-8" I 16'-1°�I� 14'_d"�li " 210 23'_4" • 21'-2" � 19'-4" i 17'-3°�i� 22'-4" 19'-4" i 17'-8" 15'-9^�i� �..,,,� .�,;� : : y 111/e" 230 24'-0" ! 21'-11" ' 20'-5" 18'-3" 23`-7" i 20'-5" 18'-7° 16'-7"c�� ;r`" �=� 3 s'E`=` J6O 25'_4" ' 23'-2" ' 21'-10" 20'-4"�i� 25'-4" i 13'-2" ; 21'-10"��� U'-10"��� 560 28'-10" I 26,_3" ; 24'_9" 23'-0" 28'-10" � 26'-3" ! 14'-9" 20'-11"�I� 110 24'_a" ; 21'-0" ' 19'-2" 17'-2"�l� 22'-2" ; 19'-2" 1J'-6"(1) 15'-0";�� —�j r2�/ie" 210 26'-6" ' 23'-1" I 21'-1" � 18'-10"��� 24'-4" ; 21'-1" i 19'-2"(1) 16'-7"`•�� � � � � 14" 230 27'-3" ; 24'-4" ': 22'-2" '; 19'-10"c�� 25'-8„ ! 22'-2" 20'-3"(1) li'-6"��' „�, ly��-13�8^ � 360 28'-9" ; 26'-3" � 24'-9"t1� i 21'-5"�u 28'-9" i 26'-3"��� ! 22�_4":;: ll'-10"ci� � 560 32'-8" 29'-9" ; 28'-0" 25'-2"ci� 31'-8" 19'-9" ': 26'-3°�r� 20'-11"�I� 9�/z" 210 28'-6" ; 24'-8" ' 22'-6"ct� i 19'-11"�>> 26'-0" i 22'-6"��� ': 20'-7""•� 16'-7"�>> 3�8° 1148" 16" 230 30'-1" i 26'_0" 23'-9" ' 21'-1"�i� 17`-5" I 23'-9" � 21'-8"'>> ll'-6"�i� 16" 360 31'-10" 29'-0" ; 26'-10"�>> : 21'-5"�I� 31'-l0" 26'-l0"�r� : 22'-4";1; 17'-10"�i� ; ,_ � 560 36'-1" � 32'-11" � 31'-0"�i� I 25'-2"cl� 36'-l" 31'-6"�'� � 26'-3"�i� 20'-11"ci� �� (1)Web stiffeners are required at intermediate supports of continuous-span joists when the intermediate bearing length is/essihan 5Y" - -_ ��-. =�;V-�, and the span on either sitle of the intermediate bearing is greater than the following spans: _. .�4- �.,."i� T��� 40 PSF Live Load/10 PSF Dead Load 40 PSF Live Load/20 PSF Dead Load 12"o.c. 16"o.c. 19.2"o.c. 24"o.c. 12"o.c. 16"o.c. 19.2°o.c. 24"o.c. �~j �2�/ie" 110 N.A. N.A. N.A. 15'-4" N.A. N.A. 16'-0" I 12'-9" � 210 N.A. N.A. i 21'-4" ' 17'-0" N.A. ; 21'-4" 17'-9" ' 14'-2" = 23D N.A. ; N.A. N.A. 19'-2" N.A. ', N.A. ' 19'-11" ! 15'-11" 13/a" :.�' � � 360 N.A. I, N.A. ; 24'-5" � 19'-6" N.A. � 24'-5" ! 20'-4" ! 16'-3" � 11%" 560 N.A. fV.A. 29'-10" 23'-10" N.A. 29'-10" 24'-10" i 19'-10" 3/s" 14" • long-term deflection under dead load,which includes the effect of creep,has not been considered.Ba/d italic spans reflect initial dead 16" load deflection exceeding 0.33". � �r''`s: �� 's��� 9�-��'� �L€a'.� ��a?�'��� 6B'-.4�'>AA3 :.'u �`+{-. . _ ��,_ . -` ' '��u ""�"'� 1. Determine the appropriate live load deflection ■ Tables are based on: criteria. — Uniform loads. j �{ �3�/z" 2. Identify the live and dead load condition. . — More restrictive of simple or contin 3ous span. — Cleardistance between suppoRs(1/a minimum end bearing). �_ I 3. Select on-cenie�spaCing. Assumed composite action with a single layer of 24"on center 13� � 4. Scan down the column until you meet or span-rated,glue-nailed fioor panels for deflection only.Spans � 11�/a" ezceed the span of your application. shall be reduced 6"when floor panels are nailed only. �/is" 14" 5. Select 711�joist and depth. ■ Spans generated from ilevel�software may exceed the spans � 16" shown in these tabies because software refiects actual design � Live load deflection is not the oNy factor cond iiions. thataffectshowafloorwill perform. ■ for loading conditions not shown,refer to software orto the load _°=� =�-�' �-=_�p� To more accurate! redict flnor erformance, :<. ��=s �Y=,..� 1'P p table on page 5. use ou�TJ-Prn'"Ra6ngs. �� � iLevel Trus Joist'TJI'Joist Specifier's Guide TJ-4000 February 2009 Mark Myers,PE Title: Job# Myers Engineering�LC Dsgnr: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 Project Notes: ph:253-858-3248 fx:253-858-3249 E-mail:m en ineer C@f1tU(yt@I.(1@t_ ?r:'ntec:23DEC2Gi0 10�3ADd _�g_—�. --- -------- __-- ----------- —-- ------------ Wood Beam Design ENERCALC,iNC.�sa�-zo�o,Ver.6.0.22, N:39858 � �.ee: e Description: 5.Beam at Kitchen/Stair Material Properties Caiculations per IBC 2006,CBC 2007,2005 NDS _— _-- —--- ---- __ .- ___ _ __ __. . _--- ---.. __ _-_ --- -------- ------- ____ .__ Analysis Method: Allowable Stress Design Fb-Tension 2,325.0 psi E:Modulus of Elasticity Load Combination 200616C&ASCE7-05 Fb-Compr 2,325.0 psi Ebend-xx 1,550.Oksi Fc-Prll 2,050.0 psi Eminbend-xx 787.82 ksi Wood Species : iLevei Truss Joist Fc-Perp 800.0 psi Wood Grade :TimberStrand LSL 1.55E Fv 310.0 psi Ft 1,070.Opsi Density 32.210pcf Beam Bracing Beam is Fully Braced against lateral-torsion buckling D(0.255) L(0.68) �__ _._ ____ -------------� ._--_—____.. ___-----7--- --._._..._ .__.. ----_----------------_�---� 3.50X 11.875 Span = 10.0 ft Applied Loads Service loads entered. Load Factors wiil be applied for calculations. --------- ---- -____- --- _------_ _____ _ _ _-- - -------------_ __------ - ---- Load for Span Number 1 Uniform Load: D=0.2550, L=0.680 k;ft, Tributary Width=1.0 ft DEStGN SUMMARY �- • • Maximum Bending Stress Ratio = 0.733 1 Maximum Shear Stress Ratio = 0.441 : 1 Section used for this span 3.50 X 11.875 Section used tor this span 3.50 X 11.875 fib:Actual - 1,704.98psi fv:Actual = 136.66 psi FB:Allowable = 2,325.00psi Fv:Allowable = 310.00 psi Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span = S.00Oft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.204 in Ratio= 589 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0280 in Ratio= 428 Max Upward Total Deflection 0.000 in Ratio= 0 <240 Overall Maximum Deflections-Unfactored Loads _- - _ _----___ ------. .--- -__. _ _ __ ___ _-------- ____ -------- ----_ _ _ - - �oad Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span --- -- __.. ---- - - _- - - _ ---- - -__ D+L 1 02801 5.050 0.0000 0.000 Vertical Reactions-Unfactored Support notation:Far left is#1 Values in KIPS ___-_---------------_--- -__ _ __ _ _ ___ - ___ .