Loading...
20050067 Tahoma Terra - Final Drainage ~I ~ Tahoma Terra Division i & fl Final Drainage Report l~ August 2005 d DESIGN/BUILD .CIVIL AND TRANSPORTATION ENGINEERING. PLANNING • SURVEYING ®li 1.1 ~, Consulting Group 31 n `~ V ~~ J Final Drainage and Erosion Control Report Prepared for: Tahoma Terra, L.L.C. Project Information Contact: Steven L. Chamberlain 4200 6th Ave .SE, Ste. 301 Lacey, WA 98503 (360) 493-6002 Tahoma Terra Yelm, Washington August 2005 Reviewing Agency CITY: Project Number: Project Contact: Project Engineer Prepared by: ~~ 1~ City of Yelm, WA 04104 James E. Gibson SCA Consulting Group 4200 6th Avenue SE, Ste. 301 Lacey, WA 98503 (360) 493-6002 FAX (360) 493-2476 Contact: Marek J. Danilowicz, PE Civil Engineer SCA Project: 04104 File Number: G: \ text \ pf \ 2004 \ 04104 \ reports \ fdr_04104TT.doc Dg's g~PH D ~ p~p , ,O ,q ~ of wasp, l~0 ' ' ~` te ' ~ t__1 ~ ~ ~~ r ~ ~, - ~ r. S~~AI~ ~~~c4~ . ~~ E\P1RFS:11-22- D PROJECT ENGINEERS CERTIFICATION: I hereby certify that this Drainage Report and Erosion Control Plan for Taho~na Terra in Yelm, Washington has been prepared by me or under my supervision and meets the intent of the City of Yelm Development Guidelines and 1992 Washington State Department of Ecology • (WSDOE) Stormwater Management Manual for the Puget Sound Basin unless noted otherwise, and normal standards of engineering practice. I understand that the jurisdiction does not and will not assume liability for the sufficiency, suitability, or performance of drainage facilities designed for this development. ~I 1 U ;' U r-1 I~I 1 ~J !I, ~~, ~~ ~~ V Cjj '~ I,c~ Ir4 I~~ l__) Table of Contents PART I -DRAINAGE PLAN ......................................................................1 Section 1 -Proposed Project Description ... ..... ...... ......... 1 Section 2 -Existing Conditions .... ... ............. ................. . 8 Section 3 -Infiltration Rates/Soils Report ...... ... .. .. .... ........ .. . 8 Section 4 -Wells and Septic Systems . ... ....... .... ... ....... ... . 8 Section 5 -Fuel Tanks .......... .. ...... ..... ..... .. ..... ........ . 9 Section 6 -Sub-Basin Descnption .. ........ ..... ........ ....... ............ . 9 Section 7 -Analysis of the 100-Year Flood ... ............ .. ...... ....... . 9 Section 8 -Aesthetic Considerations for Facilities ....... ..... . 9 Section 9 -Facility Sizing and Downstream Analysis ... ... . 9 SECTION 10 -Covenants, Dedications and Easements. .. ... ........ . 9 SECTION 11-Property Owners Association Articles Of Incorporation . 10 PART II -EROSION CONTROL REPORT ............................................ 11 Section 1 - Construction Sequence And Procedure... .. .. .. ..... . 11 Section 2 - Trapping Sediment ...... .. .. ..... ......... 11 Section 3 - Permanent Erosion Control & Site Restoration .... ... .. 12 Section 4 - Geotechnical Analysis And Report ... .. ...... .. .. . 12 Section 5 - Inspection Sequence. ..... ... ... .... .. .. ...... .. 12 Section 6 - Control Of Pollutants Other Than Sediments . .... .. 12 PART III : -MAINTENANCE PLAN ..................................................... 13 Section 1 -Required Maintenance .. ...... ... ... .. ..... ........... 13 APPENDICES Appendix 1- Storm Drainage Calculations Appendix 2- Basin Map Appendix 3- Vicinity Map Appendix 4- FEMA Map Appendix 5- Facility Summary Forms Appendix 6- Soil Evaluation Report Appendix 7- Maintenance Agreement Appendix 8- Erosion Control Plan Appendix 9- Storm Drainage Plan Appendix 10- Construction Plans, Notes and Details Appendix 11- Wells Location Map Appendix 12 -Wetlends Boundary Map 11 11-`1 LJ l~ ~1 t 5~ ~~ I~ U ~~ Part I Drarnage Plan l~ ~; Tahoma Terra Final Drainage Report 1~; PART I -DRAINAGE PLAN ~1 The format of this report follows the outline provided in the Drainage Design and Erosion Control Manual for the Puget Sound Basin (WSDOE) per the City of Yelm Development Guidelines. l-~ Section 1 -Proposed Project Description Parcel Number: 2172 43 10100, 2172 43 40100 ~l Total Site Area: 57+- acres ~} Address: Tahoma Terra, LLC 14848 Longmire St. SE ~=-, i Yelm, Washington U Zoned: MPC, R-14 ,~ Required Permits: Building, Grading, Paving, etc. r,-, Legal Description: ~ ~ City of Yelm Boundary Line Adjustment No, BLA-04- 0166-YL a Portion of the East Half of the Southeast Quarter of Section 23, The West Half of the Southwest ~ Quarter, The Northeast Quarter of the Southeast Quarter and Southeast Quarter of the Southwest Quarter of Section 24, All in Township 17 North, Range 1 East, W.M. ! Site Location ~ The project site is located in the City of Yelm, Washington. Access to the site is from Yelm Ave, Longmire Street SE to the South and Berry Valley Road to the North. See Vicinity Map, Appendix 3. Project Overview The Proponent is proposing to construct amixed-use development. The development has been divided into two separate Divisions. Division 1 (15+_ acres) consists of 89 single-family lots. Division 2 (25+_ acres) consist 127 single-family lots, Tract A, B, C, D, and E will be developed later as commercial activities. In addition part of Division2 will be develop in the future to Community Park and 18 Fairway Town homes (17+- ~ acres). Construction will include clearing and grading of the site, installation of underground utilities, on-site paving and concrete work. The development of a single family dwelling, multi-family dwellings, town homes, a community park and recreation area, and neighborhood commercial was described in the Preliminary Drainage Report for the Tahoma Terra Master Plan development dated March 2005. The improvements will include appropriate erosion control measures as needed, grading, ~~ SCA Consulting Group L~J August 2005 ,1~, lJ U I~ U U U U` Tahoma Terra Final Drainage Report streets construction, installing new Asphalt Concrete Paving, curb with gutter, sidewalk, and storm drainage improvements facility, frontage and R/W improvements, and construction of underground utilities including domestic water, reclaimed water, STEP force main sanitary sewer, street power and lighting, and natural gas. All project impervious areas are accounted below. Post-Development Basin Area Summary Basins Ponds Impervious Pavement Impervious Sidewalk Impervious Drivewa s Roofs Disturbed Pervious Total BAS I N A 0.00 1.11 0.30 0.18 0.55 1.82 3.96 BAS I N B 0.00 0.81 0.29 0.10 0.31 0.90 2.41 BASIN C 0.00 0.77 0.19 0.11 0.34 1.15 2.56 BASIN D 0.00 0.44 0.10 0.32 0.96 1.71 3.53 BASIN E 0.00 0.44 0.06 0.13 0.38 1.16 2.16 BAS I N F 0.00 0.29 0.05 0.09 0.28 0.73 1.44 BASING 0.00 0.65 0.05 0.34 1.03 1.64 3.72 BAS I N H 0.00 0.35 0.03 0.23 0.69 1.11 2.41 BASIN I 0.27 1.06 0.22 0.60 1.79 6.95 10.88 BASIN J 0.00 0.00 0.00 0.00 0.00 0.00 0.00 BASIN K 0.00 1.02 0.24 0.22 0.65 1.64 3.77 BASIN L 0.00 0.94 0.38 0.00 0.00 0.46 1.78 BASIN M 0.00 0.47 0.14 0.14 0 41 1.31 2.48 BAS I N N 0.00 0.39 0.00 0.00 0.00 0.22 0.76 BAS I N O 0.00 1.03 0.10 0.02 0 16 0.50 1.81 TOTAL 0.27 9.77 2.29 2.47 7.56 21.29 43.65 Storm Drainage Improvements: The completed project excluding Tract A through Tract E, with Community Park and Fairway Town homes will create approximately 10.38 acres of new impervious roadways, 2.37 acres of impervious sidewalks, 2.69 acres of impervious driveways, 8.22 acres of roof area, and 23.72 acres disturbed pervious area and 0.2 7 acres of wet ponds area proposed with community green areas. SCA Consulting Group August 2005 f-` ~J ~` ~II~'t U~ ``~,~ ~C..l V 1' ~J Tahoma Terra Final Drama~e Report Stormwater Treatment/Infiltration: Stormwater treatment requirements are based on the 1992 edition of the WSDOE Storm water Management Manual using a design infiltration rate of 20-inches hour. Storm Shed, WWHM2, Microsoft Excel, and ACAD 2005 software were used to size treatment facilities. Final storm water drainage calculations are provided in Appendix I. See Appendix 2 for the Basins Map. Basin A: Basin A total 3.96 ac includes 16 building lots, the 1.1 l ac of impervious pavement, 0.30 ac impervious sidewalk, 0.18 ac impervious driveways, 0.55 ac roofs, and 1.82 ac disturbed pervious landscaping areas. Runoff from the proposed roadways, sidewalk and driveways will sheet flow along curb gutter with series of catch basins. The catch basins will be connected with a 12" storm pipe. The storm water will then be discharged from the last catch basin into the bio- infiltration swales. The bio-infiltration swales consists of vegetation consisting of grass, conifer shrubs and trees, compost-amended, soil, and pea gravel which will provide stormwater quality treatment, storage, and infiltration. In addition an in-line infiltration gallery will provide underneath the bio-infiltration swales storage and infiltration back to groundwater for the 100-year storm. See Appendix 1 for calculations. Basin B: Basin B total 2.41ac includes 9 building lots, the 0.81 ac of impervious pavement, 0.29 ac impervious sidewalk, 0.10 ac impervious driveways, 0.31 ac roofs, and 0.90 ac disturbed pervious landscaping areas. Runoff from the proposed roadways, sidewalk and driveways will sheet flow along curb gutter with series of catch basins. The catch basins will be connected with a 12" storm pipe. The storm water will then be discharged from the last catch basin into the bio- infiltration swales. The bio-infiltration swales consists of vegetation consisting of grass, conifer shrubs and trees, compost-amended, soil, and pea gravel which will provide stormwater quality treatment, storage, and infiltration. In addition an in-line infiltration gallery will provide underneath the bio-infiltration swales storage and infiltration back to groundwater for the 100-year storm. See Appendix 1 for calculations. Basin C: Basin C tota12.56 ac includes 10 building lots, the 0.77 ac of impervious pavement, 0.19 ac impervious sidewalk, 0.11 ac impervious driveways, 0.34 ac roofs, and 1.15 ac disturbed pervious landscaping areas. Runoff from the proposed roadways, sidewalk and driveways will sheet flow along curb gutter with series of catch basins. The catch basins will be connected with a 12" storm pipe. The storm water will then be discharged from the last catch basin into the bio- infiltration swales. The bio-infiltration swales consists of vegetation consisting of grass, conifer shrubs and trees, compost-amended, soil, and pea gravel which will provide stormwater quality treatment, storage, and infiltration. In addition an in-line infiltration gallery will provide underneath the bio-infiltration swales storage and infiltration back to groundwater for the 100-year storm. See Appendix 1 for calculations_ SCA Consulting Group August 2005 3 I~ {~ Tahoma Terra Final Drainage Report Basin D: Basin D total 3.53 ac includes 28 building lots, the 0.44 ac of impervious pavement, 0.10 ac impervious sidewalk, 0.32 ac impervious driveways, 0.96 ac roofs, and 1.71 ac ~, disturbed pervious landscaping areas. ~J Runoff from the proposed roadways, sidewalk and driveways will sheet flow along curb gutter with series of catch basins. The catch basins will be connected with a 12" storm pipe. The storm water will then be discharged from the last catch basin into the bio- infiltration swales. The bio-infiltration swales consists of vegetation consisting of grass, conifer shrubs and trees, compost-amended, soil, and pea gravel which will /-1 provide stormwater quality treatment, storage, and infiltration. In addition an in-line ~~ infiltration gallery will provide underneath the bio-infiltration swales storage and infiltration back to groundwater for the 100-year storm. See Appendix 1 for calculations. Basin E: Basin E tota12.16 ac includes 11 building lots, the 0.44 ac of impervious pavement, j~ 0.06 ac impervious sidewalk, 0.13 ac impervious driveways, 0.38 ac roofs, and 1.16 ac 1--1' disturbed pervious landscaping areas. Runoff from the proposed roadways, sidewalk and driveways will sheet flow along curb gutter with series of catch basins. The catch basins will be connected with a 12" storm pipe. The storm water will then be discharged from the last catch basin into the bio- infiltration swales. The bio-infiltration swales consists of vegetation consisting of grass, conifer shrubs and trees, compost-amended, soil, and pea gravel which will U provide stormwater quality treatment, storage, and infiltration. In addition an in-line infiltration gallery will provide underneath the bio-infiltration swales storage and ;~q infiltration back to groundwater for the 100-year storm. See Appendix 1 for ~', calculations. Basin F: Basin F total 1.44 ac includes 8 building lots, the 0.29 ac of impervious pavement, 0.05 ac impervious sidewalk, 0.09 ac impervious driveways, 0.28 ac roofs, and 0.73 ac disturbed pervious landscaping areas. } ~ Runoff from the proposed roadways, sidewalk and driveways will sheet flow along curb I~ gutter with series of catch basins. The catch basins will be connected with a 12" storm pipe. The storm water will then be discharged from the last catch basin into the bio- infiltration swales. The bio-infiltration swales consists of vegetation consisting of grass, conifer shrubs and trees, compost-amended, soil, and pea gravel which will provide stormwater quality treatment, storage, and infiltration. In addition an in-line ~1 infiltration gallery will provide underneath the bio-infiltration swales storage and infiltration back to groundwater for the 100-year storm. See Appendix 1 for calculations. ~` ~ Basin G: lJ Basin G tota13.72 ac includes 30 building lots, the 0.65 ac of impervious pavement, 0.05 ac impervious sidewalk, 0.34 ac impervious driveways, 1.03 ac roofs, and 1.64 ac disturbed pervious landscaping areas. Runoff from the proposed roadways, sidewalk and driveways will sheet flow along curb gutter with series of catch basins. The catch basins will be connected with a 12" storm pipe. The storm water will then be discharged from the last catch basin into the bio- infiltration swales. The bio-infiltration swales consists of vegetation consisting of grass, conifer shrubs and trees, compost-amended, soil, and pea gravel which will SCA Consulting Group 4 August 2005 Tahoma Terra Final Drainage Report provide stormwater quality treatment, storage, and infiltration. In addition an in-line infiltration gallery will provide underneath the bio-infiltration swales storage and infiltration back to groundwater for the 100-year storm. See Appendix 1 for calculations. Basin H: Basin H total 2.41 ac includes 20 building lots, the 0.35 ac of impervious pavement, 0.03 ac impervious sidewalk, 0.23 ac impervious driveways, 0.69 ac roofs, and 1.11 ac disturbed pervious landscaping areas. Runoff from the proposed roadways, sidewalk and driveways will sheet flow along curb gutter with series of catch basins. The catch basins will be connected with a 12" storm pipe. The storm water will then be discharged from the last catch basin into the bio- infiltration swales. The bio-infiltration swales consists of vegetation consisting of grass, I~ conifer shrubs and trees, compost-amended, soil, and pea gravel which will provide ~I stormwater quality treatment, storage, and infiltration. In addition an in-line infiltration gallery will provide underneath the bio-infiltration swales storage and infiltration back to groundwater for the 100-year storm. See Appendix 1 for ~ calculations. n Basin I: Basin I total 10.88 ac includes 52 building lots, the 1.06 ac of impervious pavement, 0.22 ac impervious sidewalk, 0.60 ac impervious driveways, 1.79 ac roofs, 6.95 ac disturbed pervious landscaping areas, and 0.27 wet pond area. Runoff from the proposed roadways will sheet flow to a series of catch basins. The catch basins will be connected with a 12"and 18"ADS storm pipe. The storm water will then be discharged from the last catch basin into the Wet Pond that will treats storm water for water quality by utilizing a permanent pool of water to remove conventional pollutants from runoff through sedimentation, biological uptake, and plant filtration. A wet pond may also provide storm water quantity control through the use of a "life storage" area above the permanent pool. The volume of the wet pond shall be equal to the volume of runoff generated during the 6 month 24 hour storm. The wet pond shall be at least 2 cells, the first should be three feet deep in order to effectively trap courser sediments, and reduce turbulence. The berm dividing the pond into cells should be 5 foot wide and top elevation one foot lower than design water surface, maximum 3:1 side slops, and a quarry spall and gravel filter "window" between the cells. The 6"diameter ADS will convey part of storm water above wet pond dead storage elevation to second cell of wet pond and to Infiltration Pond to provide storm water quantity control by containing excess runoff in a retention facility, then percolating that runoff into the surrounding soils. The top part is of wet pond (dry pond) will provide live storage up to 20,170 CF each. The design infiltration rate is recommended 20 inches per hour per Soil Evaluation Report by William Parnell, P.E. from 01/19/05 Soil Log #10 and grand water is 105" from the surface, from 06/23/05 Soil Log #6 current grand water depth was at 105". A double ring infiltration test completed at 36" below the existing grade yielded an infiltration rate of 80 in/hr. The recommended design infiltration rate = 20 in/hr is actually divided by conservative safety factor "two". The Soil Log #11 from 06/29/05 Confirmed current ground water depth at 101" and recommended infiltration rate of 20 inches per hour. Soils were moderately mottled at 72"+ below the existing grade indicating probable winter water table level. The two wet cell 3 feet deep ponds volume total 22,160 cf - 0.5087 cft "dead storage" SCA Consulting Group August 2005 5 Tahoma Terra Final Drainage Report ~l infiltration gallery will provide underneath the bio-infiltration swales storage and ~~ infiltration back to groundwater for the 100-year storm. See Appendix 1 for calculations. Basin M: ,~~ Basin M tota12.48 ac includes 12 building lots, the 0.47 ac of impervious pavement, ~ 0.14 ac impervious sidewalk, 0.14 ac impervious driveways, 0.41 ac roofs, and 1.31 ac ''-~ disturbed pervious landscaping areas. ~ Runoff from the proposed roadways, sidewalk and driveways will sheet flow along curb ~~ gutter with series of catch basins. The catch basins will be connected with a 12" storm u pipe. The storm water will then be discharged from the last catch basin into the bio- infiltration swales. The bio-infiltration swales consists of vegetation consisting of grass, ~ conifer shrubs and trees, compost-amended, soil, and pea gravel which will provide stormwater quality treatment, storage, and infiltration. In addition an in-line infiltration gallery will provide underneath the bio-infiltration swales storage and infiltration back to groundwater for the 100-year storm. See Appendix 1 for IJ calculations. Basin N: Basin N tota10.76 ac includes the 0.39 ac of impervious pavement, 0.15 ac impervious sidewalks, and 0.22 ac disturbed pervious landscaping areas. -y Runoff from the proposed roadways, sidewalk and driveways will sheet flow along curb gutter with series of catch basins. The catch basins will be connected with a 12" storm pipe. The storm water will then be discharged from the last catch basin into the bio- infiltration swales. The bio-infiltration swales consists of vegetation consisting of grass, conifer shrubs and trees, compost-amended, soil, and pea gravel which will provide stormwater quality treatment, storage, and infiltration. In addition an in-line ~ infiltration gallery will provide underneath the bio-infiltration swales storage and r ; infiltration back to groundwater for the 100-year storm. See Appendix 1 for U calculations. Basin O: ~,S Basin A total 1.81 ac includes future parking lot and roadway the 1.03 ac of impervious pavement, 0.10 ac impervious sidewalk, 0.02 ac impervious driveways, 0.16 ac roofs, and 0.50 ac disturbed pervious landscaping areas. U Runoff from the proposed roadways, sidewalk and driveways will sheet flow along curb gutter with series of catch basins. The catch basins will be connected with a 12" storm pipe. The storm water will then be discharged from the last catch basin into the bio- ) infiltration swales. The bio-infiltration swales consists of vegetation consisting of grass, conifer shrubs and trees, compost-amended, soil, and pea gravel which will ~~ provide stormwater quality treatment, storage, and infiltration. In addition an in-line ~~ infiltration gallery will provide underneath the bio-infiltration swales storage and infiltration back to groundwater for the 100-year storm. See Appendix 1 for calculations. . Roof Runoff: Roof runoff from each lot will be tight lined to individual lot roof drywells. The ~ drywells are designed per WS DOE 1992 Stormwater Manual based on an average roof ~~ size of 1500 - 2000 sf. For Soil Hydraulic Group "B" (Spanaway Gravelly Sandy Loam 110 series). The roof drywell bottom trench area sized to infiltrate 10 yr , 24 hour SCA Consulting Group 7 August 2005 Tahoma Terra Final Drainage Reuort ~ storm. Im = 20in / hr. Fs = 2. P10 = 3 in. The each lot should have roof drywells at least 35' long x 3' wide x 3' deep, or 50' long 2' wide x 3' deep. See Appendix 1 for calculations. ~,1, U Section 2 -Existing Conditions The proposed Longmire Street SE is already paved from Yelm highway to the Durant Street. j ~~ The proposed site is relatively flat. The property located to the west is rolling and hilly l.J with broad valley areas. The project site is currently occupied by one residential building, dairy barns and several outbuildings centrally located on the parcel. The site ~~ is accessible from Berry Valley Road to the north; Longmire Street SE bound the site to ~~ the south, residential to the east and undeveloped property to the west. Vegetation consists of actively used agricultural pastured grasses, trees and under story plants. ~' ~ The site is bisected by Thompson Creek, a low flow and sometimes intermittent stream J that partially drains the wetlands located to the south of the proposed development. This creek flows north into the Nisqually River near the Centralia City Light Electrical ~' ~ Power facility. In addition, there are some wetlands associated with Thompson Creek. ~ese wetlands have been analyzed by previous studies and classified as Class II tttJJJ Wetlands and are being updated utilizing "Best Available Science" techniques. ~I The SEPA determination of non-significance has been already issued by City of Yelm. This project is located in an aquifer sensitive area, according to the 1986 Thurston County Comprehensive Plan Map M-8. The site is within a 5-year and 10 year well head protection area. An Integrated Pest Management Plan will be developed for the {J project and provided to the DEVELOPER. U ~-.~ ~~ U U Section 3 -Infiltration Rates/Soils Report The Soil Conservation Service (SCS) Soil Survey of Thurston County classifies the on- site soils as Spanaway Gravely Sandy Loam (110) series. William Parnell, PE Soil Engineer performed Geotechnical and Subsurface Exploration and Infiltrations Tests. His report, dated 19 January 2005, and additional soil logs on 23 June 2005, is included in the Appendix 6. The groundwater was encountered in the test pits 105" from the surface at pond location, therefore the bottom of the infiltration pond will be at least three feet above the seasonal high ground water table, per WSDOE requirements. An infiltration rate of 20 inches per hour was used for design purposes. This is conservative rate based on actual infiltration rates observed in the field. Section 4 -Wells and Septic Systems The site visit was made to determine if there were any wells or existing/abandoned septic systems on the property. There are three wells on the site or adjacent property and they are going to be abonded according to WS DOE and Thurston County Department of Health standards. See Appendix 11 for wells location map. Thurston County has no records of existing or abandoned septic systems on adjacent properties within 100 ft of the proposed infiltration facilities. SCA Consulting Group August 2005 8 Tahoma Terra Final Draina~port according to WS DOE and Thurston County Department of Health standards. l~ See Appendix ll for wells location map. n Thurston County has no records of existing or abandoned septic systems on adjacent ! J properties within 100 ft of the proposed infiltration facilities. Any septic systems found will be removed in accordance with Thurston County )~ Department of Health standards. U~ Water and sewer service is provided by the City of Yelm. ~~ Section 5 -Fuel Tanks A review of the DOE's Leaking Underground Storage Tanks (LUST) list did not ~ indicate the presence of any existing or abandoned fuel tanks on or near the project ~ site. {~ Any fuel tanks found will be removed in accordance with WS DOE standards. u Section 6 -Sub-Basin Description The project site is located within the Yelm Creek Drainage Basin per the Thurston J~ County Comprehensive Map M-4. There is no significant off-site runoff to the project '~y site. There will be no runoff from the project site for the 100-year, 24-hour storm event. ~ No handling of hazardous materials on this site is in forecast f r-~ I U ~~~ l.