___ _. _..------ --- - ._.. . . - __ ___ Load Combination Support 1 SuppoR 2 Overall MAXimum 4.675 4.675 ------ __ - ------_ __ _ D Only 1.275 1275 L Only 3.400 3.400 D+L 4.675 4.675 � I Mark Myers,PE Title: Job# Myers Engineering LLC Dsgnr: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858-3249 Project Notes: E-mail:myenqineer@centurYtel.net �:��ea:23�_c zc�o,o:���,r,,, c nF •. --- -- -----------�—�------ ----�-------___--___.._...._._____._.__...-�-�---�-�---..._..._._.__—__._ Wood Beam Design ENERCALC,INC.t983-2010,Ver.6.0.22, N:39858 � 1.19: • Description: 6.Beam at Foyer Material Properties Caiculations per IBC 2006,cec 200�,2oos N�s ------- ------ ------------ -- ----_-------- ----------- - Analysis Method: Allowable Stress Design Fb-Tension 2600 psi E:Modulus of Elasticity Load Combination 200616C&ASCE7-05 Fb-Compr 2600 psi Ebend-xx 1900 ksi Fc-Pril 2510 psi Eminbend-xx 965.71 ksi Wood Species : iLevel Truss Joist Fc-Perp 750 psi Wood Grade :MicroLam LV� 1.9 E Fv 285 psi Ft 1555 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against laterai-torsion buckling _ D(0.2175) L(0.58) �----- • -----� — ---�- - • 3.5x11.875 Span = 13.0 ft Applied Loads Service loads entered. Load Factors will be appiied for calculations. - Load for Span Number 1 _------- ------- -------------_---- _ Uniform Load: D=0.2175, L=0.580 k/ft, Tributary Width=1.0 ft DESIGN SUMMARY •- • • Maximum Bending Stress Ratio = 0.945 1 Maximum Shear Stress Ratio = 0.558 : 1 Section used for this span 3.5x11.875 Section used for this span 3.5x11.875 fb:Actual - 2,457.68psi fv:Actual = 159.02 psi FB:Allowable = 2,600.00psi Fv:Allowable - 285.00 psi Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span = 8.500ft Location of maximum on span = 12.025 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.405 in Ratio= 385 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.557 in Ratio= 2$p Max Upward Total Deflection 0.000 in Ratio= 0<240 Overall Maximum Defiections-Unfactored Loads ----------- --------------- -_--- -----_- _- ----- - -----_____---— - ----- _ Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span -_ __--- D+L _ _-------- 1 0.5567__--- 6.565 ----------------- --- --- __0.0000------ 0.000 Vertical Reactions-Unfactored Support notation:Far left is#1 Values in KIPS --- - — __ ._----- ._------- ---- -- ___ _____ --- -- -- _ .___ Load Combination Support 1 Support 2 -----------------—----------__ _____ _-----__ _—_ ___ _ _ _ Overall MAXimum 5.184 5.184 D Only 1.414 1.414 L Only 3.770 3.770 D+L 5.184 5.184 �v Mark Myers,PE Titie: Job# Myers Engineering LLC Dsgnr: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858-3249 Project Notes: _E-mai1:myengineer@centurytel.net ?rin,ed:23DEC2G�0 t0i5a.6' __------ ------ --------------------------------- - Wood Beam Design ENERCALC,INC.19832010,Ver.6.0.22, N:39858 ' �.��: - • . Description: 7.Beam over Porch Material Properties Calculations per IBC 2006,CBC 2007,2005 NDS - ---_._.___-- _ - --— ----------_ __ _-- --— __ _ ___-----------------------—_ ___ _ Analysis Method: Allowable Stress Design Fb-Tension 2600 psi E:Modulus of Elasficity Load Combination 200616C&ASCE7-05 Fb-Compr 2600 psi Ebend-�c 1900ksi Fc-Prll 2510 psi Eminbend-xx 965.71 ksi Wood Species : iLevel Truss Joist Fc-Perp 750 psi Wood Grade :MicroLam LVL 1.9 E Fv 285 psi Ft 1555 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D(0.5575} L(0.14) S(0.675) �_-- --- � — --�---- � ..__...___..._._a 3.5x11.875 Span = 9.0 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. _ _ _.----- -------- -------------- _— -----------__ _ Load for Span Number 1 Uniform Load: D=0.5575, L=0.140, S=0.6750 klft, Tributary Width=1.0 ft DESIGN SUMMARY �- � • Maximum Bending Stress Ratio = 0.70Q 1 Maximum Shear Stress Ratio = 0.555 : 1 Section used for this span 3.5x11.875 Section used for this span 3.5x11.875 fb:Actuai - 1,820.45psi fv:Actual - 158.13 psi FB:Allowable = 2,600.00psi Fv:Allowable - 285.00 psi Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span = 4.500ft Location of maximum on span = 8.055 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.108 in Ratio= gg7 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.220 in Ratio= 490 Max Upward Total Deflection 0.000 in Ratio= 0 <240 Overall Maximum Defiections-Unfactored Loads ---- _— -------- ------ — --- --- _ __-----___ _ -- --_ __ _ _ Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl LocaUon in Span -----------------------_ D+L+g - ---_ _--�- ----- 0.2201--- --4.545 ----.----_ -- 0.0000 0.000 Vertical Reactions-Unfactored Support notation:Far left is#1 Values in KIPS _ __ ____ _ ___ __ ------- ----------------------------- -------- ___---__ _-- ------ ___ Load Combination Support 1 Support 2 Overali MAXimum - . ----6.176 6.176 - -__ _ __ ___._.. --- _--_ - ---------- -_ _ . _ _- -- - -___ _ D Only 2.509 2.509 L Only 0.630 0.630 S Only 3.038 3.038 D+L 3.139 3.139 D+S 5.546 5.546 D+L+S 6.176 6.176 �1� Mark Myers,PE Title: Job# Myers Engineering LLC Dsgnr: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858-3249 Project Notes: _E-mait:m en ineer centu el.fi2t ?r:ntee 2�eec za�a r�e.�nr„ . __..Y_9_—@----�-- ------- ----------------- --------------- -______.__.__ Wood Beam Design ENERCALC,INC.1983-2010,Ver.6.0.22, N:39858 , �..��• - . . Description: 8.Beam over Middle of Garage Material Properties__ caicuiations per iec 2oos,CBC 2007,2005 NDS _...