~ U4 Section 7 -Analysis of the 100-Year Flood The site is found in FEMA Panel Number 53031 0001 A, which lies within Zone X and Zone A. This project does lie adjacent to and contain a stream onsite and has been identified as a 100 year flood hazard area. However, local or spot flooding, if it exists, usually is not shown on FEMA flood insurance rate maps, and especially if the source of flooding is related to logging, development, or drainage modifications since the date of the map. Although the Engineer is alert to the possibility of flooding from such sources, it cannot be warranted that all areas subject to flooding on or down gradient of the project site are represented on this map. See Appendix 4. Section 8 -Aesthetic Considerations for Facilities All disturbed pervious areas will be vegetated and landscaped during construction. A landscape plan will be submitted and approved prior to construction. Two wet ponds, and infiltration pond is proposed for this project and thus fences and other unsightly features of such facilities if required will be vegetated for aesthetic consideration. Section 9 -Facility Sizing and Downstream Analysis Detailed storm drainage calculations are included in Appendix 1 of this report. All on- site stormwater runoff will be treated, stored, and infiltrated on-site. Calculations for sizing of facilities are included in Appendix 1. Since all stormwater will be infiltrated onsite, a downstream analysis was deemed unnecessary. Section 10 -Covenants, Dedications and Easements SCA Consulting Group August 2005 9 I~ ~1 Tahoma Terra Final Drainage Report {`' Drainage facilities including the Wet Ponds, Infiltration Ponds and bio-infiltration i~ swales will require routine maintenance. A draft maintenance agreement between the owner and City of Yelm is included in Appendix 7, which will allow City access to the facilities. City of Yelm will provide technical assistance at the owner's request. Section 11 -Property Owners Association Articles Of Incorporation In light of the residential nature of this project, special covenants covering landscape, ~ maintenance, signage, stormwater, and site maintenance may be put in place at the time of final platting. The Home Owners Association and/or their representatives will perform maintenance of these private storm drainage facilities. n U 1'i T~ r ~~ U ~~ 1~ ~~ ~~ ~~ ~ SCA Consulting Group 10 August 2005 ~"1 LJ l~ LJ V ;~ u ;_.r ~--~ r~ ~~ ~~ !~ 1 ~~ r~ ~. (~~ Part II Erosion Control Plan ~-~ ,. ~ Tahoma Terra Final Drainage Report -~ PART II -EROSION CONTROL PLAN Section 1 -Construction Sequence And Procedure The proposed protect will include an erosion control plan designed to contain silt and ~--/ soil within the project boundaries during construction, and permanent erosion control afterwards. Erosion/sedimentation control will be achieved by a combination of ('? structuraUvegetation cover measures and construction practices tailored to fit the site. ,~ Best Construction Management Practices (BMP's) will be employed to properly clear ~ and grade the site and to schedule construction activities. Before any construction begins on-site, erosion control facilities shall first be installed. Schedule pre- („~ construction conference with the city, contractor, project engineer and construction- staking surveyor. The planned construction sequence is as follows: r`"t 1. Install rock construction entrances. Use 4" to 8" diameter spans with 12" minimum depth. 2. Install filter fabric fencing and construction fence where appropriate. ~? 3. Clear site (grubbing and rough grading). ~~ 4. Designate an area for washing of equipment and concrete trucks to control the runoff and eliminate entry into the storm drainage systems 5. During November 1 through March 31, all disturbed areas greater than 5,000 sf ~~, that are to be left unworked for more than twelve (12) hours shall be stabilized ~,1 by one of the following: mulch, sodding or plastic covering. 6. Provide catch basin inlet protection by installing silt socks under grates of all ~ inlets to drainage system. Ul 7. Install utilities (water, sanitary sewer, power, etc.). 8. Install pervious concrete, curbing, sidewalks, etc. 9. Landscape andlor seed all disturbed areas. ~ 10. Maintain all erosion control facilities until the entire site is stabilized and silt runoff ceases. 11. After the site has been stabilized the infiltration trench will be restored to `~ designed conditions. Section 2 -Trapping Sediment The soils on-site belong to the Spanaway group and have slight erosion potential j i according to the SCS. During construction, care must be taken to prevent erosion of ~~~------"' exposed soils. Drainage facility infiltration surfaces must be properly protected from contamination by the fine-grained upper horizon soils and from compaction by site ~?, construction activities. Filter fabric fencing will be installed wherever runoff has the potential to impact downstream resources. This shall include the areas along downstream property lines as shown on the erosion control plan. During construction, the Contractor will also be required to install filter fabric fencing as needed, and as directed by the Engineer and/or the City of Yelm. Catch basin protection shall be provided by installing silt socks under grates of all inlets to drainage system. ~~ Stabilized construction entrances will be installed to prevent vehicles from tracking soil away from the site. If sediment is tracked off-site, it shall be swept or shoveled from paved surfaces on a daily basis, so that it is not washed into existing catch basins and/or grass ditches. All disturbed/exposed soils shall be covered with straw or mulch to prevent erosion in these areas. The Contractor will not be allowed to leave disturbed areas greater than 5,OOOsf (that are to be left unworked for more than twelve (12) hours) uncovered during ~ the rainy season from November 1 through March 31. Mulch, sodding or plastic (!} covering will be used to prevent erosion in these areas. SCA Consulting Group August 2005 11 ~~1 ~~ ~~ I<~ U ~./ ,~~~ ~1~ ~~ ~~1 U~ ~CC~11 ~i ~~ r~ ~_ --1 ~'1 i'~~ Tahoma Terra Final Drainage Report Section 3 -Permanent Erosion Control ~ Site Restoration All disturbed areas will be paved, covered with a building, or landscaped with grass, shrubbery or trees per the development plans. Section 4 -Geotechnical Analysis and Report There are no slopes exceeding 15-percent, therefore, a full geotechnical report was deemed unnecessary for slope analysis. See appendix 6 for a complete soils description and CBR test results for gravel from the site by Geotechnical Testing Laboratory. Section 5 -Inspection Sequence In addition to City inspections, the Project Engineer shall inspect the facilities related to stormwater treatment, erosion control, storage and conveyance during construction. At a minimum, the following items shall be inspected at the time specified: The erosion control facilities should be inspected before the start of clearing and grading to ensure the following structures are in place: a. Construction Entrance b. Filter Fabric Fences c. Catch Basin Inlet Protection 2. The conveyance systems will be inspected during the construction process to ensure the following are installed correctly: a. Pavement Drainage b. Catch Basins c. Conveyance piping d. Roof Drain Piping 3. The permanent site restoration measures shall be inspected after landscaping is completed. The erosion control and conveyance items listed above shall be inspected as soon as practical following every significant rainfall event (2-inches in a 24-hour period) that occurs during construction. A final inspection will be performed to check final grades, settings of control structures and all necessary findings to complete as-built drawings and to fulfill requirements of certification. The Soils Professional shall perform a sufficient number of infiltration tests and/or soil logs after construction to determine the facility will operate as designed. Section 6 -Control Of Pollutants Other Than Sediments Washout from concrete trucks shall not be dumped into the storm drain, or onto soil and pavement, which carries stormwater runoff. It shall be dumped into a designated area to be later backfilled or hardened and broken up for disposal into a dumpster. The Contractor is required to designate a washdown area for equipment and concrete trucks. Catch basins inlet protection and filter fabric fencing shall remain in place until construction on the site is complete. SCA Consulting Group August 2005 12 ~'~ ~J Part III Maintenance Plan +~ l~-~ ~'', ~' ~~ ~~ ,, U a I~ l~ 1 n U 1 ~1 ~~, s" ~ ~~ ~~ Tahoma Terra Final Drainage Report PART III -MAINTENANCE PLAN Section 1 -Required Maintenance The on-site storm drainage facilities will require occasional maintenance. The following is based on minimum requirements as set forth in the Drainage Design and Erosion Control Manual of Thurston County. The required maintenance and frequency of maintenance are as follows: The following pages contain maintenance needs for most of the components that are part of your drainage system, as well as for some components that you may not have. Let us know if there are any components that are missing from these pages. Ignore the requirements that do not apply to your system. You should plan to complete a checklist for all system components on the following schedule: 1. Monthly from November through April. 2. Once in late summer (preferably September). 3. After any major storm (use 1" in 24 hours as a guideline), items marked "S" only. Using photocopies of these pages, check off the problems you looked for each time you did an inspection. Add comments on problems found and actions taken. Keep these "Checked" sheets in your files, as they will be used to write your annual report (due in May). Some items do not need to be looked at every time an inspection is done. Use the suggested frequency at the left of each item as a guideline for your inspection. You may call the CITY for technical assistance. Please do not hesitate to call, especially if you are unsure whether a situation you have discovered may be a problem. The on-site storm drainage facilities will require occasional maintenance. The following is based on minimum requirements as set forth in the Drainage Design and Erosion Control Manual of the City of Yelm. SCA Consulting Group August 2005 13 ~`1 U n L-~ ('~ 'l i~ r"1 {~ ~~~ ,n, V C~ L.J ,~ ~~ 1~1 i fl ', l__J I i 1 U ~i 1 ~. 1 i~ U n U Appendix 1 Storm Drainage Calculations ~~ I~ STflR2SWATER MANAGEME2iT MANUAL FOR TF3E Pi;"GET SOUND BASIN I`l 124 12 3 122 121 44 - ~~'-- • . w wa~.s s ~ ~ E l , l~ ' ~ ~ 1 8E ~ C . .tx „ ,~, ~ ,~~~ ~ FRIDAY HARBOR POR? ST LEY ~ Rl i ~ \ ~ ~ 1NT V ~..~ r.-'a ~ `~. f ~ ~ ~ \~'•1 ~ ~ T ' ~ (((~ ~ 35 ~25Zp ' ~9 ` ~: ~ , S J ~ ~ ~ ~ ~ ~~ t ~ ' ~. ~~~\ p I 4 8 ~ A __ - ~ ERETT~ ~ 15 ~ ~ ~ ~ _ ~i s , ~ ,. lll ', 4~ ~t - _ _ _ ~ ~ c 4~ _ - ~ S ~ \ 1 ~ ~ l~f ~ ~ r i ~ - J SAT M~ ~ 1 ~; _ ~ ,s \ 3 ., ~ v~ --~ _ ~ r ~ ~ ~ ~ ~ caMA ~~ -- ~ (' 1 j ~~ ~ AB Df N ~ ~a 30 ~ ~ 2S ~' fir. ~ ~ ~ • CENT ~`~ t4~ 20 s _. ~ t ~- ~ ~ ~ ~ 1 YAKt ~~ ~ ~ '~ „~> > 1 ~ - m , y t a5• ,~@ 1 ' , ~ ` \ L ~ ~ ~ 4S s .~ ._. A6 >< ~ ~ WASH INGTON 2S ;( ~ p,~ g K EN E 10 4 16 20 30 40 ~ ~. ~ S ~ ~~" ~ if~o ~ ~ ~ , Fauro 25 n`_ NtU1A ATLAS 2. Yolurne tx 1SOPLUVtALS F 2-YR 24-htR PRECIPITATI ~ N IN Prap~r~d by U.S. D~pntrmM o} e -htwnNOcnrde~ndAMno~t~h.ne rNm,tntion TENTHS OF A INCH riatwmi WatMr S~rwc~, oRico of rfyaroto~y ~ Pnepuod fa U.S_ t?~p~rtrt»nt of e, i O r //~~ Sol Conmvatan S~rv+e~, ~ Oiwswn 124 1 23 122 121 ZZZ-1-44 FEBRUARY, 1992 { u S20RMWATER MANAGEMENT MANUAL FOR THE PUGET SOUND BASIN 1 , ~ 124 123 122 121 49 - - - - - -..~...... ~ ~! ~' ~'' ~ 1 ^pEM1AE ~ """55 ~ tsaTi ~ 8EL A ~o o ~~A~ ~` FRIOAY HARBOR v ~rORT STANL Y - ` l VE N ~ T ~ ~ -- I L~ 6 ~ 48 ,~u , ~f l EYE TT ~ _, -_ -,~- ' ~''1 - SEAT ,}~ ~ .: ~ ~ ~~ ' I ~ •> > U . TACOMA ~ _ ' ~~~ 4T ~ ,~--, 3S ~ _ ~ 4 ~~ ABER E X10 ~ 2 1 ., - ~~ s r=5 ~ - , y~ fNT ~} 1 ~ ~5\ li '14 ~ _ s ` `~1 ~ ~ ~ ` A AMS Zl1 ~°~ ~ , 46 3 i~ ~ ^ `-ZZS ~_ ~ - _ ~~ e~~ WASHfNGTON -,_ . _ . ~. GOIDENDI,kE~ ~~--: n 10 0 )0 20 30 40 ~ ~ ,,~ '`j ~ rAt~9i-ii~i~ ~ '" '- MILES ~ vAn i ~ ~ S ~C" "' ~ ~~ `~ ~.-t ~_ ATLAS 2, voturr ~x ~Q"t~ Z7 F»~r~d M US Dsprtm~nt of • ISOPLUWILS F 10-YR 24-HR PRECIPiT T10N AoIWnHOCOSroe~ndAtmoaplN-icA tntion IN TENTHS OF AN INCH *: w«tn« s.rvk., orf~c. of ru.~y Prprnd to- US Deportr~nt of A xulturs, ' ~f0 "' ~ O Sod Corwrv~troo S~rv~ce, En~me~r}~~ Dw~swn t It 124 123 12 121 ZZI-1-45 FEBRUARY, 1992 f~ 1~.1 ~- -- tL jt f ~~~gg{~---- :,;~ '~~ u ""7 +t`~ ~..~!;~;~"''wit `~+ 651;..,, '~g~,X----'~ ~ ~ 11 s if7 : CC'fS t~ ~ ~~ ~ ~ ~ t~3 ~ 55~~```~,, z0:".'_.•-'' ~, ~ 4 { t ' it ~'' ti t ~. ~ ~ t ~ , LJ ~ _ ~'~ ~ ~ 4 ~ I I 5 ~" t,~ . C~ :~5 ~~ t Q-....,,,,,,,.....~,,~` - -,--- ~`Lj63 fir,./ V' 1 4 ~ `{ '1.~. ~ V. r `1 ~ 1 .--~^.'"' .-~~-~^.. ...r.-• ~V JJ { ~~.. '~~.,~ •t --- _y~~ ~~ ~~t~ t ~>~' ~r crr`~ ~~! ~ << s 39~'" ~,..,, ~ ~ 5 ~2~ i ~' et Fi~r~ ~'$ ~+ ~~.,~~ 2,4-NR PR~~tptT~'Tt4~ 1119/~i ~`~ ~ S ~3~ ~ t~~t}ViA~- ~ )wa25y?4h.gif ~'~ • /w~,,,.,v .~urcc.dri.edulp~pnfreQ _ h~,p.1 f-= - ~---- ~-`` ~~ ~ ~-_ STORMWATER MANAGEt4ENT PiANUAL FOR THE FUGET SOUND BASIN 122 121 124 123 ~ S 2 ~ ~ -~ ,~s ~ ,~ ~ ,~ \ 1 I . ' { A - a ' '( ~ L f FFtL•~Y HAR Ok' .PORT S1ANL' a *t ti k 1) ~, 3 • 1 c, ~ 1°t5 . __~_. , . L ~ ~, . 15~ 4 8 , I ~ ~u ~ .~ 15~ IOQ~ _ ~ 16q , ~ ~- 1 ~~ j '~~ X15 AT .l 1 `~ ~ ~ n ., I, ;~ i f ~~ 1 -- 7 '~ Z ~ YAK n ~Y ~ s ~ tCKil ~ ~ ~ L Y' ,, f N ] Y~ASHINGTON ~ \ ~ IMOKJ , t0 20 30 40 `~ r 10 D 4 , ~ ui t+t'"15 " 1 MiIES «•----- ^""~"t f ~ ~ tiOAA ATLAS 2, Voiunr IX figu-t: 30 jjt ~5 65 ~ L-r•wne eY Lis. D^t of ~ Non I PRECIPITgT10N ~ 55 CD : itstwmLOc..rncuaAtrnosatrrLe 150PLUYIALS F 100-YR 2~-H~2 tltLwrHF W~sUL~r `.+aYLCQ. Ottxe of MYdroLeiY IN TENTHS OF N INCH ' iTt+Wr~d to u.S, t)eprrtment of Aun. ~ `_on ConsxvatKm S~rwca, Er+t~ X110" ---~--j 2 :, t 21 '.~~oo ='~- 4 `~ 124 12~ FEBRCJp-RX. 1992 III-1-46 L1 ++t~ ~J FINAL DRAINAGE CALCULATIONS The following calculations are based on the requirements contained in the 1992 edition of the tom, WSDOE Storm water Management Manual. ~~ LAG' fr'~ 4_.t ~, u ~y {~-~ ~~ lJ lu' r-, ~, ~~~ DESIGN AND BASIN INFORMATION SUMMARY: Post-Development Basin Area Summary Basins Ponds Impervious Pavement Impervious Sidewalk Impervious Drivewa s Roofs Disturbed Pervious Total BAS I N A 0.00 1.11 0.30 0.18 0.55 1.82 3.96 BASIN B 0.00 0.81 0.29 0.10 0.31 0.90 2.41 BASIN C 0.00 0.77 0.19 0.11 0.34 1.15 2.56 BASIN D 0.00 0.44 0.10 0.32 0.96 1.71 3.53 BASIN E 0.00 0.44 0.06 0.13 0.38 1.16 2.16 BASIN F 0.00 0.29 0.05 0.09 0.28 0.73 1.44 BASING 0.00 0.65 0.05 0.34 1.03 1.64 3.72 BASIN H 0.00 0.35 0.03 0.23 0.69 1.11 2.41 BASIN I 0.27 1.06 0.22 0.60 1.79 6.95 10.88 BASIN J 0.00 0.00 0.00 0.00 0.00 0.00 0.00 BASIN K 0.00 1.02 0.24 0.22 0.65 1.64 3.77 BASIN L 0.00 0.94 0.38 0.00 0.00 0.46 1.78 BASIN M 0.00 0.47 0.14 0.14 0.41 1.31 2.48 BASIN N 0.00 0.39 0.00 0.00 0.00 0.22 0.76 BASIN O 0.00 1.03 0.10 0.02 0.16 0.50 1.81 TOTAL 0.27 9.77 2.29 2.47 7.56 21.29 43.65 In1 U (~ I ~ U LJ ~, J L~ {4`~ LJ i~ ~' f I~ (Ji `~ U f~ ~l (i I~ 1__1 BSN Al Event Summary: BasinlD Peak Q Event ------ (cfs) (hrs) BSN A10 09 7 83 BSN A10 15 7 83 BSN A10 24 7 83 BSN A10 28 7 83 BSN A10 30 7 83 BSN A10.32 7.83 Drainage Area: BSN Al Hyd Method: Peak Factor: Storm Dur: Area CN Pervious 0.0000 ac Impervious 0.3346 ac Total 0.3346 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 Impervious CN Data: ROADWAY 98.00 SIDWALK 98.00 DRIVEWAY 98.00 Pervious TC Data: Flow type: Time Sheet 1.90 min Impervious TC Data: Flow type. Time Shallow 27.0000 Sheet 0.40 min Channel 21.0000 Sheet 0.14 min Sheet 0.42 min BSN A2 Event Summary: BasinlD Peak Q Event ------ (cfs) , (hrs) BSN A20.09 7 83 BSN A20 15 7 83 BSN A20 27 7 83 BSN A20 29 7 83 BSN A20 31 7.83 Drainage Area: BSN A2 Hyd Method: Peak T Peak Vol Area Method Ramtype (ac-ft) ac /Loss 0.0297 0 33 SBUH/SCS TYPEIA 6 mo 0.0495 0 33 SBUH/SCS TYPEIA 2 yr 0.0772 0 33 SBUH/SCS TYPE1A 10 yr 0.0911 0 33 SBUH/SCS TYPE1A 25 yr 0.0980 0.33 SBUH/SCS TYPE1A 50 yr 0.1050 0.33 SBUH/SCS TYPEIA 100 yr SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.06 hrs 0.0000 ac 0.2215 ac 0.0331 ac 0.0800 ac Description: Length: Slope: Across Planter Strip 6.00 ft Description: Length: Slope: Along Flow Line of Gutter 1.06 min Across Roadway 18.50 ft Through Strom Water Pipe 1.68 min Across Sidewalks 5.00 ft Across Driveway 20.00 ft Coeff: Travel 2.00% 0.2400 Coeff: Travel 240.00 ft 1.95% 2.00% 0.0110 150.00 ft 0.50% 2.00% 0 0110 2.00% 0.0110 Peak T Peak Vol Area Method Raintype (ac-ft) ac /Loss 0.0287 0 32 SBUH/SCS TYPEIA 6 mo 0.0478 0 32 SBUH/SCS TYPEIA 2 yr 0 0880 0.32 SBUH/SCS TYPEIA 25 yr 0 0947 0 32 SBUH/SCS TYPE1A 50 yr 0.1015 0 32 SBUH/SCS TYPEIA 100 yr SBUH Hyd Loss Method: SCS CN Number U ~. U C' U n t J~ t__J f l t11~ u~ Peak Factor: Storm Dur: Area CN Pervious 0.0000 ac Impervious 0.3233 ac Total 0 3233 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 {mpervious CN Data: ROADWAY 98.00 SIDWALK 98.00 DRIVEWAY 98.00 Pervious TC Data: Flow type: Time Sheet 1.90 min Impervious TC Data: Flow type: Time Shallow 27.0000 Sheet 0 40 min Channel 21.0000 Sheet 0.14 min Sheet 0.42 min BSN A3 Event Summary: BasinlD Peak Q Event ------ (cfs) (hrs) BSN A30.04 7.83 BSN A30.06 7 83 BSN A30 10 7.83 BSN A30.12 7 83 BSN A30.13 7.83 BSN A30.14 7 83 Drainage Area: BSN A3 Hyd Method: Peak Factor: Storm Dur: Area , CN Pervious 0.0340 ac Impervious 0.1265 ac Total 0.1605 ac Supporting Data: Pervious CN Data: Type B Sods 78 00 Impervious CN Data: 484.00 SCS Abs: 24.00 hrs Intv: TC 78.00 0.03 hrs 98.00 0.06 hrs 0 0000 ac 0.1937 ac 0.0263 ac 0.1033 ac Description: Length: Slope: Across Planter Strip 6.00 ft Description: Length: Slope: 0.20 10.00 min Along Flow Line of Gutter 1.10 min Across Roadway 18.50 ft Through Strom Water Pipe 1 68 min Across Sidewalks 5.00 ft Across Driveway 20.00 ft Coeff: Travel 2.00% 0.2400 Coeff: Travel 225.00 ft 1.60% 2.00% 0.0110 150.00 ft 0.50% 2.00% 0.0110 2.00% 0.0110 Peak T Peak Voi Area Method Raintype (ac-ft) ac /Loss 0 0116 0.16 SBUH/SCS TYPE1A 6 mo 0.0201 0.16 SBUH/SCS TYPEIA 2 yr 0.0324 0 16 SBUH/SCS TYPE1A 10 yr 0.0387 0.16 SBUH/SC5 TYPEIA 25 yr 0.0419 0.16 SBUH/SCS TYPEIA 50 yr 0.0450 0.16 SBUH/SCS TYPEIA 100 yr SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0 04 hrs 98.00 0.04 hrs 0.0340 ac ~~ ~~ LJ ~) tJ ~, U f~ ~l ~~1 l~ r (~~ I; u r'~ LJ ~~ Y ~~ LJ I~ U` ,~ ROADWAY 98.00 SIDWALK 98.00 Pervious TC Data: Flow type: Time Sheet 2.15 min Impervious TC Data: Flow type: Time Shallow 27.0000 Sheet 0.35 min Channel 21.0000 Sheet 0.14 min BSN A4 Event Summary: Bas~nlD Peak Q Event ------- (cfs) (hrs) BSN A40.22 8 00 BSN A40 36 7 83 BSN A40.55 7 83 BSN A40 65 7.83 BSN A40 70 7 83 BSN A40 75 7.83 Drainage Area: BSN A4 Hyd Method: Peak Factor: Storm Dur: Area CN Pervious 0.0000 ac Impervious 0.8099 ac Total 0.8099 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 Impervious CN Data: ROADWAY 98.00 SIDWALK 98.00 Impervious TC Data: Flow type: Time Shallow 27 0000 Sheet 0.63 min Channel 21.0000 Sheet 0.28 min 0.0333 ac 0.0932 ac Description: Length: Slope: Across Planter Strip 7.00 ft Description: Length: Slope: Along Flow Line of Gutter 0.76 min Across Roadway 16.00 ft Through Strom Water Pipe 0.90 min Across Sidewalks 5.00 ft Coeff: 2.00% Coeff: 125.00 ft 2.00% 80.00 ft 2.00% Travel 0.2400 Travel 1.02% 0.0110 0.50% 0.0110 Peak T Peak Vol Area Method Rainrype (ac-ft) ac /Loss 0.0718 0 81 SBUH/SCS TYPE1A 6 mo 0 1197 0 81 SBUH/SCS TYPE1A 2 yr 0 1868 0 81 SBUH/SCS TYPE1A 10 yr 0.2205 0 81 SBUH/SCS TYPE1A 25 yr 0.2373 0.81 SBUH/SCS TYPEIA 50 yr 0 2541 0 81 SBUH/SCS TYPE1A 100 yr SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0.00 hrs 98.00 0.08 hrs 0.0000 ac 0.5984 ac 0.2115 ac Description: Length: Slope. Along Flow Line of Gutter 2.32 min Across Roadway 33.00 ft Through Strom Water Pipe 1.35 min Across Sidewalks 12 00 ft Coeff: Travel 200.00 ft 0.50% 2.00% 0.0110 120.00 ft 0 50% 2.00% 0.0110 ADDHYD [BSN A1] AS [6 mo] [BSN A2] AS [6 mo] TO [BSN Al +BSN A2] ~~ iI-, U ~'~ U 1,n L__I U ~J ,~ U 7 ~I n ~J Peak Flow: 0.1804 cfs Peak Time: 7.83 hrs Hyd Vol: 2541.43 cf - 0.0583 acft ADDHYD [BSN A1] AS [2 yr] [BSN A2] AS [2 yr] TO [BSN Al +BSN A2] Peak Flow: 0.2995 cfs Peak Time: 7 83 hrs Hyd Vol: 4237.84 cf - 0.0973 acft ADDHYD [BSN A1] AS [10 yr] [BSN A2] AS [10 yr] TO [BSN Al +BSN AZ] Peak Flow: 0.4624 cfs Peak Time: 7.83 hrs Hyd Vol: 6611.98 cf - 0.1518 acft ADDHYD [BSN A1] AS [25 yr] [BSN A2] AS [25 yr] TO [BSN Al +BSN A2] Peak Flow: 0.5432 cfs Peak Time: 7.83 hrs Hyd Vol: 7802.36 cf - 0.1791 acft ADDHYD [BSN A1] AS [50 yr] [BSN A2] AS [50 yr] TO [BSN Al +BSN A2] Peak Flow: 0.5834 cfs Peak Time: 7.83 hrs Hyd Vol: 8397.57 cf - 0.1928 acft ADDHYD [BSN A1] AS [100 yr] [BSN A2] AS [100 yr] TO [BSN Al +BSN AZ] Peak Flow: 0.6237 cfs Peak Time: 7.83 hrs Hyd Vol: 8992.93 cf - 0.2064 acft ADDHYD [BSN A3] AS [6 mo] [BSN A4] AS [6 mo] TO [BSN A3 +BSN A4] Peak Flow: 0.2522 cfs Peak Time. 7 83 hrs Hyd Vol: 3634.73 cf - 0.0834 acft ADDHYD [BSN A3] AS [2 yr] [BSN A4] AS [2 yr] TO [BSN A3 +BSN A4] Peak Flow: 0.4204 cfs Peak Time 7.83 hrs Hyd Vol: 6091 00 cf - 0.1398 acft ADDHYD [BSN A3] AS [10 yr] jBSN A4] AS [10 yr] TO [BSN A3 +BSN A4] Peak Flow: 0.6538 cfs Peak Time: 7.83 hrs Hyd Vol: 9549.42 cf - 0.2192 acft ADDHYD [BSN A3] AS [25 yr] [BSN A4] AS [25 yr] TO [BSN A3 +BSN A4] Peak Flow: 0.7701 cfs Peak Time: 7 83 hrs Hyd Vol: 11289.01 cf - 0.2592 acft ADDHYD [BSN A3] AS [50 yr] [BSN A4] AS [50 yr] TO jBSN A3 +BSN A4] Peak Flow: 0.8282 cfs Peak Time: 7.83 hrs Hyd Vol: 12159.91 cf - 0.2792 acft ADDHYD [BSN A3] AS [100 yr] [BSN A4] AS [100 yr] TO [BSN A3 +BSN A4] Peak Flow: 0.8862 cfs Peak Time: 7.83 hrs Hyd Vol: 13031.54 cf - 0.2992 acft ADDHYD [BSN Al +BSN A2] AS [6 mo] [BSN A3 +BSN A4] AS [6 mo] TO [BSN Al +BSN AZ+BSNA3+BSNA4] Peak Flow: 0.4326 cfs Peak Time: 7.83 hrs Hyd Vol: 6176.16 cf - 0.1417 acft ADDHYD [BSN Al +BSN A2] AS [2 yr] [BSN A3 +BSN A4] AS [2 yr] TO [BSN Al +BSN A2 +BSN A3 +BSN A4] Peak Flow: 0.7199 cfs Peak Time: 7 83 hrs Hyd Vol: 10328.08 cf - 0.237 acft ADDHYD [BSN Al +BSN AZ] AS [10 yr] [BSN A3 +BSN A4] AS [10 yr] TO [BSN Al +BSN A2 +BSN A3 +BSN A4] Peak Flow: 1.1162 cfs Peak Time: 7.83 hrs Hyd Voi: 16160.76 cf - 0.371 acft ADDHYD [BSN Al +BSN A2] AS [25 yr] [BSN A3 +BSN A4] AS [25 yr] TO [BSN Al +BSN AZ +BSN A3 +BSN A4] Peak Flow: 1.3133 cfs Peak Time: 7.83 hrs Hyd Vol: 19092.35 cf - 0 4383 acft d LJ (~( I L~ U ADDHYD [BSN Al +BSN AZ] AS [50 yr] [BSN A3 +BSN A4] AS [50 yr] TO [BSN Al +BSN A2+BSNA3+BSNA4] Peak Flow: 1.4116 cfs Peak Time: 7.83 hrs Hyd Vol: acft 20560.32 cf - 0.4720 ADDHYD [BSN Al +BSN A2] AS [100 yr] [BSN A3 +BSN A4] AS [100 yr] TO [BSN Al + ~`~ BSN A2 +BSN A3 +BSN A4] ~j Peak Flow: 1.5099 cfs Peak Time: 7.83 hrs Hyd Vol: 22024.46 cf - 0.5056 acft MOVEHYD [BASIN A] TO [BASIN A - 6 mo] AS [6 mo] Peak Flow: 0.4326 cfs Peak Time: 7.83 hrs Hyd Vol: 6176.16 cf - 0.1417 acft MOVEHYD [BASIN A] TO [BASIN A - 2 yr] AS [2 yr] Peak Flow: 0.7199 cfs Peak Time: 7.83 hrs Hyd Vol: 10328.08 cf - 0.2371 acft C' MOVEHYD (BASIN A] TO [BASIN A -10 yr] AS [10 yr] Peak Flow: 1 1162 cfs Peak Time: 7.83 hrs Hyd Vol: 16160.76 cf - 0.3710 acft MOVEHYD [BASIN A] TO [BASIN A - 25 yr] AS [25 yr] Peak Flow: 1.3133 cfs Peak Time 7.83 hrs Hyd Vol: 22024.46 cf - 0.4383 r~~ acft i U' MOVEHYD [BASIN A] TO [BASIN A - 50 yr] AS [50 yr] j Peak Flow: 1.4116 cfs Peak Time: 7 83 hrs Hyd Vol: 20560.32 cf - 0.4720 r ~ acft U ~ MOVEHYD [BASIN A] TO [BASIN A - 100 yr] AS [100 yr] ~ ~' Peak Flow: 1.5099 cfs Peak Time: 7.83 hrs Hyd Vol: 22024.46 cf - 0.5056 acft Hydrograph ID: BASIN A - 100 yr r, ~ 1 IJ Area: 1.6283 ac Hyd Int: 10.00 min Base Flow: Peak Flow: 1.5099 cfs Peak Time: 7.83 hrs Hyd Vol: 0 5056 acft , Time Flow Time Flow Time Flow ! !~ hr cfs hr cfs hr cfs 0 67 0 0057 8 67 0.5989 16.33 0.1952 0.83 0.0215 8 83 0.5074 16.50 0.1952 ~"l 1 00 0.0394 9.00 0 5176 16.67 0 1953 ~ I 1.17 0.0595 917 0.4440 16.83 0.1953 ~J 1.33 0 0785 9.33 0 3816 17.00 0 1953 1 50 0.0908 9 50 0.3888 17 17 0 1880 ~ 1 67 0.1057 9 67 0.3659 17 33 1 83 0 1189 9 83 0 3475 0 1817 L_.1 . . 