-- -- --- ----------- ---- . _ ____–----------- -- --------------– Analysis Method: Allowable Stress Design Fb-Tension 2,400.0 psi E:Modulus of Elasticity Load Combination 200616C&ASCE7-05 Fb-Compr 1,850.0 psi Ebend-xx 1,800.0 ksi Fc-Prll 1,650.0 psi Eminbend-xx 930.0 ksi Wood Species : DF/DF Fc-Perp 650.0 psi Ebend-yy 1,600.0 ksi Wood Grade :24F-V4 Fv 265.0 psi Eminbend-yy 830.Oksi Ft 1,100.Opsi Density 32210pcf Beam Bracing : Beam is Fuliy Braced against lateral-torsion buckling D(0.15) L(0.4) D(0.1763) L(0.47) • . . . . �_.__._—.._.__--L----- ` --- • -------•-- �-------_------ — ------------_---__...._ -----°--------_------------------------�---__— 5.125x15 ------- --- - Span = 19.0 ft Applied Loads Service�oads entered. Load Factors wiil be applied for calculations. ----- ----- - — - --- __-----__-- --------------------_ _ Load for Span Number 1 Uniform Load: D=0.150, L=0.40 k/ft,Extent=0.0-»9.0 ft, Tributary Width=1.0 ft Uniform Load: D=0.1763, L=0.470 k/ft,Extent=9.0-»19.0 ft, Tributary Width=1.0 ft DEStGN SUMMARY �- . • Maximum Bending Stress Ratio = 0.718 1 Maximum Shear Stress Ratio = 0.378 : 1 Section used for this span 5.125x15 Section used for this span 5.125x15 fb:Actual = 1,701.24psi fv:Actual - 100.22 psi FB:Allowable = 2,370.65psi Fv:Allowable = 265.00 psi Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span = 9.785ft Location of maximum on span = 17.765 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.499 in Ratio= 457 Max Upward L+Ir+S Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.686 in Ratio= 332 Max Upward Total Deflection 0.000 in Ratio= 0<240 Overall Maximum Deflections-Unfactored Loads __ --- -- -- ------------------------- --— — ---- _--- Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span --- ----- ----- - D+L _.. .---_ ._.----- _--�- - ---0.6860 --- ---- 9.595------------- 0.0000 0.000 . Vertical Reactions-Unfactored Support notation:Far left is#1 Values in KIPS _ -- - _____ —_._.__- PP ---- Pp------------ --------- ------.-- -------- ___ ___ ___ Load Combination Su ort 1 Su ort 2 ----------- -------------- -------._.. __---------_ _ . _ _... . - Overall MAXimum 5.478 5.935 D Only 1.494 1.619 L Only 3.984 4.316 D+L 5.478 5.935 '[ L Mark Myers,PE Title: Job# Myers Engineering LLC Dsgnr: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858-3249 Project Notes: E-mail:myenqineer(�centurytel.net ?r:ntzG:23 CcC 2C i 0,10 2'SAh,a ----------------- �---- WOOCI Bea�Y) DeSIgI� ENERCALC,INC.1983-2010,Ver.6.0.22, N:39858 � — �.si• • • Description: 9•@eam near Front of Garage Material Properties Calcutations per IBC 2006,CBC 2007,2005 NDS ---- — ------- -..------. ----- _------- - ------ --_ ..--- --- ------_ Analysis Method: Allowable Stress Design Fb-Tension 2400 psi E:Modulus of Elasticity Load Combination 200616C&ASCE7-05 Fb-Compr 1850 psi Ebend-�c 1800 ksi Fc-Prll 1650 psi Eminbend-xx 930 ksi Wood Species ; DF/DF Fc-Perp 650 psi Ebend-yy 1600ksi Wood Grade :24F-V4 Fv 265 psi Eminbend-yy 830ksi Ft 1100 psi Density 32.21 p�f Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D(1.725)S(2.875) D(0.55} L(0.28) S(0.5875) D(0.1125) L(0.3) • . � . � [--__--,.._--T_.-L----------L------....__L__ _T_.._. _.__.. ____- --._----- -.__________.__. �� 5.125x18 --- ----- -- Span = 19.0 ft Applied Loads Service loads entered. Load Factors will be applied for caicufations. ---- ------ -- --------- -- ____ Load for Span Number 1 Uniform Load: D=0.550, L=0,280, S=0.5875 k/ft,Extent=0.0-»8.50 ft, Tributary Width=1.0 ft Point Load: D=1.725, S=2.875 k an,8.50 ft Uniform Load: D=0.1125, L=Q.30 klft,Extent=8.50--»19.0 ft, Tributary Width=1.Q ft DESlGN SUMMARY �- . • Maximum Bending Stress Ratio = 0.94Q 1 Maximum Shear Stress Ratio = 0.573 : 1 Section used for this span 5.125x18 Section used for this span 5.125x18 fb:Actual - 2,189.04psi fv:Actual = 151.80 psi FB:Altowable = 2,327.82psi Fv:Allowable = 265.00 psi Load Combination +D+0.750L+0.750S+H Load Combination +D+0.75GL+0.750S+H Location of maximum on span = 8.455ft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.320 in Ratio= 7�2 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.801 in Ratio= 284 Max Upward Total Deflection 0.000 in Ratio= 0<240 Overall Maximum Deflections-Unfactored Loads __— ------- _-- _____ ____—. __ ----- _ _ — --- _ Load Combination Span Max.""DeFl Location in Span Load Combination Max."+^Defl Location in Span -- ___ _ _----_ _ _ D+L+S 1 _-- ---0.8012 __9.120 ---- ___---__--- 0.0000 0.000 Vertical Reactions-Unfactored SuppoR notation:Far left is#1 Values in KIPS _ - ----- ------- _--------__.--- -------------_ -- -- - --- Load Combination Support 1 Support 2 -- -- _----___ _. _ _.._.._ .__ Overall MAXimum 13.093 7.887 D Only 4.909 2.672 L Only 2.718 2.812 S Only 5.466 2.403 D+L 7.627 5.484 D+S 10.375 5.075 D+L+S 13.093 7.887 �3 Mark Myers,PE Title: Job# Myers Engineering LLC Osgnr 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858-3249 Project Notes: E-mail:_myengineer�a centurytel.net ?rn;ea:23 DEC 2C?0.;025nP; - — --------- ----------- — -------------_------------._....._.._._._..__ Wood Beam Design ENERCALC,INC.1983-2010,Ver:6.0.22, N:39858 � ��.�_: - . Description: 10.SGD Header at Great Rm Materiai Properties Calculations per IBC 2006,CBC 2007,2005 NDS ------- - ---- ------ _____. _ -- ----- --------- —-- ---_. __...__ _ . Analysis Method: Allowable Stress Design Fb-Tension 2400 psi E:Modulus of Elasticity Load Combination 20061BC&ASCE7-05 Fb-Compr 1850 psi Ebend-xx 1800ksi Fc-Prll 1650 psi Eminbend-�c 930 ksi Wood Species : DF/DF Fc-Perp 650 psi Ebend-yy 1600ksi Wood Grade :24F-V4 Fv 265 psi Eminbend-yy 830ksi Ft 1100 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckiing D(0.6225) L(0.56) S(0.5625) f__ ____._.