17.50 2.00 0 1268 10 00 0.3496 17 67 0 1824 0 1823 2.17 0.1390 10.17 0 3277 17.83 0.1824 2.33 0.1499 10 33 0 3089 18.00 0.1824 (~ 2.50 0.1551 10 50 0 3111 18.17 0.1751 + 2 67 0.1601 10.67 0 2963 18.33 0 1687 { ~ 2 83 0.1642 10 83 0 2839 18.50 0.1695 3 00 0.1679 11 00 0.2853 18.67 0.1693 ~, 3.17 0.1711 11 17 0 2779 18 83 0 1694 i 3.33 01739 11.33 0.2717 19.00 0 1694 3.50 0.1763 11 50 0 2724 19.17 0 1621 3 67 0.1848 11.67 0 2651 19.33 0.1558 i 3 83 0.1924 11 83 0 2589 19.50 0 1565 ~ U I~' U U I~I ` ~l ~, U L~ C C ~~ ~~ 4.00 0 1938 12.00 0 2596 19.67 0.1564 417 0.2086 12.17 0.2523 19.83 0.1564 4.33 0 2217 12.33 0 2460 20 00 0.1564 4 50 0.2222 12 50 0.2468 20 17 0 1564 4.67 0 2372 12 67 0.2394 20.33 0.1564 4.83 0 2502 12 83 0.2331 20 50 0 1564 5.00 0.2507 13 00 0.2339 20.67 0.1564 5.17 0.2658 13.17 0.2338 20.83 0.1564 5.33 0.2790 13 33 0.2338 21.00 0 1565 5 50 0.2791 13 50 0 2339 21.17 0.1565 5.67 0 2943 13.67 0.2266 21 33 0.1565 5 83 0 3075 13.83 0.2203 21 50 0.1565 6 00 0.3074 14 00 0 2211 21 67 0.1565 617 0.3364 1417 0.2210 21.83 0.1565 6.33 0.3618 14.33 0 2210 22.00 0.1565 6.50 0.3604 14.50 0 2210 22.17 0.1492 6.67 0.4038 14.67 0 2138 22.33 0.1429 6.83 0.4416 14.83 0.2075 22 50 0 1436 7.00 0.4389 15 00 0.2082 22 67 0 1435 7.17 0.4901 15.17 0.2081 22 83 0 1435 7.33 0.5344 15 33 0.2081 23 00 0.1435 7.50 0.5310 15 50 0.2082 23.17 0.1435 7.67 1.0520 15 67 0.2009 23.33 0.1439 7.83 1 5099 15 83 0 1946 23.50 0.1435 8.00 1 4651 16 00 0.1953 23.67 0.1435 8.17 1 0480 16 17 0.1952 23 83 0 1435 8.33 0 6707 16.33 0.1952 24 00 0.1435 8 50 0 7149 16.50 0 1952 24 17 0.0632 MOVEHYD [BASIN A] TO [BASIN A - 6 mo] AS [6 mo] Peak Flow: 0.4326 cfs Peak Time: 7.83 hrs Hyd Vol: 6176.16 cf - 0.1417 acft MOVEHYD [BASIN Aj TO [BASIN A - 100 yr] AS [100 yr] Peak Flow: 1.5099 cfs Peak Time: 7.83 hrs Hyd Vol: 22024.46 cf - 0.5056 acft i C ~l I~~ u U i U (~ ~i U ~' r'~ ~~ ~, U ~` LJ BSN B1 Event Summary: BasinlD Peak Q Event _____ (cfs) (hrs) BSN 810.12 8.00 BSN 610 20 8.00 BSN 610 32 8.00 BSN 610 38 8.00 BSN 810.41 8.00 BSN 610.44 8.00 Drainage Area: BSN B1 Hyd Method: Peak Factor: Storm Dur- Area CN Pervious 0.0451 ac Impervious 0.4574 ac Total 0.5025 ac Supporting Data: Pervious CN Data: Type B Soils Hydrologic Group Impervious CN Data: ROADWAY 98.00 SIDWALK 98 00 DRIVEWAY 98.00 Pervious TC Data: Flow type: Time Sheet 1 90 min Impervious TC Data: Flow type: Time Shallow 27.0000 Sheet 0 54 min Channel 21.0000 Sheet 0.28 min Sheet 0.42 min Peak T Peak Vol Area Method Raintype (ac-ft) ac /Loss 0.0411 0 50 SBUH/SCS TYPEIA 6 mo 0.0694 0 50 SBUH/SCS TYPE1A 2 yr 0.1098 0 50 SBUH/SCS TYPE1A 10 yr 0.1301 0.50 SBUHISCS TYPEIA 25 yr 0.1404 0.50 SBUHISCS TYPEIA 50 yr 0.1506 0 50 SBUH/SCS TYPEIA 100 yr SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0 20 24.00 hrs Intv: 10.00 min TC 78.00 0 03 hrs 98.00 0.09 hrs 78.00 0.0451 ac 0 2899 ac 0 1216 ac 0.0459 ac Description. Length: Slope: Across Planter Strip 6.00 ft Description: Length: Slope: Along Flow Line of Gutter 2.50 min Across Roadway 27.00 ft Through Strom Water Pipe 1 68 min Across Sidewalks 12.00 ft Across Driveway 20.00 ft Coeff: Travel 2.00% 0.2400 Coeff: Travel 216.00 ft 0.50% 2.00% 0.0110 150.00 ft 0.50% 2.00% 0.0110 2.00% 0.0110 U Ire U '~ U r'l U (~` , r~ V ~I ~' U n Its U BSN B2 Event Summary: BasinlD Peak Q Peak T Peak Vol Area Method Raintype Event --- (cfs) (hrs) (ac-ft) ac /Loss BSN B20 16 8 00 0.0542 0.68 SBUH/SCS TYPEIA 6 mo BSN 620.27 8.00 0.0921 0.68 SBUH/SCS TYPEIA 2 yr BSN 620.42 8.00 0.1464 0.68 SBUH/SCS TYPE1A 10 yr BSN 620.50 8.00 0 1739 0 68 SBUH/SCS TYPEIA 25 yr BSN B20 54 8 00 0 1877 0.68 SBUH/SCS TYPEIA 50 yr BSN B20 58 8 00 0.2016 0 68 SBUH/SCS TYPEIA 100 yr Drainage Area: BSN B2 Hyd Method: SBUH Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur: 24.00 hrs Intv: 10.00 min Area CN TC Pervious 0.0846 ac 78.00 0.03 hrs Impervious 0.6001 ac 98.00 0.11 hrs Total 0.6847 ac Supporting Data: Pervious CN Data: Type B Sods Hydraulic Group 78.00 0.0846 ac Impervious CN Data: ROADWAY 98.00 0.3774 ac SIDWALK 98.00 0.1653 ac DRIVEWAY 98.00 0.0574 ac Pervious TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet Across Planter Strip 6.00 ft 2.00% 0.2400 1 90 mm Impervious TC Data: Flow type Description: Length: Slope: Coeff Travel Time Shallow Along Flow Line of Gutter 304.00 ft 0.50% 27 0000 3.52 min Sheet Across Roadway 27.00 ft 2.00% 0.0110 0.54 min Channel Through Strom Water Pipe 150.00 ft 0.50% 21.0000 1 68 min Sheet Across Sidewalks 12.00 ft 2.00% 0.0110 0.28 min Sheet Across Driveway 20.00 ft 2.00°l0 0.0110 0.42 min ADDHYD [BSN B1] AS [6 mo ] [BSN B2) AS [6 mo] TO [BSN B1 +BSN 62] Peak Flow: 0.2821 cfs Peak Time: 8.00 hrs Hyd Vol: 4152.33 cf - 0.0953 acft ADDHYD [BSN B1] AS [2 yr] [BSN 62] AS [2 yr] TO [BSN B1 +BSN B2] Peak Flow: 0.4738 cfs Peak Time: 8.00 hrs Hyd Vol: 7038 64 cf - 0.1616 acft ADDHYD [BSN B1] AS [10 yr] [BSN B2] AS [10 yr] TO [BSN B1 +BSN B2] ~' +n l~J f-`' U u IJ (~ U I~ Ir`11 U I~ ~ U V i , U Peak Flow• 0.7446 cfs Peak 7ime• 8.00 hrs Hyd Vol: 11157.57 cf - 0.2561 acft ADDHYD [BSN B1] AS [25 yr] [BSN B2] AS j25 yr] TO [BSN B1 +BSN B2] Peak Flow: 0.8809 cfs Peak Time: 8.00 hrs Hyd Vol: 13244.07 cf - 0.3040 acft ADDHYD [BSN B1] AS [50 yr] [BSN B2] AS [50 yr] TO [BSN B1 +BSN 62j Peak Flow: 0.9492 cfs Peak Time: 8.00 hrs Hyd Vol: 14291.34 cf - 0.3281 acft ADDHYD [BSN B1] AS [100 yr] [BSN B2] AS [100 yr] TO [BSN B1 +BSN B2] Peak Flow: 1 0176 cfs Peak Time: 8.00 hrs Hyd Vol: 15341.03 cf - 0.3522 acft Hydrograph ID: BASIN B -100 yr Area: 1.1872 ac Hyd Int: Peak Flow: 1.0176 cfs 0.3522 acft Time Flow Time hr cfs hr 0.67 0 0031 8 67 0 83 0 0123 8 83 1 00 0 0238 9 00 1 17 0 0369 9 17 1 33 0.0496 9 33 1 50 0.0585 9 50 167 0.0682 9.67 1 83 0.0771 9 83 2 00 0.0830 10 00 2 17 0.0906 10.17 2.33 0.0980 10.33 2.50 0.1021 10 50 2.67 0.1055 10 67 2.83 0 1084 10.83 3.00 0.1109 11.00 3.17 0.1130 11.17 3.33 0 1150 11 33 3 50 0.1166 11.50 3.67 0.1215 11 67 3.83 0 1266 11 83 4.00 0.1283 12.00 4 17 0.1365 12.17 4 33 0.1453 12 33 4.50 0.1472 12 50 4 67 0.1555 12.67 4.83 0.1644 12.83 5 00 0.1666 13 00 5.17 0.1754 13.17 5.33 0.1847 13.33 5.50 0 1867 13 50 5 67 0 1956 13.67 5 83 0.2050 13.83 6.00 0 2069 14 00 6.17 0.2236 14 17 6 33 0.2414 14 33 6.50 0 2441 14.50 6 67 0.2691 14.67 6.83 02957 14 83 7 00 0 2991 15 00 7 17 0.3290 15.17 7 33 0 3603 15.33 7 50 0.3642 15.50 7 67 0 6659 15 67 10.00 min Base Flow: Peak Time: 8.00 hrs Hyd Vol Flow Time Flow cfs hr cfs 0 4317 16.50 0 1391 0.3671 16 67 0.1391 0 3631 16.83 0.1391 0 3196 17.00 0.1392 0 2758 17 17 0 1348 0 2734 17 33 0.1303 0 2599 17.50 0 1301 0 2469 17 67 0.1300 0 2463 17 83 0 1300 0 2333 18 00 0.1301 0 2201 18 17 0.1257 0.2195 18.33 0.1212 0.2107 18.50 0.1209 0.2019 18 67 0.1209 0 2015 18.83 0.1209 0.1971 19.00 0 1209 0 1928 19.17 0.1165 0 1926 19.33 0.1120 0.1883 19.50 0 1118 0.1839 19 67 0.1117 0 1838 19.83 0.1117 0 1794 20 00 0.1117 0.1750 20.17 0.1118 01748 20.33 01118 01704 20.50 0.1118 0.1660 20.67 0.1118 0.1658 20 83 0 1118 0 1658 21.00 0.1118 0 1659 21.17 0 1119 0.1659 21.33 0.1119 0 1616 21 50 0.1119 0 1572 21 67 0 1119 0 1570 21.83 0.1119 0 1569 22 00 0.1119 0.1570 22.17 0.1075 01571 22.33 01030 0 1527 22 50 0.1027 0.1483 22.67 0.1027 0 1481 22 83 0 1027 01480 23.00 0.1027 0 1481 23.17 0 1027 0 1481 23 33 0 1027 0 1437 23 50 0.1027 n L__I n IJ 7 ~~ U LJ r I~ C C I~ LJI '(~ U ~"1 (`' Ir`~ LJ n n U ~7 ;~ LJ 7 83 0 9868 15.83 0 1393 23.67 8 00 1 0176 16.00 0 1390 23.83 8 17 0 7756 16 17 0 1390 24 00 8.33 0 5146 16 33 0.1390 24.17 8 50 0 4995 16.50 0 1391 24 33 Hydrograph ID: BASIN B -100 yr Area: 1.1872 ac Hyd Int: 10.00 min Base Flow: Peak Flow: 1.0176 cfs Peak Time: 8.00 hrs acft MOVEHYD [BASIN B] TO [BASIN B - 6 mo] AS [6 mo] Peak Flow: 0 2821 cfs Peak Time: 8.00 hrs Hyd Vol: MOVEHYD [BASIN B] TO [BASIN B -100 yr] AS [1 00 yr] Peak Flow: 1.0176 cfs Peak Time: 8.00 hrs Hyd Vol: acft BSN C1 Event Summary: BasinlD Peak Q Peak T Peak Vol Area Event ------ (cfs) (hrs) (ac-ft) ac /Loss BSN C1 0.12 8 00 0.0407 0.50 6 mo BSN C1 0.20 8.00 0.0689 0 50 2 yr BSN C1 0.32 8 00 0 1091 0.50 10 yr BSN C1 0.38 8.00 0.1294 0.50 25 yr BSN C1 0.40 8.00 0 1396 0 50 50 yr BSN C1 0.43 8.00 0.1498 0.50 100 yr Drainage Area: BSN C1 Hyd Method: SBUH Hyd Peak Factor: 484.00 Storm Dur: 24.00 hrs Area CN TC Pervious 0.0491 ac 78.00 Impervious 0.4528 ac 98.00 Total 0.5019 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 Impervious CN Data: ROADWAY 98.00 SIDWALK 98.00 DRIVEWAY ' 98.00 Pervious TC Data: Flow type: Time Sheet 1.90 min Impervious TC Data: 0.0491 ac 0.3095 ac 0.1204 ac 0.0229 ac Description: Length: Across Planter Strip 0 1027 0.1028 0 1028 0.0535 0.0047 Hyd Vol: 0.3522 4152.33 cf - 0 0953 acft 15341.03 cf - 0.3522 Method Raintype SBUH/SCS TYPE1A SBUH/SCS TYPEIA SBUH/SCS TYPEIA SBUHlSCS TYPEIA SBUH/SCS TYPEIA SBUH/SCS TYPEIA Loss Method: SCS CN Number SCS Abs: 0.20 Intv: 10.00 min 0.03 hrs 0 10 hrs Slope: 6.00 ft Coeff: Travel 2.00% 0.2400 ice, U Flow type: Description: Length: Slope: Coeff: Travel Time Shallow Along Flow Line of Gutter 272.00 ft 0.50% 27 0000 3.15 mm Sheet Across Roadway 27.00 ft 2.00% 0.0110 0.54 min Channel Through Strom Water Pipe 150.00 ft 0.50% 21.0000 1.68 min Sheet Across Sidewalks 12.00 ft 2.00% 0.0110 0.28 msn Sheet Across Driveway 20.00 ft 2.00°l° 0.0110 0.42 m i n BSN C2 Event Summary: BasmlD Peak Q Peak T Peak Vol Area Method Raintype Event ---- (cfs) (hrs) (ac-ft) ac /Loss BSN C2 0.11 8.00 0.0365 0.50 SBUH/SCS TYPE1A 6 mo BSN C2 0.18 8 00 0.0628 0 50 SBUH/SCS TYPEIA 2 yr BSN C2 0 29 8.00 0 1011 0 50 SBUH/SCS TYPE1A 10 yr BSN C2 0 35 8.00 0.1207 0.50 SBUH/SCS TYPE1A 25 yr BSN C2 0 38 8.00 0.1306 0.50 SBUHISCS TYPEIA 50 yr BSN C2 0 40 8 00 0.1405 0.50 SBUH/SCS TYPEIA 100 yr Drainage Area: BSN C2 Hyd Method: SBUH Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur: 24.00 hrs Intv: 10.00 min Area CN TC Pervious 0 0997 ac 78.00 0.03 hrs Impervious 0.3977 ac 98.00 0.10 hrs Total 0.4974 ac Supporting Data: Pervious CN Data: • Type B Soils 78.00 0 0997 ac Impervious CN Data: ROADWAY 98.00 0.2486 ac SIDWALK 98 00 0.0343 ac DRIVEWAY 98.00 0.1148 ac Pervious TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet Across Planter Strip 6.00 ft 2.00% 0.2400 1.90 mm Impervious TC Data: Flow type Description: Length: Slope: Coeff: Travel Time Shallow Along Flow Line of Gutter 292.00 ft 0.50% 27.0000 3.39 mtn Sheet Across Roadway 18.50 ft 2.00% 0.0110 i~ u I~ u C C C C C r C L~ i' U C n i ~' L~ 0.40 min Channel 21.0000 Sheet 0.14 min Sheet 0.42 min BSN C3 Event Summary: BasinlD Peak Q Event ------ (cfs) (hrs) BSN C3 0.07 6 mo BSN C3 0.12 2 yr BSN C3 0 20 10 yr BSN C3 0 24 25 yr BSN C3 0 26 50 yr BSN C3 0.28 100 yr Drainage Area: BSN C3 Hyd Method. Peak Factor: Storm Dur: Area CN Pervious 0 0891 ac Impervious 0.2621 ac Total 0.3512 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 Impervious CN Data: DRIVEWAY 98.00 SIDWALK 98.00 ROADWAY 98 00 Pervious TC Data: Flow type: Time Sheet 1 90 min Impervious TC Data: Flow type: Time Shallow 27.0000 Sheet 0.40 min Channel 21.0000 Sheet 0.14 mm Through Strom Water Pipe 1 68 min Across Sidewalks 5.00 ft Across Driveway 20.00 ft Peak T Peak Vol Area (ac-ft) ac /Loss 7 83 0.0243 0 35 7 83 0.0424 0.35 7.83 0.0689 0.35 7.83 0.0825 0 35 7 83 0.0894 0 35 7.83 0.0963 0.35 150.00 ft 0.50% 2.00% 0.0110 2.00% 0.0110 Method Raintype SBUH/SCS TYPEIA SBUH/SCS TYPEIA SBUH/SCS TYPE1A SBUH/SCS TYPE1A SBUH/SCS TYPE1A SBUH/SCS TYPE1A SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Inty: 10.00 min TC 78.00 0.03 hrs 98.00 0.06 hrs 0.0891 ac 0.0688 ac 0.0275 ac 0.1658 ac Description: Length: Slope: Across Planter Strip 6.00 ft Description: Length: Slope: Along Flow Line of Gutter 1.19 min Across Roadway 18.50 ft Through Strom Water Pipe 2.02 mm Across Sidewalks 5.00 ft Coeff: Travel 2.00% 0.2400 Coeff: Travel 217.00 ft 1.27% 2.00% 0.0110 180.00 ft 0.50% 2.00% 0.0110 r`~ U r~ ~ ADDHYD [BSN C1) AS [6 mo] [BSN C2] AS [6 mo] TO jBSN C1 +BSN C2) Peak F{ow: 0 2269 cfs Peak Time: 8.00 hrs Hyd Vol: 3362 93 cf - 0.0772 acft ~,y ADDHYD [BSN C1j AS [2 yr] [BSN C2) AS [2 yr] TO [BSN C1 +BSN C2] Peak Flow: 0.3842 cfs Peak Time: 8.00 hrs Hyd Vol: 5739 11 cf - 0.1318 acft ADDHYD [BSN C1] AS [10 yr] [BSN C2] AS [10 yr) TO [BSN C1 +BSN C2) Peak Flow: 0.6091 cfs Peak Time: 8.00 hrs Hyd Vol: 9155.95 cf - 0 2102 acft ADDHYD [BSN C1] AS [25 yr] [BSN C2] AS [25 yr] TO [BSN C1 +BSN C2] lJ Peak Flow: 0 7229 cfs Peak Time: 8.00 hrs Hyd Vol: 10893.56 cf - 0.2501 acft n IJ ADDHYD [BSN C1] AS [50 yr) [BSN C2] AS [50 yr] TO [BSN C1 +BSN C2] Peak Flow: 0.7800 cfs Peak Time: 8.00 hrs Hyd Vol: 11766.94 cf - 0.2701 n acft ~ ADDHYD [BSN C1] AS [100 yr] [BSN C2] AS [100 yr] 70 [BSN C1 +BSN C2] Peak Flow: 0.8373 cfs Peak Time: 8.00 hrs Hyd Vol: 12643.01 cf - 02902 n acft u ADDHYD [BSN C1 +BSN C2] AS j6 mo] [BSN C3] AS [6 mo] TO [BSN C1 +BSN C2 +BSN C3] Peak Flow: 0 2969 cfs Peak Time: 8.00 hrs Hyd Vol: 4421.34 cf - 0.1015 acft ADDHYD [BSN C1 +BSN C2] AS [2 yr] [BSN C3] AS [2 yr] TO [BSN C1 +BSN C2 +BSN ~ C3] Peak Flow: 0.5042 cfs Peak Time: 8.00 hrs Hyd Vol: 7588.15 cf - 0.1742 acft ADDHYD [BSN C1 +BSN C2] AS [10 yr] jBSN C3) AS [10 yr] TO [BSN C1 +BSN C2 +BSN C C3] Peak Flow: 0.8091 cfs Peak Time: 8.00 hrs Hyd Vol: 12157.59 cf - 02791 acft ADDHYD [BSN C1 +BSN C2] AS [25 yr] [BSN C3] AS [25 yr] TO [BSN C1 +BSN C2 +BSN C3] ~--~ Peak Flow: 1.0200 cfs Peak Time: 8 00 hrs Hyd Vol: 14488.05 cf - 0.3326 ~i acft ADDHYD [BSN C1 +BSN C2] AS [50 yr] [BSN C3] AS [50 yr) TO [BSN C1 +BSN CZ +BSN C3] Peak F{ow: 1.0400 cfs Peak Time: 8.00 hrs Hyd Vol: 15659.82 cf - 0.3595 acft U ADDHYD [BSN C1 +BSN C2] AS [100 yr] [BSN C3) AS [100 yr] TO [BSN C1 +BSN C2 + BSN C3) Peak Flow: 1.1.130 cfs Peak Time: 8.00 hrs Hyd Vol: 16836.30 cf - 0.3865 (~ acft Hydrograph ID: BASIN C ~ Area: 1.3505 ac Hyd Int: 10.00 min Base Flow: Peak Flow: 1.1130 cfs Peak Time: 8.00 hrs Hyd Vol: 0 3865 acft I~ U Ire L~ L.J u U (~ r~ i l~ 1. f~ Ifs L__J Time Flow Time Flow Time Flow hr cfs hr cfs hr cfs 0.67 0 0034 8.67 0.4696 16.50 0 1554 0 83 0.0135 8.83 0.4008 16.67 0 1554 1.00 0 0257 9 00 0 4009 16 83 0.1555 1.17 0 0395 9 17 0.3494 17 00 0 1555 1.33 0.0528 9.33 0.3019 1717 0.1503 1 50 0 0620 9.50 0 3025 17.33 0 1453 1.67 0 0722 9.67 0 2863 17.50 0 1455 1.83 0.0816 9 83 0 2724 17.67 0.1453 2 00 0.0876 10.00 0.2727 17.83 0.1454 2.17 0 0958 10.17 0 2573 18.00 0 1455 2.33 0.1035 10.33 0 2430 18.17 0 1402 2 50 0.1077 10.50 0 2434 18.33 0.1352 2.67 0 1112 10 67 0 2329 18 50 0.1353 2.83 0 1142 10 83 0.2234 18.67 0.1352 3.00 0.1168 11.00 0.2237 18 83 0.1353 3.17 0.1191 11.17 0 2184 19.00 0.1353 3.33 0.1210 11.33 0 2138 19.17 0 1300 3.50 0 1228 11.50 0 2140 19.33 0 1250 3.67 0.1281 11.67 0.2088 19.50 0.1251 3 83 0.1335 11.83 0 2041 19.67 0.1250 4.00 0.1350 12.00 0 2043 19.83 0.1251 4.17 01441 12.17 01991 20.00 01251 4 33 0.1533 12 33 0 1943 20.17 0 1251 4 50 0.1549 12.50 0.1945 20 33 0.1252 4.67 0 1640 12.67 0 1892 20 50 0.1252 4.83 0 1736 12.83 0 1845 20 67 0.1252 5 00 0.1758 13 00 0.1846 20.83 0.1253 5.17 0.1859 1317 01846 21.00 0.1253 5.33 0.1961 13.33 0.1848 21.17 01253 5.50 01981 13.50 0.1848 21.33 01254 5 67 0.2084 13.67 0.1797 21 50 0.1254 5 83 0.2187 13.83 0 1748 21 67 0.1254 6.00 0.2207 14.00 0.1750 21.83 0.1254 6.17 0 2399 14.17 0.1749 22 00 0.1255 6 33 0 2593 14.33 0 1751 22.17 0.1201 6.50 0 2616 14.50 0.1751 22.33 0.1151 6.67 0.2907 14.67 0.1700 22.50 0 1152 6.83 0.3196 14 83 0.1651 22.67 0.1151 7.00 0.3224 15 00 0 1652 22 83 0.1152 7.17 0.3573 15.17 01651 23.00 0.1151 7 33 0 3915 15 33 0 1653 23 17 0.1152 7 50 0 3947 15.50 0 1653 23.33 0 1152 7.67 0 7459 15.67 0 1601 23.50 0.1152 7.83 1.0957 15.83 0.1552 23.67 0.1152 8.00 1.1130 16.00 0.1553 23.83 0.1153 817 0.8325 16.17 01552 24.00 0.1153 8.33 0 5486 16.33 0 1553 24.17 0.0558 8.50 0 5512 16 50 0 1554 24.33 0.0039 Hydrograph ID: BASIN C Area: 1.3505 ac Hyd Int: 10.00 min Base Flow: Peak Flow: 1.1130 cfs Peak Time: 8.00 hrs Hyd Vol acft MOVEHYD [BASIN C] TO [BASIN C - 6 mo] AS [6 mo] Peak Flow: 0.2969 cfs Peak Time: 8.00 hrs Hyd Vol MOVEHYD [BASIN C] TO [BASIN C -100 yr] AS [100 yr] Peak Flow: 1.1130 cfs Peak Time: 8.00 hrs Hyd Vol acft 0.3865 4421.34 cf - 0.1015 acft 16836.30 cf - 0.3865 I~IIf ~.1 r'~ i ~~ ~f ~~ ~' ~ J L~ ~~ L~ ~'1 L~ I~ ~J BSN D1 Event Summary: BasinlD Peak O Event ------- (cfs) (hrs) BSN D1 0.04 6 mo BSN D1 0 07 2 yr BSN D1 0 12 10 yr BSN D1 0 14 25 yr BSN D1 0.15 50 yr BSN D1 0.16 100 yr Drainage Area: BSN D1 Hyd Method: Peak Factor: Storm Dur: Area CN Pervious 0.0411 ac Impervious 0.1502 ac Total 0.1913 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 Impervious CN Data: ROADWAY 98 00 SIDWALK 98.00 DRIVEWAY 98.00 Pervious TC Data: Flow type: Time Sheet 1.90 min Impervious TC Data: Flow type: Time Shallow 27.0000 Sheet 0.40 min Sheet 0.14 min Sheet 0.42 min BSN D2 Event Sum mary: BasinlD Peak Q Event ------- (cfs) (hrs) BSN D2 0.05 6 mo BSN D2 0.08 2 yr BSN D2 0.13 10 yr BSN D2 0 15 Peak T Peak Vol Area (ac-ft) ac /Loss 7 83 0.0138 0.19 7.83 0 0239 0.19 7.83 0.0385 0.19 7 83 0 0460 0.19 7.83 0.0498 0.19 7 83 0 0536 0.19 Method Raintype SBUH/SCS TYPE1A SBUH/SCS TYPE1A SBUH/SCS TYPE1A SBUH/SCS TYPE1A SBUH/SCS TYPE1A SBUH/SCS TYPE1A SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Inty: 10.00 min TC 78.00 0.03 hrs 98.00 0.03 hrs 0.0411 ac 0.0802 ac 0.0241 ac 0.0459 ac Description: Length: Slope: Coeff: Travel Across Planter Strip 6 00 ft 2.00% 0.2400 Description: Length: Slope: Coeff: Travel Along Flow Line of Gu tter 195.00 ft 2.35% 0.79 min Across Roadway 18.50 ft 2.00% 0.0110 Across Sidewalks 5.00 ft 2.00% 0.0110 Across Driveway 20.00 ft 2.00% 0.0110 Peak T Peak Vol Area Method Raintype (ac-ft) ac /Loss 7.83 0.0151 0.21 SBUH/SCS TYPE1A 7 83 0.0260 0 21 SBUH/SCS TYPE1A 7.83 0.0420 0.21 SBUH/SCS TYPE1A 7 83 0.0501 0.21 SBUH/SCS TYPE1A r 25 yr I 1 ~ BSN D2 0.16 7.83 0.0542 0.21 SBUH/SCS TYPE1A ;. 50 yr BSN D2 0.18 7 83 0.0583 0.21 SBUH/SCS TYPE1A I`~ 100 yr I ~JI Drainage Area: BSN D2 ~ Hyd Method: SBUH Hyd Loss Method: SCS CN Number ~ ~ Peak Factor: 484.00 SCS Abs: 0.20 U Storm Dur: 24.00 hrs Intv: 10.00 min ~. Area CN TC (`~ Pervious 0.0425 ac 78.00 0.03 hrs ,vi Impervious 0.1645 ac 98.00 0.05 hrs Total 0 2070 ac Supporting Data: Pervious CN Data: Type B Sods 78.00 0.0425 ac Impervious CN Data: ROADWAY 98.00 0.0971 ac SIDWALK 98.00 0.0215 ac DRIVEWAY 98.00 0.0459 ac Pervious TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet Across Planter Strip 6.00 ft 2.00% 0.2400 ~`i 1.90 min Impervious TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time i Shallow Along Flow Line of Gutter 250.00 ft 1.18% Al 27.0000 1.42 min Sheet Across Roadway 18.50 ft 2.00% 0.0110 0.40 min Channel Through Strom Water Pipe 50.00 ft 0.50% 21.0000 0.56 min Sheet Across Sidewalks 5.00 ft 2.00% 0.0110 0.14 min Sheet Across Driveway 20 00 ft 2.00% 0.0110 0.42 min BSN D3 Event Sum mary: BasinlD Peak Q Peak T Peak Vol Area Method Raintype Event ( ' ---- --- (cfs) (hrs) (ac-ft) ac /Loss ~ BSN D3 0.05 7.83 0.0151 0.20 SBUH/SCS TYPE1A 6 mo BSN D3 0 08 7 83 0.0258 0.20 SBUH/SCS TYPE1A 2 yr BSN D3 0.12 7.83 0.0414 0.20 SBUHlSCS TYPEIA 10 yr BSN D3 0.15 7.83 0.0493 0.20 SBUH/SCS TYPE1A c~'I ~ 25 yr ` I BSN D3 0.16 7.83 0 0533 0 20 SBUH/SCS TYPE1A LJ 50 yr BSN D3 0 17 7.83 0.0573 0.20 SBUH/SCS TYPE1A ~~ 100 yr Drainage Area: BSN D3 Hyd Method: SBUH Hyd Loss Method: SCS CN Number I~ I U ,~ ~.-~ I~ {, +, U L~ I~ ~.J I~ L~' u ~~ L~ I~ U I~ iJ Peak Factor: Storm Dur: Area CN Pervious 0.0345 ac Impervious 0.1653 ac Total 0.1998 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 Impervious CN Data: DRIVEWAY 98.00 SIDWALK 98.00 ROADWAY 98.00 Pervious TC Data: Flow type: Time Sheet 1.90 min Impervious TC Data: Flow type: Time Shallow 27.0000 Sheet 0.40 min Channel 21.0000 Sheet 0.14 min BSN D4 Event Sum mary: BasinlD Peak Q Event ------- (cfs) (hrs) BSN D4 0.07 6 mo BSN D4 0.12 2 yr BSN D4 0.19 10 yr BSN D4 0 22 25 yr BSN D4 0.24 50 yr BSN D4 0 26 100 yr Drainage Area: BSN D4 Hyd Method: Peak Factor: Storm Dur: Area CN Pervious 0.0396 ac Impervious 0.2484 ac Total 0.2880 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 484.00 SCS Abs: 24.00 hrs Intv: TC 78.00 0.03 hrs 98.00 0.06 hrs 0.0345 ac 0.0574 ac 0.0255 ac 0.0824 ac Description: Length: Slope: Across Planter Strip 6.00 ft Description: Length: Slope: Along Flow Line of Gutter 2.28 min Across Roadway 18.50 ft Through Strom Water Pipe 0.56 min Across Sidewalks 5.00 ft Peak T Peak Vol Area (ac-ft) ac /Loss 7 83 0.0225 0.29 7 83 0 0383 0 29 7 83 0.0610 0.29 7 83 0 0726 0.29 7 83 0.0784 0.29 7.83 0 0842 0.29 0.20 10.00 min Coeff: Travel 2.00% 0.2400 Coeff: Travel 197.00 ft 0.50% 2.00% 0.0110 50.00 ft 0.50% 2.00% 0.0110 Method Raintype SBUH/SCS TYPE1A SBUH/SCS TYPE1A SBUH/SCS TYPE1A SBUH/SCS TYPE1A SBUH/SCS TYPE1A SBUH/SCS TYPE1A SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.05 hrs 0.0396 ac U i~ Impervious CN Data: ROADWAY 98.00 0.1817 ac SIDWALK 98.00 0.0208 ac f~ DRIVEWAY 98.00 0.0459 ac f Pervious TC Data: Flow type: Description. Length: Slope: Coeff: Travel Time Sheet Across Planter Strip 6.00 ft 2.00% 0.2400 U 1.90 min Impervious TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Shallow Along Flow Line of Gutter 217.00 ft 1.34% 27.0000 1.16 min J Sheet Across Roadway 18.50 ft 2.00% 0.0110 0.40 min Channel Through Strom Water Pipe 80.00 ft 0.50% ~ 21.0000 0 90 min Sheet Across Sidewalks 5.00 ft 2.00% 0 0110 0.14 min Sheet Across Driveway 20.00 ft 2.00% 0.0110 0.42 min ADDHYD [BSN D1] AS [6 mo] [BSN D2] AS [6 mo] TO [BSN D1 +BSN D2] Peak Flow: 0 0889 cfs Peak Time: 7.83 hrs Hyd Vol: 1259.48 cf - 0.0289 acft ~ ADDHYD [BSN D1] AS [2 yr] [BSN D2] AS [2 yr] TO [BSN D1 +BSN D2] 1 lJ Peak Flow: 0 1515 cfs Peak Time: 7.83 hrs Hyd Vol: 2174.35 cf - 0.0499 acft ADDHYD [BSN D1] AS [10 yr] [BSN D2] AS [10 yr] TO [BSN D1 +BSN D2] r~T Peak Flow: 0.2451 cfs Peak Time: 7.83 hrs Hyd Vol: 3505.77 cf - 0.0805 acft I l~ ADDHYD [BSN D1] AS [25 yr] [BSN D2] AS [25 yr] TO [BSN D1 +BSN D2] h Peak Flow: 0.2930 cfs Peak Time: 7.83 hrs Hyd Vol: 4187.09 cf - 0.0961 acft ADDHYD [BSN D1] AS [50 yr] (BSN D2] AS [50 yr] TO [BSN D1 +BSN D2] Peak Flow: 0.3171 cfs Peak Time: 7.83 hrs Hyd Vol: 4530.32 cf - 0.1040 acft ~ 1 ADDHYD [BSN D1] AS [100 yr] [BSN D2] AS [100 yr] TO [BSN D1 +BSN D2] Peak Flow: 0.3413 cfs Peak Time: 7.83 hrs Hyd Vol: 4874.88 cf - 0.1119 acft ADDHYD [BSN D3] AS [6 mo] [BSN D4] AS [6 mo] TO [BSN D3 +BSN D4] Peak Flow: 0.1152 cfs Peak Time: 7.83 hrs Hyd Vol: 1637.10 cf - 0.0376 acft ADDHYD [BSN D3] AS [2 yr] [BSN D4] AS [2 yr] TO [BSN D3 +BSN D4] Peak Flow: 0.1948 cfs Peak Time: 7.83 hrs Hyd Vol: 2795.33 cf - 0.0642 acft r~ ADDHYD [BSN D3] AS [10 yr] [BSN D4] AS [10 yr] TO [BSN D3 +BSN D4] 111 JJI Peak Flow: 0.3107 cfs Peak Time: 7.83 hrs Hyd Vol: 4461.77 cf - 0.1024 acft ADDHYD [BSN D3] AS [25 yr] [BSN D4] AS [25 yr] TO [BSN D3 +BSN D4] j Peak Flow: 0.3694 cfs Peak Time: 7 83 hrs Hyd Vol: 5309.48 cf - 0.1219 acft ADDHYD [BSN D3] AS [50 yr] [BSN D4] AS [50 yr] TO [BSN D3 +BSN D4] ~~! Peak Flow: 0.3990 cfs Peak Time: 7.83 hrs Hyd Vol: 5735.63 cf - 0.1317 acft I~ 1 ~~~ ADDHYD [BSN D3] AS [50 yr] [BSN D4] AS [50 yr] TO [BSN D3 +BSN D4] Peak Flow: 0.3990 cfs Peak Time: 7.83 hrs Hyd Vol: 5735.63 cf - 0.1317 acft ~ ~~ ADDHYD (BSN D3] AS [100 yr] [BSN D4] AS [100 yr] TO [BSN D3 +BSN D4] Peak Flow: 0.4286 cfs Peak Time: 7.83 hrs Hyd Vol: 6163.00 cf - 0.1415 acft f~ ADDHYD [BSN D3] AS [100 yr] [BSN D4] AS [100 yr] TO [BSN D3 +BSN D4] Peak Flow: 0.4286 cfs Peak Time: 7.83 hrs Hyd Vol: 6163.00 cf - 0.1415 acft ADDHYD [BSN D1 +BSN D2] AS [6 mo] [BSN D3 +BSN D4] AS [6 mo] TO [BSN D1 +BSN J D2 +BSN D3 +BSN D4] Peak Flow: 0.2041 cfs Peak Time: 7.83 hrs Hyd Vol: 2896.58 cf - 0.0605 acft ADDHYD [BSN D1 +BSN D2] AS [2 yr] [BSN D3 +BSN D4] AS [2 yr] TO [BSN D1 +BSN D2 +BSN D3 +BSN D4] Peak Flow: 0.3463 cfs Peak Time: 7.83 hrs Hyd Vol: 4969.68 cf - 0.1141 acft U ADDHYD [BSN D1 +BSN D2] AS [10 yr] [BSN D3 +BSN D4] AS [10 yr] TO [BSN D1 +BSN D2 +BSN D3 +BSN D4] ~~ Peak Flow: 0.5558 cfs Peak Time: 7.83 hrs Hyd Vol: 7967.54 cf - 0.1829 acft ADDHYD [BSN D1 +BSN D2] AS [25 yr] [BSN D3 +BSN D4] AS [25 yr] TO [BSN D1 +BSN D2 +BSN D3 +BSN D4] Peak Flow: 0.6624 cfs Peak Time: 7.83 hrs Hyd Vol: 9496.57 cf - 0.2180 acft ADDHYD [BSN D1 +BSN D2] AS [50 yr] [BSN D3 +BSN D4] AS [50 yr] TO [BSN D1 +BSN ~ D2 +BSN D3 +BSN D4] ~ Peak Flow. 0.7161 cfs Peak Time: 7.83 hrs Hyd Vol: 10265.95 cf - 0.2455 acft ~I I~ v~ ~~' l__1 1 ` ADDHYD [BSN D1 +BSN D2] AS [100 yr] [BSN D3 +BSN D4] AS [100 yr) TO [BSN D1 + BSN D2 +BSN D3 +BSN D4] Peak Flow: 0 7699 cfs Peak Time: 7.83 hrs Hyd Vol: 11037.88 cf - 0.2534 acft Hydrograph ID Area: 0.8861 ac Peak Flow: 0.2534 acft Time Flow hr cfs 0 67 0.0030 0.83 0 0108 1.00 0 0190 1 17 0.0283 1 33 0 0369 1.50 0.0421 1 67 0.0492 1.83 0.0550 2 00 0.0583 2.17 0.0643 2.33 0.0690 2.50 0.0711 2.67 0 0734 2 83 0.0752 3.00 0 0769 3.17 0.0783 3.33 0.0796 BASIN D Hyd Int: 10.00 min Base Flow: 0.7699 cfs Peak Time: 7.83 hrs Hyd Vol: Time Flow Time Flow hr cfs hr cfs 8 67 0.2898 16.33 0 1019 8 83 0 2536 16 50 0.1019 9.00 0 2643 16.67 0.1019 9.17 0.2190 16.83 01020 9 33 0.1910 17.00 0 1020 9.50 01996 17.17 0.0976 9.67 0.1843 17 33 0.0946 9 83 0.1767 17.50 0.0955 10.00 0.1791 17.67 0 0953 10.17 0.1657 17.83 0.0954 10 33 0 1573 18 00 0.0954 10.50 0.1600 18.17 0.0910 10.67 0.1506 18.33 0.0880 10.83 0.1451 18.50 0.0889 11.00 0.1469 18.67 0.0886 11 17 0.1422 18 83 0.0888 11.33 0.1395 19.00 0.0887 J i u I~ V '~~, V ('~ t-1 U rj h >~ ~' U' L~' ~. J f~ 3 50 0.0807 11 50 3.67 0 0850 11 67 3 83 0.0883 11.83 4 00 0 0885 12.00 4.17 0.0963 12 17 4.33 0.1019 12.33 4 50 0.1014 12.50 4.67 0.1094 12.67 4 83 0.1149 12.83 5.00 0 1151 13 00 5 17 0.1238 13.17 5 33 0 1299 13.33 5.50 0 1297 13 50 5 67 0.1386 13.67 5 83 0.1447 13.83 6.00 0.1444 14 00 6.17 0.1611 14.17 6 33 0.1727 14 33 6 50 0.1710 14 50 6.67 0.1963 14 67 6 83 0.2136 14.83 7 00 0.2106 15 00 7.17 0 2411 15.17 7 33 0 2615 15.33 7 50 0.2578 15.50 7.67 0.5579 15.67 7 83 0 7699 15 83 8 00 0.7202 16.00 8.17 0.4934 16 17 8.33 0.3155 16 33 8.50 0 3702 16 50 Hydrograph ID: BASIN D Area: 0.8861 ac Hyd Int: Peak Flow: 0.7699 cfs acft 0.1404 19.17 0 0843 0.1359 19.33 0 0813 01331 19.50 0.0822 0 1341 19 67 0 0819 0.1295 19.83 0.0821 01267 20.00 0.0820 01277 2017 0.0821 0.1231 20 33 0.0821 0.1203 20.50 0 0821 0 1212 20 67 0.0821 0 1210 20.83 0.0822 0.1212 21.00 0.0822 0 1212 21.17 0 0822 0 1169 21.33 0 0822 0.1139 21.50 0.0822 01149 2167 0.0823 0 1147 21 83 0 0823 0.1148 22 00 0.0823 0.1148 22.17 0.0778 0.1105 22.33 0 0748 0.1075 22.50 0.0757 0.1085 22.67 0.0754 0 1082 22 83 0.0755 0 1084 23 00 0.0755 0.1084 23.17 0 0755 0.1040 23.33 0.0756 0 1010 23 50 0 0756 0.1020 23 67 0.0756 0 1017 23 83 0.0756 0.1019 24.00 0 0756 0 1019 24.17 0 0261 10.00 min Base Flow. Peak Time: 7.83 hrs Hyd Vol: 0.2534 MOVEHYD [BASIN D] TO [BASIN D - 6 mo] AS [6 mo] Peak Flow: 0.2041 cfs Peak Time: 7.83 hrs Hyd Vol MOVEHYD [BASIN D] TO (BASIN D -100 yr] AS [100 yr] Peak Flow: 0.7699 cfs Peak Time: 7.83 hrs Hyd Vol acft BSN E1 Event Summary: BasinlD Peak Q Event ------- (cfs) (hrs) BSN E10.08 8.00 BSN E10 14 8.00 BSN E10.23 8.00 BSN E10.27 8 00 BSN E10.29 8.00 BSN E10 32 8.00 Drainage Area: BSN E1 Hyd Method: Peak Factor: Storm Dur: Area CN Pervious 0.1250 ac Impervious 0.2906 ac Total 0.4156 ac Supporting Data: 2896.58 cf - 0.0665 acft 11037.88 cf - 0.2534 Peak T Peak Vol Area Method Raintype (ac-ft) ac /Loss 0 0273 0 42 SBUH/SCS TYPE1A 6 mo 0 0480 0.42 SBUH/SCS TYPE1A 2 yr 0.0788 0.42 SBUH/SCS TYPE1A 10 yr 0.0947 0.42 SBUH/SCS TYPE1A 25 yr 0.1027 0 42 SBUH/SCS TYPE1A 50 yr 0.1108 0 42 SBUH/SCS TYPE1A 100 yr SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.09 hrs c'~ ~, ~1 c r~ l~ L~ ~.~ ~~ 4~' I'~ ( ``1 ,~f rl IJ' ~` ~' ~~ U ~.J I~ i Pervious CN Data: Type B Soils Hydrologic Group Impervious CN Data: ROADWAY 98.00 SIDWALK 98.00 DRIVEWAY 98.00 Pervious TC Data: Flow type: Time Sheet 1.90 min Impervious TC Data: Flow type: Time Shallow 27.0000 Sheet 0.40 min Channel 21 0000 Sheet 0.14 min Sheet 0.42 min BSN E2 Event Summary: BasinlD Peak Q Event ------- (cfs) (hrs) BSN E20 09 7.83 BSN E20.16 7.83 BSN E20.26 7.83 BSN E20.31 7 83 BSN E20 34 7 83 BSN E20.36 7.83 Drainage Area: BSN E2 Hyd Method: Peak Factor: Storm Dur: Area CN Pervious 0.0986 ac Impervious 0.3341 ac Total 0.4327 ac Supporting Data: Pervious CN Data: Type B Soils Hydraulic Group Impervious CN Data: ROADWAY 98.00 SIDWALK 98.00 DRIVEWAY 98.00 Pervious TC Data: Flow type: Time Sheet 1.90 min Impervious TC Data: 78.00 0.1250 ac 0.2131 ac 0.0316 ac 0.0459 ac Description: Length: Slope: Across Planter Strip 6.00 ft Description: Length: Slope: Along Flow Line of Gutter 2.75 min Across Roadway 18.50 ft Through Strom Water Pipe 1.68 min Across Sidewalks 5.00 ft Across Driveway 20.00 ft Coeff: Travel 2.00% 0.2400 Coeff: Travel 237.00 ft 0.50% 2.00% 0.0110 150.00 ft 0.50% 2.00% 0.0110 2.00% 0.0110 Peak T Peak Vol Area Method Raintype (ac-ft) ac /Loss 0.0308 0 43 SBUH/SCS TYPE1A 6 mo 0.0534 0.43 SBUH/SCS TYPEIA 2 yr 0 0864 0.43 SBUH/SCS TYPE1A 10 yr 0.1033 0.43 SBUH/SCS TYPE1A 25 yr 0.1118 0 43 SBUH/SCS TYPE1A 50 yr 0.1204 0 43 SBUH/SCS TYPE1A 100 yr SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.05 hrs 78.00 0.0986 ac 0.2251 ac 0.0287 ac 0.0803 ac Description: Length: Slope: Across Planter Strip 6.00 ft Coeff: Travel 2.00% 0.2400 l~ i~ ,~ ~~ ,~ ,~ U `-1 1_.) ~"`1~ U '~ 1~ !-~_l ~~ ~~ ,~j ~~ V ~1 ~~ U Flow type: Time Shallow 27.0000 Sheet 0.40 min Channel 21.0000 Sheet 0.14 min Sheet 0.42 min Description: Length: Slope• Along Flow Line of Gutter 0.90 min Across Roadway 18.50 ft Through Strom Water Pipe 1 12 min Across Sidewalks 5.00 ft Coeff: Travel 263.00 ft 3.28% 2.00% 0.0110 100.00 ft 0.50% 2.00% 0.0110 Across Driveway 20.00 ft 2.00% 0.0110 ADDHYD [BSN E1] AS [6 mo] [BSN E2] AS [6 mo] TO [BSN E1 +BSN E2] Peak Flow: 0.1690 cfs Peak Time: 7.83 hrs Hyd Vol: 2530.78 cf - 0.0581 acft ADDHYD [BSN E1] AS [2 yr] [BSN E2] AS [2 yr] TO [BSN E1 +BSN E2] Peak Flow: 0.2914 cfs Peak Time: 7.83 hrs Hyd Vol: 4417.21 cf - 0.1014 acft ADDHYD [BSN E1] AS [10 yr] [BSN E2] AS [10 yr] TO [BSN E1 +BSN E2] Peak Flow: 0.4802 cfs Peak Time: 7.83 hrs Hyd Vol• 7194.70 cf - 0.1652 acft ADDHYD [BSN E1] AS [25 yr] [BSN E2] AS [25 yr] TO [BSN E1 +BSN E2] Peak Flow: 0.5777 cfs Peak Time: 7.83 hrs Hyd Vol: 8624.23 cf - 0.1980 acft ADDHYD [BSN E1] AS [50 yr] [BSN E2] AS [50 yr] TO (BSN E1 +BSN E2] Peak Flow: 0.6270 cfs Peak Time: 7.83 hrs Hyd Vol: 9345.61 cf - 0.2145 acft ADDHYD [BSN E1] AS [100 yr] [BSN E2] AS (100 yr] TO [BSN E1 +BSN E2] Peak Flow: 0.6766 cfs Peak Time: 7.83 hrs Hyd Vol: 10071.01 cf - 0.2312 acft Hydrograph ID: BASIN E Area: 0.8483 ac Hyd Int: 10.00 min Base Flow: Peak Flow: 0.6766 cfs Peak Time: 7.83 hrs Hyd Vol: acft Time Flow Time Flow Time Flow hr cfs hr cfs hr cfs 0.67 0.0022 8 67 0 2738 16 50 0 0953 0 83 0.0084 8 83 0.2360 16.67 0 0953 100 0.0154 9.00 0.2424 16.83 0.0954 1.17 0 0233 9.17 0 2057 17.00 0.0954 1.33 0 0307 9.33 0.1785 17.17 0.0917 1.50 0.0355 9.50 0 1833 17.33 0.0888 1.67 0.0414 9 67 0.1714 17.50 0.0893 1.83 0.0465 9.83 0.1638 17.67 0.0892 2 00 0 0496 10.00 0.1653 17 83 0.0893 2.17 0.0545 10.17 0.1544 18.00 0 0893 2.33 0.0587 10.33 0.1462 18.17 0.0856 2.50 0.0607 10.50 0.1478 18.33 0.0827 2.67 0.0627 10.67 01403 18.50 0.0832 2.83 0.0643 10 83 0 1349 18.67 0 0831 3.00 0.0658 11 00 0.1360 18 83 0.0832 3.17 0.0670 11.17 0.1322 19 00 0.0832 3 33 0.0681 11.33 0.1296 19.17 0.0794 3.50 0.0691 11.50 0.1302 19.33 0.0765 3.67 0 0724 11.67 0 1265 19.50 0 0770 0.2312 {~ 4.J Z~ !~ t~ ~~ k~`1 V n U 11r l ~J I~I U~ l~ U ~~ L.~ ~~, I~ IyT U 3 83 0 0754 11 83 4 00 0 0759 12.00 4.17 0.0817 12 17 4 33 0.0868 12 33 4.50 0 0870 12 50 4.67 0 0929 12 67 4 83 0.0983 12.83 5.00 0.0992 13.00 5 17 0 1060 13 17 5.33 0 1119 13 33 5.50 0.1127 13 50 5 67 0.1198 13 67 5 83 0 1258 13 83 6.00 0 1265 14 00 6.17 0.1397 14 17 6 33 0 1509 14 33 6 50 0 1511 14 50 6.67 0 1711 14.67 6.83 0.1878 14 83 7 00 0 1876 15 00 7.17 0 2119 15.17 7.33 0 2319 15.33 7.50 0 2315 15 50 7.67 0.4731 15 67 7.83 0.6766 15.83 8.00 0 6603 16.00 8 17 0 4714 16 17 8.33 0.3056 16 33 8.50 0 3343 16.50 Hydrograph ID: BASIN E Area : 0.8483 ac Hyd Int: Peak Flow: 0.6766 cfs acft 0.1239 19.67 0 0768 0.1245 19 83 0 0769 01208 20.00 0.0769 01180 20.17 0.0770 0.1186 20 33 0 0770 0.1149 20.50 0.0770 0 1121 20.67 0 0771 0.1127 20 83 0 0771 0.1126 2100 0.0771 0 1128 21.17 0 0771 0.1129 21 33 0 0772 0.1093 21.50 0.0772 01064 21.67 0.0772 0.1070 21 83 0 0773 0 1069 22 00 0 0773 01071 22.17 0.0735 01071 22.33 0.0705 01035 22.50 0.0711 0.1006 22 67 0 0709 0.1012 22 83 0 0710 0 1011 23.00 0.0710 0.1012 23 17 0.0710 0.1012 23 33 0.0710 0.0976 23.50 0 0710 0 0947 23.67 0.0711 0 0952 23.83 0.0711 0.0951 24.00 0.0711 0.0952 24.17 0 0287 0.0953 24.33 0.0005 10.00 min Base Flow: Peak Time: 7.83 hrs Hyd Vol 0.2312 MOVEHYD [BASIN E] TO [BASIN E - 6 mo] AS [6 mo] Peak Flow: 0.1690 cfs Peak Time: 7.83 hrs Hyd Vol MOVEHYD [BASIN E] TO [BASIN E -100 yr] AS [100 yr] Peak Flow: 0.6766 cfs Peak Time: 7 83 hrs Hyd Vol acft BSN F1 Event Summary: BasinlD Peak Q Event ------- (cfs) (hrs) BSN F10.11 8.00 BSN F10.19 8 00 BSN F10.31 8 00 BSN F10 37 8.00 BSN F10.40 8.00 BSN F10.43 8.00 Drainage Area: BSN F1 Hyd Method: Peak Factor: Storm Dur: Area CN Pervious 0.1025 ac Impervious 0 4210 ac Total 0.5235 ac Supporting Data: Pervious CN Data: 2530.78 cf - 0.0581 acft 10071.01 cf - 0 2312 Peak T Peak Vol Area Method Raintype (ac-ft) ac /Loss 0.0386 0.52 SBUH/SCS TYPE1A 6 mo 0 0664 0.52 SBUH/SCS TYPE1A 2 yr 0 1068 0.52 SBUH/SCS TYPE1A 10 yr 0.1274 0.52 SBUH/SCS TYPE1A 25 yr 0.1378 0 52 SBUH/SCS TYPE1A 50 yr 0.1482 0 52 SBUH/SCS TYPE1A 100 yr SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.10 hrs ~.J II~ ~-J ~I ~1 Type B Sods Hydrologic Group 78.00 0 1025 ac tJ Impervious CN Data: ROADWAY 98.00 0.2907 ac SIDWALK 98.00 0.0500 ac DRIVEWAY 98.00 0 0803 ac Pervious TC Data: ~.-~ Flow type: Description: Length: Slope: Coeff: Travel ~ Time ~--~ Sheet Across Planter Strip 6.00 ft 2.00% 0.2400 1.90 min Impervious TC Data: U Flow type: Description: Length: Slope: Coeff: Travel Time Shallow Along Flow Line of Gutter 330.00 ft 0.50% 27.0000 3.83 min ,~} Sheet Across Roadway 18.50 ft 2.00% 0.0110 0.40 min j`1 Channel Through Strom Water Pipe 100.00 ft 0.50% J 21.0000 1.12 min Sheet Across Sidewalks 5.00 ft 2.00% 0.0110 0.14 min Sheet Across Driveway 20 00 ft 2.00% 0.0110 ZJ 0.42 min ~"? MOVEHYD [BSN F1] TO [BSN F1 - 6 mo] AS [6 mo] Peak Flow: 0.1125 cfs Peak Time: 8 00 hrs Hyd Vol: 1679.87 cf - 0.0386 acft ~ MOVEHYD [BSN F1] TO [BSN F1 - 2 yr] AS [2 yr] Peak Flow: 0.1923 cfs Peak Time: 8.00 hrs Hyd Vol: 2891.63 cf - 0.0664 acft MOVEHYD [BSN F1] TO [BSN F1 - 10 yr] AS [10 yrJ ~? I Peak Flow: 0.3083 cfs Peak Time: 8.00 hrs Hyd Vol: 4650.47 cf - 0.1068 acft U, MOVEHYD [BSN F1] TO [BSN F1 - 25 yr] AS [25 yr] Peak Flow: 0 3673 cfs Peak Time: 8.00 hrs Hyd Vol: 5549.24 cf - 0.1274 acft MOVEHYD [BSN F1] TO [BSN F1 - 50 yr] AS [50 yr] Peak Flow: 0.3970 cfs Peak Time: 8 00 hrs Hyd Vol: 6001.69 cf - 0.1378 acft ~~ MOVEHYD (BSN F1] TO [BSN F1 -100 yr] AS [100 yr] Peak Flow: 0.4268 cfs Peak Time: 8.00 hrs Hyd Vol: 6456.02 cf - 0.1482 acft `~~' Hydrograph ID: BASIN F - 6 mo ~-~" Area: 0.5235 ac Hyd Int: 10.00 min Base Flow: Peak Flow: 0.1125 cfs Peak Time: 8.00 hrs Hyd Vol: 0.0386 acft Hydrograph ID: BASIN F -100 yr ~ Area: 0.5235 ac Hyd Int: 10.00 min Base Flow: `~ Peak Flow: 0.4268 cfs Peak Time: 8.00 hrs Hyd Vol: 0.1482 acft t ~1 I V r--i Time Flow Time Flow Time Flow ~` ~ ~.1 ~ hr cfs hr cfs hr cfs ~} 0 67 0.0012 8.67 0.1812 16.50 0.0599 0 83 0 0049 8 83 0.1548 16.67 0 0599 ` 1 00 0.0095 9 00 0 1539 16 83 0 0600 1 17 0 0147 9.17 0 1349 17 00 0.0600 1.33 0 0198 9.33 0.1166 17.17 0.0580 1 50 0 0233 9 50 0.1162 17 33 0.0561 1.67 0.0272 9 67 0 1102 17 50 0 0561 (? 1 83 0 0307 9.83 0.1049 17 67 0.0561 II 2.00 0.0331 10 00 0 1049 17.83 0 0561 11 ~.J 2.17 0 0361 10.17 0.0991 18.00 0.0561 2.33 0 0390 10 33 0 0936 18 17 0 0541 ~-~ 2.50 0 0407 10 50 0 0936 18 33 0 0522 2 67 0.0420 10 67 0 0897 18 50 0.0522 2.83 0 0432 10 83 0.0861 18.67 0.0522 3 00 0 0442 11.00 0.0861 18.83 0.0522 317 0.0450 11.17 0.0841 19.00 0.0522 (~1 3.33 0 0458 11 33 0 0823 19 17 0 0502 ~ ! 3 50 0 0464 11 50 0 0824 19.33 0 0483 , L} 3 67 0.0484 11.67 0.0804 19 50 0 0483 , 3.83 0.0504 11 83 0 0786 19 67 0.0482 ~ ~~ 4.00 0 0511 12 00 0 0786 19 83 0.0483 ~ 4 17 0 0544 12 17 0 0767 20.00 0.0483 !,~ 4.33 0 0579 12.33 0 0749 20.17 0 0483 4.50 0 0586 12.50 0.0749 20.33 0 0483 4 67 0.0619 12 67 0.0729 20 50 0.0483 ~~ 4.83 0 0656 12.83 0.0711 20 67 0.0483 ~ 5 00 0 0666 13 00 0.0711 20 83 0 0483 5.17 0 0703 13.17 0 0711 21.00 0.0483 5.33 0.0742 13.33 0.0712 21.17 0.0484 S"~ 5.50 0.0752 13 50 0 0712 21.33 0 0484 5.67 0 0790 13 67 0 0693 21.50 0 0484 ~1 5 83 0 0829 13 83 0.0674 21 67 0.0484 6 00 0 0839 14 00 0 0674 21 83 0.0484 ~, 6.17 0.0910 14.17 0 0674 22.00 0.0484 6.33 0.0984 14 33 0 0675 22.17 0.0464 6 50 0.0996 14.50 0 0675 22 33 0 0445 6.67 0 1103 14 67 0 0656 22.50 0 0445 ~ 6.83 0.1214 14.83 0.0637 22 67 0.0444 ~'~ 7 00 0.1229 15.00 0.0637 22 83 0 0444 ~ ! 717 0.1358 15.17 0.0636 23.00 0.0444 ~J 7 33 0 1490 15 33 0.0637 23.17 0 0445 7.50 0 1508 15 50 0 0637 23.33 0 0445 ~~-~ 7 67 0.2804 15.67 0.0618 23.50 0.0445 ~ 7 83 0.4149 15 83 0 0599 23.67 0 0445 ~~ 8.00 0.4268 16.00 0.0599 23 83 0.0445 8.17 0 3230 16.17 0.0598 24.00 0.0445 I 8 33 0 2140 16.33 0.0599 24.17 0.0222 '+~' ~ 8.50 0.2112 16 50 0.0599 24.33 0.0017 `~ Hydrograph ID: BASIN F -100 yr Area : 0.5235 ac Hyd Int: 10.00 min Base Flow: Peak Flow: 0.4268 cfs Peak Time: 8.00 hrs Hyd Vol '~.