-------- -----.._.._--.L.___._.�-----___._._ __....___�------- -----------------�--__-------- ---------__7 5.125x9.0 Span = 8.Oft Applied Loads Service loads entered. Load Factors wiil be applied for caiculations. _ -- ---...--- -_..----.._..__-- __— --- ------- -_..__------------- _---------- ----- ---- Load for Span Number 1 Uniform Load: D=0.6225, L=0.560, S=0.5625 k/ft, Tributary Width=1.0 ft DESIGN StJMMARY �- • � Maximum Bending Stress Ratio = 0.847: 1 Maximum Shear Stress Ratio = 0.589 : 1 Section used for this span 5.125x9.0 Section used for this span 5.125x9.0 fb:Actua� = 2,031.87psi fv:Actual - 156.20 psi FB:Allowable = 2,400.00psi Fv:Allowable = 265.00 psi Load Combination +D+Q.750L+0.750S+H Load Combination +D+0.750L+0.750S+H Location of maximum on span = 4.00Oft Location of maximum on span = 7.280 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.093 in Ratio= 1029 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0289 in Ratio= 331 Max Upward Total Deflection 0.000 in Ratio= 0<240 Overall Maximum Defiections-Unfactored Loads _ --- ------- ---- -------- -_____ _--- _ ___._ _.. _— -- _. --_ Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span - -- _ - - - _ D+L+g _ - - — - __�__-----0.2893 ----__4.040--- -------- ------ -- - 0.0000 -----_. __0.000 _ _ Vertical Reactions•Unfactored Support notation:Far left is#1 Values in KIPS -._.._ ---__-- -------__ -- ------ __------------ - ___ _ _..____ _ ___ _ _ Load Combination Support 1 Support 2 _ --- _ --- ---- .__..___----_____..___ .. .... _ _. - _ _ - _ - Overall MAXimum ---6.980 6.980 D Only 2.490 2.490 L Only 2.240 2.240 S Only 2.250 2.250 D+L 4.730 4.730 D+S 4.740 4.740 D+L+S 6.980 6.980 �� Mark Myers,PE Title: Job# Myers Engineering LLC Dsgnr: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 Project Notes: ph:253-858-3248 fx:253-858-3249 E-mail:_myengineer@centurytel.net ?nnted:23�EC 20t0,?025kPA __..--- -------------_._---------�----------�---�-------- ---- -------- Wood Beam Design ENERCALC,�NC.198�2010,Ver.6.0.22, N:39858 � �.te: • Description: 10a.Window Header at Great Rm Material Properties Calculations per IBC 2006,CBC 2007,2005 NDS _ __ __---- _----__ __ _.. .__. _____ _ __...____. ._ .__. _ --- _ _ . -- — --- — Analysis Method: Allowable Stress Design Fb-Tension 875 psi E:Modulus of Elasticity Load Combination 20061 BC&ASCE7-05 Fb-Compr 875 psi Ebend-xx 1300 ksi Fc-Prll 600 psi Eminbend-xx 470 ksi Wood Species : Douglas Fir- Larch Fc-Perp 625 psi Wood Grade : No.2 Fv 170 psi Ft 425 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D(0.6225) L(0.56)S(0.5625) !----__ _-----_.�_ _ _ _..__.... z__._ .___------_._.�------------� - 6x10 - Span=5.0 ft Applied Loads Service loads entered. Load Factors wili be applied for calculations. _ _..--- ------- __....--- ---- - _ _ . ------- --___. __--- -------- --------- -____ .. _ Load for Span Number 1 Uniform Load: D=0.6225, L=0.560, S=0.5625 klft, Tributary Width=1.0 ft DESIGN SUMMARY �- � � Maximum Bending Stress Ratio = 0.758 1 Maximum Shear Stress Ratio = 0.427 : 1 Section used for this span 6x10 Section used for this span 6x10 fb:Actual = 663.78psi fv:Actual = 72.52 psi FB:Allowable = 875.00psi Fv:Allowable = 170.00 psi Load Combination +D+0.750L+0.750S+H Load Combination +D+0.750L+0.750S+H Location of maximum on span = 2.500ft Location of maximum on span = 0,000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.016 in Ratio= 3$44 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.048 in Ratio= 1239 Max Upward Total Deflection 0.000 in Ratio= Q<240 Overall Maximum Deflections-Unfactored Loads — -- __----__----------_ ----. __- ____.. __ - ------------ _. __ ---- -------- ---- Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span _--_ _ _-- _ —------ -- - - _-----__ ------------- D+L+S 1 0.0484 — -- 2.525 - -- -__ ----- ----------_ 0.0000 0.000 Vertical Reactions-Unfactored Support notation:Far left is#1 Values in KIPS -- .__-—----- ------- ---------- _ __-— -- - —_....------- - Load Combination Support 1 Support 2 ---- — ___---_ .__--- --------- ..------ .. _ -- __ . . .._._ _. __ _------- _ Overall MAXimum 4.363 4.363 D Only 1.556 1.556 L Only 1.400 1.400 S Only 1.406 1.406 D+L 2.956 2.956 D+S 2.963 2.963 D+L+S 4.363 4.363 �d5 Mark Myers,PE Title: Job# Myers Engineering LLC Dsgnr: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858-3249 Project Notes: _E-mail:myenqineera(�,centurytel.net �, ______ _ ___ _ a���,ez z3 eec ze+.a�e:��;�,__ Wood Beam Design ENERCALC,INC.1983-2010,Ver:6.022, N:39858 � 1•.it' - f Description: 11.Deck Beam Material Properties ______ caicuiat�ons per�BC 2oos,CBC 2007,2005 NDS ------------ --------- --.. __ _ _ . Analysis Method: Ailowable Stress Design Fb-Tension 2400 psi E.Modulus of Elasticity Load Combination 200616C&ASCE7-05 Fb-Compr 1450 psi Ebend-xx 1800 ksi Fc-Prli 1600 psi Eminbend-xx 930 ksi Wood Species : DF/DF Fc-Perp 650 psi Ebend-yy 1600 ksi Wood Grade :24F-1.8E Fv 265 psi Eminbend-yy 830 ksi Ft 1100 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D(0.05) L(0.2) �----- ---- •— i.__------ • --- ----__� 5.125x9.0 Span = 15.0 ft Applied Loads Service loads entered. Load Factors wilf be applied for calcufations. - - ---- ------- — -------- — ---- ------- ---_ _ Load for Span Number 1 Uniform Load; D=0.050, L=0.2G klft, Tributary Width=1.0 ft DESlGN SUMMARY •- • • Maximum Bending Stress Ratio = 0.508 1 Maximum Shear Stress Ratio = 0.209 : 1 Section used for this span 5.125x9.0 Section used for this span 5.125x9.0 fb:Actual = 1,219.51 psi fv:Actual = 55.49 psi FB:Allowable - 2,400.00 psi Fv:Allowable = 265.00 psi Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span = 7.500ft Location of maximum on span = 14.325 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.410 in Ratio= 439 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.512 in Ratio= 351 Max Upward Total Deflection 0.000 in Ratio= 0<240 Overall Maximum Deflections-Unfactored Loads _—__ ._ ----- -- ----- ---- ----_..-- - -_ __- . _ __ __ ---- ------- _--- Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span —_ --- -- --....-------------_ _ D+L . _—-------------- 1 0.5122 7.575 0.0000- -- - 0.000 Vertical Reactions-Unfactored Support notation:Far left is#1 Values in KIPS ---- --_ --- ------------------ ____ _--- --------- -- ----—------ Load Combination Support 1 Support 2 Overall MAXimum 1.875 1.875 ---------- -. _ ----------------- --- ------------.._.- __ - D Only 0.375 0.375 L Only 1.500 1.500 D+L 1.875 1.875 �6 Mark Myers,PE Title: Job# Myers Engineering LLC Dsgnr: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 Project Notes: ph:253-858-3248 fx:253-858-3249 E-mail:myengineer centurvtel.net ?r:nted:23 DEC 2G10,t03eP.t�� __._..--- -------------- -- ----....._----------_.__------- Wood Beam Design ENERCALC,INC.19832010,Ver.6.0.22, N:39858 � �..,,: . Description: 12.Deck Joist Material Properties Calculations per IBC 2006,CBC 2007,2005 NDS _-- - --------_ - --- ----- ---__---- ---- ---- - ------ — - — -- -- _ Analysis Method: Allowable Stress Design Fb-Tension 680 psi E:Modulus of Elasticity Load Combination 200616C&ASCE7-05 Fb-Compr 680 psi Ebend-�c 1235 ksi Fc-Prll 1040 psi Eminbend-�c 446.5 ksi Wood Species ;4x HF#2 P.T. Fc-Perp 405 psi Wood Grade :Sawn, No. 3-> Sei Str Fv 120 psi Ft 420 psi Density 35pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buck►ing Repetitive Member Stress Increase D(0.01333) L(0.05332) �----- . . . _ _• 2x8 Span = 10.0 ft Applied Loads Service loads entered.Load Factors will be applied for calcuiations. __--_ __-- ___ - --- -- ------___ . _- ------ __._ .---- -- ----- ------------ - - _ . Load for Span Number 1 Uniform Load: D=0.010, L=0.040 ksf, Tributary Width=1.333 ft DESIGN SUMMARY �- � • Maximum Bending Stress Ratio = 0.973 1 Maximum Shear Stress Ratio = 0.337 : 1 Section used for this span 2Xg Section used for this span 2X$ fb:Actual = 760.81 psi fv:Actual - 40.45 psi FB:Allowable - 782.00psi Fv:Allowable = 120.00 psi Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span = 5.00Oft Location of maximum on span = O.00Oft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.206 in Ratio= 583 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0<360 Max Downward Totai Deflection 0257 in Ratio= 467 Max Upward Total Deflection 0.000 in Ratio= 0 <240 Overall Maximum Deflections-Unfactored Loads — --- ---__ ---- - - _ __ _-- _ ---_ _ . _ Load Combination Span Max.="Defl �ocation in Span Load Combination Max."+"Defl Location in Span - -- _..-------------_ — -------- ---- — D+L _ --------1-----0.2570 ---- _5.050--------- 0.0000 0.000 Vertical Reactions-Unfactored Support notation:Far left is#1 Values in KIPS ---- -- -----__ _ -- ____----____.__ . .------------ --—------ -- ——--- Load Combination Support 1 Support 2 Overall MAXimum 0.333 0.333 _----------- ____---- ----------------- --- ___-- D Only 0.067 0.067 L Only 0.267 0.267 D+L 0.333 0.333 (� Mark Myers,PE Title: Job# Myers Engineering LLC Dsgnr: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fic:253-858-3249 Project Notes: _E'ma�l:mYen inee�centurytel.net ?rr,ec:23.,n.FC'CV��;�Q:.�.�Y��.". _'__ __ _"_'_ __"'__._.._-._...._.____. WOOCJ B@aCTI D@SIgCi ENERCALC,INC.1983-2010,Ver:6.0.22, N:39858 � �.��: - • Description: 13.Garage Door Header Material Properties Calculations per IBC 2006,CBC 2007,2005 NDS ------ __ ------- --- - ------ ------ ---- --- -------- --- --___ _ _ Analysis Method: Allowable S#ress Design Fb-Tension 900 psi E:Modulus of Elasficity Load Combination 20061BC&ASCE7-05 Fb-Compr 900 psi Ebend-xx 1600ksi Fc-Prll 1350 psi Eminbend-�c 580 ksi Wood Species : Douglas Fir- Larch Fc-Perp 625 psi Wood Grade ; No.2 Fv 180 psi Ft 575 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling _ D(0.04875) S(0.08125) �__ ----- __-----------L -----------.._.�.----------- --�------------ —_..,__� . -----/ 4x12 Span = 16.250 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. ------ ------- ----------- -- - --- __ __ __-------------.-------- Load for Span Number 1 Uniform Load: D=0.04875, S=0.08125 k;ft, Tributarv Width=1.0 ft DESIGN SUMMARY .- . • Maximum Bending Stress Ratio = 0.708 1 Maximum Shear Stress Ratio = 0.199 : 1 Section used for this span 4x12 Section used for this span 4x12 fb:Actual - 697.46 psi fv:Actual - 35.81 psi FB:Allowable = 990.00psi Fv:Allowable = 180.00 psi Load Combination +D+S+H Load Combination +D+S++i Location of maximum on span = 8.125ft Location of maximum on span = O.00G ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.193 in Ratio= 1008 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.309 in Ratio= 630 Max Upward Total Deflection 0.000 in Ratio= 0<240 Overail Maximum Deflections-Unfactored Loads - ----- __--------- --- ---- -------____ ---- __--------------__ _— --__ _. _ _ _ Load Combinatlon Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span ------ ---_..---- ---.._-------_----- ------ - --- D+S . ------ - -------1 0.3094 - -- 8206 0.0000 0.000 Vertical Reactions-Unfactored Support notation:Far Ieft is#1 Values in KIPS ---- ----- ---------- .__----------.----- ------------------ — — -- _ _ _ Load Combination Support 1 Support 2 Overall MAXimum - 1.056 1.056 _ ------__—-- -- --____ D Only 0.396 0.396 S Only 0.660 0.660 D+S 1.056 1.056 [ V Mark Myers,PE Title: Job# Myers Engineering LLC Dsgnr: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858-3249 Project Notes: ?rintzd:2's DEC 2C i 0,?039n�.", -mai:myengineer centuryte.net __ _ _______.________________ Wood Beam Design ENERCALC,INC.19832010,Ver.6.0.22, N:39858 � �.�{: . DesCription: 14.Beam over Garage at 3rd Car Option Material Properties Calculations per IBC 2006,CBC 2007,2005 NDS —__ _ --------- .. _----_.._ __ ---- ---_.._ __.----------- --- ----------- — Analysis Method: Allowable Stress Design Fb-Tension 2400 psi E:Modufus of Elasticity Load Combination 200616C&ASCE7-05 Fb-Compr 1850 psi Ebend-xx 1800ksi Fc-Prll 1650 psi Eminbend-�c 930 ksi Wood Species : DF/DF Fc-Perp 650 psi Ebend-yy 1600 ksi Wood Grade :24F-V4 Fv 265 psi Eminbend-yy 830ksi Ft 1100 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D(1.62) L(4.32) D(0.145} L(0.04) S(0.05) L__------------ —_— • ---------- __._._.C--------L------- ------------._.�_ __..___._ ____—r___,.___1 — _ __._::._ —...�:� _��__._.�_..:--�_ 5.125x18 Span = 23.0 ft Applied Loads Service loads entered. Load Factors wil!be applied for calcufations. ----__--- __...— _ -----_ -- -- ----.__.__..__. __ _ ._.__ ___ _ —_ _ _ .__ Load for Span Number 1 Uniform Load: D=0.1450, L=0.040, S=G.050 klft, Tributary Width=1.0 ft Point Load: D=1.620, L=4.320 k a(�,10.0 ft DESIGN SUMMARY �- • • Maximum Bending Stress Ratio = 0.866 1 Maximum Shear Stress Ratio = 0.320 : 1 Section used for this span 5.125x18 Section used for this span 5.125x18 fb:Actual - 1,976.69psi fv:Actual = 84.69 psi FB:Allowable = 2,283.76psi Fv:Allowable = 265.00 psi Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span = 10.005ft Location of maximum on span = O.00Oft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.472 in Ratio= 584 Max Upward L+Lr+S Deflection O.00Q in Ratio= 0 <360 Max Downward Total Deflection 0.904 in Ratio= 305 Max Upward Totai Deflection 0.000 in Ratio= 0 <240 Overall Maximum Deflections-Unfactored Loads -- - -- -------------- ---------------_ __ _ Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span _ --- _ D+L+S --- -------- -�-- 0.9041--- 11.270 --- ----------- - --- -0.0000 _ _ ._._..._..0.000 - Vertical Reactions-Unfactored Support notation:Far Ieft is#1 Values in KIPS --- -------- _ - --___._- _ _------------- ----- _____ — ____._--------.____-- -- ___ _____ ___ Load Combination Support 1 Support 2 —------ -------. . _ . -----_ _ . ._ ._ __--- ------- ----- - - - - _ Overall MAXimum 6.060 5.285 D Only 2.583 2.372 L Only 2.902 2.338 S Only 0.575 0.575 D+L 5.485 4.710 D+S 3.158 2.947 D+I+S 6.060 5.285 Gl� Mark Myers,PE Title: Job# Myers Engineering LLC Dsgnr: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fx:253-858-3249 Project Notes: _E.-mail;_m en ineera centurytel.net_ a��n�ec:�3 oec zc;o,o:es�.r•;; WOOC� B@alll D@Slgll ENERCALC,INC.1983-2010,Ver.6.022, N:39858 � ��.��: • Description: 15.Header at 3rd Car poor Material Properties _ ___ Ca�cu�ations per�BC 2oos,cBC 200�,2005 N�s - -__...------ _---- ------ ---- _ _._.__ _._ Analysis Method: Allowable Stress Design Fb-Tension 900 psi E:Modulus of Elasticity Load Combination 20061BC&ASCE7-05 Fb-Compr 900 psi Ebend-xx 1600ksi Fc-Prii 1350 psi Eminbend-xx 580 ksi Wood Species : Douglas Fir- Larch Fc-Perp 625 psi Wood Grade ; No.2 Fv 180 psi Ft 575 psi Density 3221 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D(0.2175) S(0.3625) •_ __.. . . . . 4x12 Span=8.250 ft Applied Loads Service loads entered. Load Factors wiil be applied for caiculations. --- -------- ---- ---- _ ______------ -- - ----------- ---- -_- ---- _ - __ ___ Load for Span Number 1 Uniform Load: D=0.2175, S=0.3625 k!ft, Tributary Width=1.0 ft DESIGN SUMMARY �- . • Maximum Bending Stress Ratio = 0.81Q 1 Maximum Shear Stress Ratio = 0.395 : 1 Section used for this span 4x12 Section used for this span 4x12 fib:Actual = 802.06psi fv:Actual = 71.09 psi FB:Ailowable - 990.00psi Fv:Allowable = 180.00 psi Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span = 4.125ft Location of maximum on span = 7.343 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.057 in Ratio= 1727 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.092 in Ratio= 1079 Max Upward Total Deflection 0.000 in Ratio= 0<240 Overall Maximum Deflections-Unfactored�oads -- -- _._--------_—_------- -..__.. _----- __-----_ __ —__---- __ _____ Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span -- ------------------. ---------------- --- -------- D+S 1 0.0917 4.166 - - ------- -- - . _ 0.0000 . 0.000 Vertical Reactions-Unfactored Support notation:Far left is#1 Values in KIPS ___ �_------ _------__--_ ..---___ -- _._.. ----- -___..__ ..---------- - _ __ _ _. Load Combination Support 1 Support 2 _. _ _ _--___ --------—---- -------- -_.._ _ _ __ __-__ Overali MAXimum 2.393 2.393 D Only 0.897 0.897 S Only 1.495 1.495 D+S 2.393 2.393 �� Mark Myers,PE Title: Job# Myers Engineering LLC Dsgnr: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 Project Notes: ph:253-858-3248 fx:253-858-3249 _E-maiL myengineer centurytel.net _ a��mea:z�DEC 2Qi0.10:45ata_ Wood Beam Design ENERCALC,INC.1983-2010,Ver.6.0.22, N:39858 � �.��: . . D2SCfIptiOn; 16.Main Fir Jst Materiai Properties Calculations per IBC 2006,CBC 2007,2005 NDS _____ _ _------- . --- -- ----_- ---- _ _ - --- ---- . ---- _------____ ____-- _-----__ ______ -- Analysis Method: Allowable Stress Design Fb-Tension 850 psi E:Modulus of E/asficity Load Combination 200616C&ASCE7-05 Fb-Compr 850 psi Ebend-xx 1300 ksi Fc-Prll 1300 psi Eminbend-xx 470 ksi Wood Species : Hem Fir Fc-Perp 405 psi Wood Grade : No.2 Fv 150 psi Ft 525 psi Density 27•7pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling Repetitive Member Stress Increase D(0.019995) L(0.05332) • -------- � -------------------z------ • ---------------.._� 2x10 Span = 11.50ft Applied Loads Service loads entered. Load Factors will be appiied for calcu{ations. -_ _- --_ __ _____ _ --___ - - - — ___..._ __---- ------------------ .______ ------ ___----__ -- _ Load for Span Number 1 Uniform Load: D=0.0150, L=0.040 ksf, Tributary Width=1.333 ft DES/GN SUMMARY �- • • _. Maximum Bending Stress Ratio = 0.632 1 Maximum Shear Stress Ratio = 0.264 : 1 Section used for this span 2x10 Section used for this span 2x10 fb:Actual - 679.92psi iv:Actual = 39.65 psi FB:Allowable = 1,07525psi Fv:Allowabie - 150.00 psi Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span = 5.750ft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where ma�cimum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.164 in Ratio= g3g Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.226 in Ratio= 610 Max Upward Totai Deflection 0.000 in Ratio= 0<240 Overall Maximum Deflections-Unfactored Loads ------ - --- __—- --- -----_ ______ _----.-- .__-----___ __ Load Combination Span Max.""Defl Location in Span Load Combination Max."+^Defl Location in Span _ _ _ . _------—�----- --_ _-- ——_ _ �+L- - - --- ---- 1 0.2261 5.808 __—-- . _ ___---------__. ___ _0.0000 0.000 Vertical Reactions-Unfactored Support notation:Far left is#1 Values in KIPS __ -------------- --__-- -_ .._ _ - ---- ---- -- -- -___..__..-- ----- - Load Combination Support 1 Support 2 —----- --- __ _ — _ ______ __—- - --- - ------ --------__ _ --___— --__------ --- Overall MAXimum — 0.422 __ - 0.422 D Only 0.115 0.115 L Only 0.307 0.307 D+L 0.422 0.422 5� Mark Myers,PE Title: Job# Myers Engineering LLC Dsgnr: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 ph:253-858-3248 fic:253-858-3249 Project Notes: _E-mail;m en ineer centurytel.net =�:��ec:zsoEC�o,o�o:a�;..r>, _..___ _...__.. _.....__ _._..._ __....__.__ _--__ --_----- ------- - Wood Beam Design ENERCALC,�r,c.�sa�-zo�o,Ver.6.0.22, N:39858 � �.��� . . Description: 17.Crawl Beam at Brg Wall Material Properties Calcufations per IBC 2006,CBC 2007,2005 NDS - -- -- ---- ---- - ----_ —----- ----- ------- Analysis Method: Allowable Stress Design Fb-Tension 900 psi E:Modulus of Elasticity Load Combination 20061 BC&ASCE7-05 Fb-Compr 900 psi Ebend-xx 1600 ksi Fc-Prll 1350 psi Eminbend-�c 580 ksi Wootl Species ; Douglas Fir- Larch Fc-Perp 625 psi Wood Grade : No.2 Fv 180 psi Ft 575 psi Density 32.21 p�f Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D(0.3925) L(0.78) � _._..__...--�---C.._.._--._._. _�_.__..._..__._._._L _ _.._...---� ------ ----1.-_...._------ __._ .._...J 4x10 Span=5.50ft Applied Loads Service loads entered.Load Factors wiil be applied for caiculations. Load for Span Number 1 — ---- ---- _._ . _ _._ Uniform Load: D=0.3925, L=0.780 k/ft, Tributary Width=1.0 ft DESIGN SUMMARY .- . � Maximum Bending Stress Ratio = 0.98T. 1 Maximum Shear Stress Ratio = 0.598 : 1 Section used for this span 4x10 Section used for this span 4x10 fb:Actual - 1,065.93psi fv:Actual = 107.56 psi FB:Allowable = 1,080.00psi Fv:Allowable - 180.00 psi Load Combination +p+�+H Load Combination +D+L+H Location of maximum on span = 2.750ft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.044 in Ratio= 1505 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.066 in Ratio= 1001 Max Upward Total Deflection 0.000 in Ratio= 0 <240 Overali Maximum Detiections-Unfactored Loads ---__.._ _ _------- — _— ----- ------- ---- -- -.. -------- --- --_ _ __ . __ Load Combination Span Max. "Defl Location in Span Load Gombination Max."+"Defl Location in Span -—--___— -- _ --------------__----------------- - _ _ _--- -------_—- — - D+L 1 0.0659 2.778 0.0000 0.000 Vertical Reactions-Unfactored SuppoR nota6on:Far left is#1 Values in KIPS _-- ------ ._ _. __ _- ---- ----------- _ __ ------ --- --- -.---- ---------- Load Combination SuppoR 1 Support 2 Overall M,4Ximum- - ---- 3.224 3 224 . D Only 1.079 1.079 L Only 2.145 2.145 D+L 3.224 3.224 � Mark Myers,PE Title: Job# Myers Engineering LLC Dsgnr: 3206 50th St Ct NW,Ste 210-B Project Desc.: Gig Harbor,WA 98335 Project Notes: ph:253-858-3248 fx:253-858-3249 E-mail:_myengineer@centurvtel.net ____ _ _ _ __ a�,�cer:z�eECZC�o_,u:s,;,r.+_ Wood Beam Design ENERCALC,INC.1983-2010,Ver.6.0.22, N:39858 � �.,�• - . Description: 18. Crawl Beam Material Properties Calculations per IBC 2006,CBC 2007,2005 NDS -- ---- --- -- ___... _ ---_------------ ---__ ._.____ ---__ ___ -__— Analysis Method: Allowable Stress Design Fb-Tension 900 psi E:Modulus of Elasticity Load Combination 200616C&ASCE7-05 Fb-Compr 900 psi Ebend-�c 1600ksi Fc-Prll 1350 psi Eminbend-xx 580ksi Wood Species : Douglas Fir-Larch Fc-Perp 625 psi Wood Grade : No2 Fv 180 psi Ft 575 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D(0.135) L(0.36) • ---- . . . . 4x10 Span = 8.50 ft Applied Loads Service loads entered. Load Factors wiil be appiied for calculations. ------ -- --- _ _---- ------------------------___ Load for Span Number 1 Uniform Load: D=0.1350, L=0.360 k/ft, Tributary Width=1.0 ft DESIGN SUMMARY �- • • Maximum Bending Stress Ratio = 0.995 1 Maximum Shear Stress Ratio = 0.444 : 1 Section used for this span 4x10 Section used for this span 4x10 fb:Actual - 1,074.82psi fv:Actual - 79.93 psi FB:Allowable = 1,080.00psi Fv:Allowable - 180.00 psi Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span = 4.250ft Location of maximum on span = 7.735 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.115 in Ratio= $$3 Max Upward L+Lr+S Deflection O.00d in Ratio= 0<360 Max Downward Total Deflection 0.159 in Ratio= 642 Max Upward Total Deflection 0.000 in Ratio= 0 <240 Overall Maximum Deflections-Unfactored Loads __ __ _- ---- _--_ --- ---- -- _ . _-— -_ -----____ __---- --- _---- --- - - Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span -- _ _ --------_------___------ --. _ _____---_- D+L . - _ --- 1- -- 0.1587--- 4.293 --0.0000 0.000 Vertical Reactions-Unfactored Support notation:Far left is#1 Values in KIPS - __ ----- —--------------------------------_ ___- _-- - ------ .- ---------_ __ __ ___ Load Combination Support 1 Support 2 _-- _ Overall MAXimum -----------2.104-- - 2.104 D Only 0.574 0.574 L Only 1.530 1.530 D+L 2.104 2.104 �� Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3102 Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net Maximum Load For 6x6 DF#1 Wood Post �:= p�� �:_ psf•ft �= plf�ft MH,�:= 9.083�ft F�:= 1000•psi �.= 1 CFb := 1 Cly:= 1 Ct:= 1 CL:= 1 CF�:= 1 E':_ ]600000•psi F��c�= Fc'CD'CFc p"�- 1000•psi 6x6 Wood Post Properties Kf�— 1 �Kf=0.6 for unbraced nailed Axial Load Capacity built up posts-0.75 for bolted) Slenderness Ratio (SL) ,N:= 5.5•in t:= 5.5•in SL:= h �:= 0.8 K.�E:= 03 2 E �:= t•h A= 30.2-in KCE' F�E:= 2 F�E= 1222-psi t h3 4 SL �:= 12 I= 763•in 2 1 + FCE 1 + FCE FCE S:= I_2 S=27.7•in3 F"� F"� p��� "^^ h CP'— — 'Kf 2•C 2•C C CP= 0.76 F'�:= Cp•F"� F'�= 755•psi Pmar:= F'�A Pmax=22853•Ib (Maximum post Capacity) Maximum Load For 6x6 HF#2 Treated Post psi '�""""� 144 �"- psf•ft �= plf•ft �H:= 9.083•ft F�:= 460•psi �= 1 �:_ 1 �= 1 �= 1 C�:= 1 ��:= 1 EN= 1045000•psi �•= F�•CD•CF� F"�=460•psi 6x6 Treated Wood Post Properties Axial Load Capacity ��- ��� �Kf=0.6 for unbraced nailed built up posts-0.75 for bolted) Slenderness Ratio (SL) ,h:= 5.5-in H �t,��.= 5.5•in �,S�L'.= h �C,:= 0.8 K��.= 0.3 2 �:= t•h A=302•in E' ,��= E F�£ = 798•psi t•h3 4 SL2 ,I„= 12 I= 76.3•in 2 I•2 FcE FcE FcE S:_ — S =27.7•in3 1 + — i + — — h F" F" F" � c c '�" 2•C 2•C C Kf Cp= 0.84 MF'�,:= CP•F°� F'�=387•psi P�.= F'�•A PmaX= 11710•lb (Maximum post Capacity) 3102.xmcd Mark Myers, PE 12/22/2010 �� Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-B PROJECT : Plan 3102 Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net Maximum Load For 3-2x6 HF#2 Built up Wood Post �:_ ps� �:- psf•ft �= plf•ft H:= 9.083•ft 144 F�:= 1300•psi �:= 1 �:= 1 �= 1 �.= 1 �:= 1 �:= 1.1 E',:= 1300000•psi �= F�CD•CF� F"�- 1430•psi 3-2x6 Built Up Post Properties ,��— ��� �Kf=0.6 for unbraced nailed Axial Load Capacity buift up posts-0.75 for bolted) Slenderness Ratio (SL) ,�,��_ (5.5)�in H ^t�,�.= 3•(1.5)•in SL:_ — C := 0.8 K��.= 0.3 � h � A:= t•h A= 24.8•in2 KCe'E, "�" ,F�:= F�E =993•psi t h3 4 SL2 �I,�'.= 12 I = 62.4•in 2 1 + �CE � + FCE FCE I•2 S =22.7•in3 F"� F"� F"� '�"� h "'"�" 2•C 2•C C Kf Cp=0.56 �:= CP•F"� F'�= 794•psi P��:= F'�•A Pma�= 19662-1b (Maximum post Capacity) Maximum Load For 2-2x6 HF#2 Built up Wood Post s�f:= ps' l�f := psf•ft �b = plf•ft H:= 9.083•ft 144 F�:= 1300•psi �= 1 �:= 1 �= 1 �= 1 C�:= 1 N�:= 1.1 �:= li00000•psi F,�,w�,;•- Fc'CD'CFc p���= 1430•psi 2-2x6 Built Up Post Properties K�:= 1.0 �Kf=0.6 for unbraced nailed Axial Load Capacity built up posts-0.75 for bolted) Slenderness Ratio (SL) „hM:= 5.5•in H �_ (2)•1.5•in SL:= — C := 0.8 �= 0.3 � h � �A:= t•h A= 16.5•in2 E' �:= E FcE = 993•psi t•h3 4 $L2 �= i2 I=41.6•in 2 1 + FCE i + FCE FCE S:= I-2 S= 15.1•in3 F"� F"� F°� h '�"�� 2•C 2•C C Kf CP= 0.56 F,�:= Cp�F"� F'�= 794•psi �:= F'��A Pm�= 13108•lb (Maximum post Capacity) 3102.xmcd Mark Myers, PE 12/22/2010 �5 Myers Engineering, LLC Phone: 253-858-3248 3206 50th Street Ct NW, Ste 210-8 PROJECT : Plan 3102 Fax: 253-858-3249 Gig Harbor, WA 98335 Email: myengineer@centurytel.net Maximum Load For 3-2x4 HF#2 Built up Wood Post sf:= ps' If :- psf•ft �= plf•ft H�:= 9.083•ft '�'v�"" 144 '�"' F�:= 1300•psi �= 1 �= 1 �= I �= 1 C�:= 1 C�:= 1.1 NE'�= 1300000•psi F„M,6,;= Fc'CD'CFc F"�= 1430•psi 3-2x4 Built Up Post Properties Axial Load Capacity ,�,'= 1.0 �Kf=0.6 for unbraced nailed buitt up posts-0.75 for bolted) Slendemess Ratio (SL) ,h,`.= 3•5•in H �= 3•1.5-in �= h MC�,:= 0.8 K��.= 0.3 2 A:= t•h A= 15.7•in E' ,��= E F�E=402•psi t.h3 4 SLZ '�= 12 I = 16.1•in 2 1 + FCE 1 + FCE FCE �S:= i-2 S =9Z•in3 F"� F"� p��� h '"�" 2•C 2•C C Kf Cp=0.26 F;�:= Cp�F'�� F'�=375�psi P��.= F'��A Pmax= 5913•16 (Maximum post Capacity) Maximum Load For 2-2x4 HF#2 Built up Wood Post �sf�:- p�� �:_ psf•ft �= plf-ft H�:= 9.083-ft F�:= 1300•psi �= 1 �= 1 �= 1 �.= 1 C�:= 1 N�:= I.1 E�:= 1300000•psi F,�,;- Fc.cD'CFc p�,�= 1430•psi 2-2x4 Built Up Post Properties K�:= 1.0 �Kf=0.6 for unbraced nailed Axial Load Capacity buift up posts-0.75 for bolted) Slenderness Ratio (SL) ,h,`:= 3.5•in H N:= (2)•1.5•in ,S,L�:= h �:= 0.8 K��.= 0.3 2 A:= t•h A= 10.5-in E' ��- E FCE =402•psi t•h3 4 SL2 ,I�,= 12 I= 10.7•in 2 1•2 3 FCE FCE FCE ,.5��— h S=6.1•in 1 + — 1 + — — F"� F"� p°� �_ - - •Kf CP= 0.26 2•C 2•C C F�:= CP�F"� F'�= 375•psi P��:= F'�•A PmaY=3942•lb (Maximum post Capacity) 3102.xmcd Mark Myers, PE 12/22/2010 �6