~ acft ~~ ~~ MOVEHYD [BASIN F] TO [BASIN F - 6 mo] AS [6 mo] Peak Flow: 0.1125 cfs Peak Time: 8.00 hrs Hyd Vol: MOVEHYD [BASIN F] TO [BASIN F -100 yr] AS [100 yr] Peak Flow: 0.4268 cfs Peak Time: 8.00 hrs Hyd Vol BSN G1 Event Summary: BasinlD Peak Q Peald T Peak Vol Area Event 0.1482 1679.87 cf - 0.0386 acft 6456.02 cf - 0.1482 acft Method Raintype r'~ U ~~ I~~ ~-,1 V ,(~ U l~j ~~ I~ U V ~~ ~v~ '~ U 'li I' ~,J ~"1 (~ --- (cfs) (hrs) (ac-ft) ac /Loss BSN G1 0 08 7.83 0 0264 0 37 SBUH/SCS TYPE1A 6 mo BSN G1 0 13 7.83 0 0457 0.37 SBUH/SCS TYPE1A 2 yr BSN G1 0.22 7 83 0 0739 0.37 SBUH/SCS TYPEIA 10 yr BSN G1 0 26 7.83 0.0884 0 37 SBUH/SCS TYPE1A 25 yr BSN G1 0.28 7 83 0 0957 0.37 SBUH/SCS TYPE1A 50 yr BSN G1 0 30 7.83 0 1030 0.37 SBUH/SCS TYPE1A 100 yr Drainage Area: BSN G1 Hyd Method SBUH Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur: 24.00 hrs Intv: 10.00 mm Area CN TC Pervious 0.0841 ac 78.00 0.03 hrs Impervious 0.2862 ac 98.00 0.07 hrs Total 0.3703 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 0.0841 ac Impervious CN Data: ROADWAY 98.00 0.1714 ac DRIVEWAY 98.00 0.1148 ac Pervious TC Data: Flow type: Description: Length: Slope: Coeff• Travel Time Sheet Across Planter Strip 6.00 ft 2.00% 0.2400 1.90 min Impervious TC Data: Flow type: Descnption: Length: Slope. Coeff: Travel Time Shallow Along Flow Lme of Gutter 444.00 ft 1.77% 27.0000 2.06 min Sheet Across Roadway 18.50 ft 2.00% 0.0110 0.40 min Channel Through Strom Water Pipe 100.00 ft 0.50% 21.0000 1.12 min Sheet Across Driveway 20.00 ft 2.00% 0.0110 0.42 min BSN G2 Event Summary: BasinlD Peak Q Peak T Peak Vol Area Method Raintype Event ------ (cfs) (hrs) (ac-ft) ac /Loss BSN G2 0.04 7.83 0.0130 0.17 SBUH/SCS TYPE1A 6 mo BSN G2 0.07 7 83 0.0223 0.17 SBUH/SCS TYPE1A 2 yr BSN G2 0.11 7.83 0.0358 0.17 SBUH/SCS TYPEIA 10 yr BSN G2 0.13 7.83 0 0427 0.17 SBUH/SCS TYPEIA 25 yr BSN G2 0.14 7 83 0.0462 0.17 SBUH/SCS TYPEIA 50 yr BSN G2 0.15 7 83 0.0497 0.17 SBUH/SCS TYPE1A 100 yr ~J C~ (~I (~ U f~ `! ;, i~ ~, (~ ~~~ l -~ I ~, I_J I~ ~.~ r'~ ~~ ~~1 ~,J t~ Drainage Area: BSN G2 Hyd Method: Peak Factor: Storm Dur: Area CN Pervious 0.0320 ac Impervious 0.1423 ac Total 0.1743 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 Impervious CN Data: ROADWAY 98.00 DRIVEWAY 98.00 Pervious TC Data: Flow type: Time Sheet 1.90 min Impervious TC Data: Flow type: Time Shallow 27.0000 Sheet 0.40 min Channel 21.0000 Sheet 0.42 min BSN G3 Event Summary: BasinlD Peak Q Event ------ (cfs) (hrs) BSN G3 0 07 6 mo BSN G3 0.11 2 yr BSN G3 0.18 10 yr BSN G3 0.21 25 yr BSN G3 0.23 50 yr BSN G3 0 25 100 yr Drainage Area: BSN G3 Hyd Method: Peak Factor: Storm Dur: Area CN Pervious 0 0318 ac Impervious 0.2437 ac Total 0.2755 ac Supporting Data: SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Inty: 10.00 min TC 78.00 0 03 hrs 98.00 0.06 hrs 0.0320 ac 0.0849 ac 0.0574 ac Description: Length: Slope: Across Planter Strip 6.00 ft Description: Length: Slope: Along Flow Line of Gutter 2.30 min Across Roadway 18.50 ft Through Strom Water Pipe 0.56 min Across Driveway 20.00 ft Peak T Peak Vol Area (ac-ft) ac /Loss 7.83 0 0220 0.28 7.83 0.0373 0.28 7.83 0.0592 0.28 7.83 0 0703 0 28 7 83 0.0759 0.28 783 00815 028 Coeff: Travel 2.00% 0.2400 Coeff: Travel 198.00 ft 0.50% 2.00% 0.0110 50.00 ft 0.50% 2.00% 0.0110 Method Raintype SBUH/SCS TYPE1A SBUHlSCS TYPE1A SBUH/SCS TYPE1A SBUH/SCS TYPE1A SBUH/SCS TYPE1A SBUH/SCS TYPE1A SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.05 hrs ((~ lJ ~J ,~ ~.1 (~ ~`--~1 U ~~ 1~ L~~ U ~) (~ I(--! iJ ~E U~ ~~~ i U Pervious CN Data: Type B Soils 78 00 0.0318 ac Impervious CN Data: ROADWAY 98.00 0.1629 ac DRIVEWAY 98.00 0.0574 ac SIDEWALK 98.00 0.0234 ac Pervious TC Data: Flow type: Description- Length: Slope: Coeff: Travel Time Sheet Across Planter Strip 6.00 ft 2.00% 0.2400 1.90 min Impervious TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Shallow Along Flow Line of Gutter 194.00 ft 0.54% 27.0000 1.63 min Sheet Across Roadway 18.50 ft 2.00% 0.0110 0.40 min Channel Through Strom Water Pipe 100.00 ft 0.50% 21.0000 1.12 min Sheet Across Sidewalks 5 00 ft 2.00% 0.0110 0.14 min BSN G4 Event Summary: BasinlD Peak Q Peak T Peak Vol Area Method Raintype Event ------- (cfs) (hrs) (ac-ft) ac /Loss BSN G4 0.06 7 83 0 0194 0.25 SBUH/SCS TYPE1A 6 mo BSN G4 0 10 7 83 0.0331 0.25 SBUH/SCS TYPE1A 2 yr BSN G4 0.16 7.83 0.0528 0.25 SBUH/SCS TYPE1A 10 yr BSN G4 0.19 7 83 0 0628 0.25 SBUH/SCS TYPE1A 25 yr BSN G4 0.21 7.83 0.0678 0 25 SBUH/SCS TYPEIA 50 yr BSN G4 0 22 7 83 0.0729 0.25 SBUH/SCS TYPE1A 100 yr Drainage Area: BSN G4 Hyd Method: SBUH Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur: 24.00 hrs Intv: 10 00 min Area CN TC Pervious 0.0377 ac 78.00 0.03 hrs Impervious 0.2134 ac 98.00 0.04 hrs Total 0.2511 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 0.0377 ac Impervious CN Data: ROADWAY 98.00 0.1441 ac SIDWALK 98.00 0.0234 ac DRIVEWAY 98.00 0.0459 ac Pervious TC Data: (`~ ~1 r~ Flow type• Description: Length: Slope: Coeff: Travel ~ Time Sheet Across Planter Strip 6.00 ft 2.00% 0.2400 ~ 1.90 min Impervious TC Data: Flow type: Description: Length: Slope: Coeff: Travel ~~ Time Shallow Along Flow Line of Gutter 173.00 ft 2.28% ~J 27 0000 0.71 min Sheet Across Roadway 18.50 ft 2.00% 0.0110 (~ 0.40 min U Channel Through Strom Water Pipe 100.00 ft 0.50% 21.0000 1.12 min Sheet Across Sidewalks 5.00 ft 2.00% 0.0110 0.14 min {`? ADDHYD [BSN G1] AS [6 mo] [BSN G2J AS [6 mo] TO [BSN G1 +BSN G2] L~j Peak Flow: 0.1169 cfs Peak Time: 7.83 hrs Hyd Vol: 1716.22 cf - 0.0394 acft r1 ADDHYD [BSN G1) AS [2 yr] [BSN G2] AS [2 yr] TO [BSN G1 +BSN G2) ~~ Peak Flow: 0.1997 cfs Peak Time: 7.83 hrs Hyd Vol: 2964.38 cf - 0.0681 acft ADDHYD [BSN G1] AS [10 yr] [BSN G2] AS [10 yr] TO [BSN G1 +BSN G2] ~'i Peak Flow: 0.3240 cfs Peak Time: 7.83 hrs Hyd Vol: 4782.34 cf - 0.1098 acft ADDHYD [BSN G1] AS [25 yr] [BSN G2] AS [25 yr] TO [BSN G1 +BSN G2] ~ Peak Flow: 0.3876 cfs Peak Time: 7.83 hrs Hyd Vol: 5713.03 cf - 0.1312 acft ADDHYD [BSN G1] AS [50 yr] [BSN G2] AS [50 yr] TO [BSN G1 +BSN G2] Peak Flow: 0.4197 cfs Peak Time: 7.83 hrs Hyd Vol: 6181.85 cf - 0.1419 acft f~ ~' ADDHYD [BSN G1] AS [100 yr] [BSN G2] AS [100 yr] TO [BSN G1 +BSN G2] Peak Flow: 0.4520 cfs Peak Time: 7 83 hrs Hyd Vol: 6652.71 cf - 0.1527 acft '~ ADDHYD [BSN G3] AS [6 mo] [BSN G4] AS [6 mo] TO [BSN G3 +BSN G4] t,~ Peak Flow: 0.1281 cfs Peak Time: 7.83 hrs Hyd Vol: 1802.40 cf - 0.0414 acft ADDHYD [BSN G3] AS [2 yr] [BSN G4] AS [2 yr) TO [BSN G3 +BSN G4] ~ Peak Flow: 0.2159 cfs Peak Time: 7.83 hrs Hyd Vol: 3066.86 cf - 0.0704 acft r-~ ADDHYD [BSN G3] AS (10 yr] [BSN G4] AS [10 yr] TO [BSN G3 +BSN G4] ~ ~~ Peak Flow: 0.3427 cfs Peak Time: 7.83 hrs Hyd Vol: 4879.12 cf - 0.1120 acft ADDHYD [BSN G3] AS [25 yr] [BSN G4] AS [25 yr] TO [BSN G3 +BSN G4] Peak Flow: 0.4067 cfs Peak Time: 7.83 hrs Hyd Vol: 5799.30 cf - 0.1331 acft ADDHYD [BSN G3] AS [50 yr] [BSN G4] AS [50 yr] TO [BSN G3 +BSN G4] ~, Peak Flow: 0.4389 cfs Peak Time: 7 83 hrs Hyd Vol: 6261.49 cf - 0.1437 acft ~ ADDHYD [BSN G3] AS [100 yr] [BSN G4] AS [100 yr] TO [BSN G3 +BSN G4] Peak Flow: 0.4711 cfs Peak Time: 7.83 hrs Hyd Vol: 6724.85 cf - 0.1544 acft U ADDHYD [BSN G1 +BSN G2] AS [6 mo) [BSN G3 +BSN G4] AS [6 mo] TO [BSN G1 +BSN G2 +BSN G3 +BSN G4] f'"1 Peak Flow. 0.2450 cfs Peak Time: 7.83 hrs Hyd Vol: 3518.62 cf - 0.0808 acft V r--~ l U ~~ i U ~'~ LJ ADDHYD [BSN G1 +BSN G2] AS [2 yr] [BSN G3 + BSN G4] AS [2 yr] TO [BSN G1 +BSN G2 +BSN G3 +BSN G4] j~ Peak Flow: 0.4156 cfs Peak Time: 7.83 hrs Hyd Vol: 6031.24 cf - 0.1802 acft ADDHYD [BSN G1 +BSN G2] AS [10 yr] [BSN G3 +BSN G4] AS [10 yr] TO [BSN G1 + { BSN G2 +BSN G3 +BSN G4] ~ Peak Flow: 0.6667 cfs Peak Time: 7.83 hrs Hyd Vol: 9661.46 cf - 0.2218 acft -- ADDHYD [BSN G1 +BSN G2] AS [25 yr] [BSN G3 +BSN G4] AS [25 yr] TO [BSN G1 + l'~ BSN G2 +BSN G3 +BSN G4] Peak Flow• 0.7943 cfs Peak Time: 7.83 hrs Hyd Vol: 11512.33 cf - 0.2749 acft ADDHYD [BSN G1 +BSN G2] AS [50 yr] [BSN G3 +BSN G4] AS [50 yr] TO [BSN G1 + BSN G2 +BSN G3 +BSN G4] ~ Peak Flow: 0.8586 cfs Peak Time: 7.83 hrs Hyd Vol: 12443.34 cf - 0 2856 ~ ~ acft ~ ADDHYD [BSN G1 +BSN G2] AS [100 yr] [BSN G3 +BSN G4] AS [100 yr] TO [BSN G1 + ~--~ BSN G2 +BSN G3 +BSN G4] ~~ Peak Flow: 0.9231 cfs Peak Time: 7.83 hrs Hyd Vol: 13377.56 cf - 0.3071 acft Hydrograph ID: BASIN G Area: 1.0712 ac Hyd Int: 10.00 min Base Flow: Peak Flow. 0.9231 cfs Peak Time: 7.83 hrs Hyd Vol: 0.3071 rl~ acft Time Flow Time Flow Time Flow hr cfs hr cfs hr cfs ~ 0.67 0 0034 8 67 0 3581 16.33 0.1233 { 1 0.83 0.0126 8.83 0 3082 16 50 0.1233 I ~ 1.00 0.0225 9.00 0.3195 16.67 01234 ~J 1.17 0.0338 917 0.2685 16.83 01234 1 33 0 0443 9 33 0 2327 17 00 0 1235 1 50 0.0509 9 50 0 2410 17 17 0.1184 ~ ~ 1.67 0 0593 9.67 0 2244 17 33 0.1146 1.83 0.0665 9.83 0.2143 17 50 0.1155 2.00 0.0707 10.00 0.2168 17.67 0.1153 2.17 0 0777 10.17 0.2017 17.83 0 1155 (`? 2 33 0.0836 10.33 0 1909 18.00 0 1155 ~ ~ 2.50 0.0863 10 50 0.1935 18 17 0 1104 ~ 2.67 0 0891 10.67 0 1831 18.33 0.1066 2.83 0.0914 10.83 0.1760 18.50 0.1075 ~ 3.00 0.0934 1100 0.1778 18.67 0.1073 Y 3 17 0 0951 11 17 0 1725 18.83 0.1074 3.33 0 0967 11 33 0.1690 19.00 0 1074 3.50 0.0980 11.50 0.1700 1917 01023 3.67 0.1030 11.67 0.1649 19.33 0 0985 (~ 3 83 0.1072 11.83 0.1613 19.50 0 0994 LJ 4 00 0 1077 12 00 0.1623 19.67 0.0992 4.17 0.1165 12.17 01572 19.83 0.0993 4.33 0.1236 12.33 0.1536 20.00 0.0993 -'} 4.50 01233 12.50 0.1545 20.17 0.0993 4 67 0 1324 12.67 0.1494 20.33 0 0994 ~ 4.83 0.1396 12.83 0.1458 20.50 0 0994 5.00 0.1400 13 00 0.1467 20.67 0.0994 5.17 0.1498 13.17 0.1465 20.83 0 0994 5 33 0.1575 13.33 0 1467 21.00 0 0994 ~~ 5.50 0.1577 13.50 01468 21.17 0.0995 5.67 0.1677 13 67 0.1418 21.33 0.0995 5.83 0.1755 13.83 0.1381 21.50 0.0995 ~r V V I~ U 4~ ~J 1~ r ~~ I U {I~' V I~ ~J 1.~ U `'`~ l~ {~~ ~-1~ t ~~ ~~ i r~ ~~ ~~ U J ~~ LJ 6 00 0 1755 14 00 0.1390 21.67 617 01943 14.17 0.1388 2183 6.33 0 2091 14.33 0.1390 22 00 6 50 0 2079 14 50 0.1390 22.17 6.67 0 2364 14 67 0.1341 22.33 6.83 0 2584 14.83 0 1303 22.50 7 00 0 2560 15 00 0 1312 22.67 7.17 0.2903 15 17 0.1311 22 83 7 33 0 3163 15.33 0.1312 23 00 7.50 0 3133 15 50 0 1312 23 17 7 67 0.6550 15.67 0.1262 23.33 7 83 0 9231 15.83 0.1225 23.50 8.00 0 8788 16 00 0 1234 23.67 817 0.6131 1617 0.1232 23.83 8 33 0 3922 16 33 0.1233 24.00 8.50 0.4432 16.50 01233 24.17 Hydrograph ID: BASIN G Area: 1.0712 ac Hyd Int: 10.00 min Base Flow: Peak Flow: 0.9231 cfs Peak Time: 7.83 hrs acft MOVEHYD [BASIN G] TO [BASIN G - 6 mo] AS [6 mo] Peak Flow: 0.2450 cfs Peak Time: 7.83 hrs Hyd Vol: MOVEHYD [BASIN G] TO [BASIN G -100 yr] AS [100 yr] Peak Flow. 0.9231 cfs Peak Time: 7.83 hrs Hyd Vol acft BSN H1 Event Summary: 0.0995 0 0996 0 0996 0 0945 0 0906 0 0915 0.0913 0 0914 0 0914 0.0914 0.0914 0.0915 0 0915 0 0915 0.0915 0.0348 Hyd Vol: 0.3071 3518.62 cf - 0.0808 acft 13377.56 cf - 0.3071 BasinlD Peak Q Peak T Peak Vol Area Method Raintype Event ------- (cfs) (hrs) (ac-ft) ac /Loss BSN H1 0 07 7.83 0.0236 0.33 SBUH/SCS TYPE1A 6 mo BSN H1 0.12 7.83 0.0408 0.33 SBUH/SCS TYPE1A 2 yr BSN H1 0 20 7 83 0 0660 0.33 SBUH/SCS TYPE1A 10 yr BSN H1 0.24 7.83 0.0788 0.33 SBUH/SCS TYPE1A 25 yr BSN H1 0 26 7.83 0 0853 0.33 SBUH/SCS TYPEIA 50 yr BSN H1 0.27 7 83 0.0918 0 33 SBUH/SCS TYPE1A 100 yr Drainage Area: BSN H1 Hyd Method: SBUH Hyd Loss Method: SCS CN N umber Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur: 24.00 hrs Intv: 10.00 min Area CN TC Pervious 0.0727 ac ~ 78.00 0.03 hrs Impervious 0.2562 ac 98.00 0.06 hrs Total 0.3289 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 0.0727 ac Impervious CN Data: ROADWAY 98.00 0.1437 ac SIDWALK 98.00 0.0212 ac DRIVEWAY 98.00 0.0913 ac U +~ U (~-' ~~ i~ 1~~ U ~'~ I~ r-, 1 1J U I~ V {I l I~ L~ ~, ~~ ~~ 1r~ l~ U ~' r'~ _J ~~ U Pervious TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet Across Planter Strip 6.00 ft 2.00% 0.2400 1.90 min Impervious TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Shallow Along Flow Line of Gutter 186.00 ft 0 54% 27.0000 1.56 min Sheet Across Roadway 18.50 ft 2.00% 0.0110 0.40 min Channel Through Strom Water Pipe 80.00 ft 0.50% 21.0000 0.90 min Sheet Across Sidewalks 5.00 ft 2.00% 0.0110 0.14 min Sheet Across Driveway 20.00 ft 2.00% 0.0110 0.42 min BSN H2 Event Summary: BasinlD Peak Q Peak T Peak Vol Area Method Raintype Event ------- (cfs) (hrs) (ac-ft) ac /Loss BSN H2 0 03 7 83 0.0100 0 14 SBUH/SCS TYPE1A 6 mo BSN H2 0.05 7.83 0 0174 0 14 SBUH/SCS TYPE1A 2 yr BSN H2 0.08 7 83 0.0283 0 14 SBUH/SCS TYPE1A 10 yr BSN H2 0.10 7.83 0 0339 0 14 SBUH/SCS TYPE1A 25 yr BSN H2 0 11 7 83 0.0367 0 14 SBUH/SCS TYPE1A 50 yr BSN H2 0.12 7.83 0 0396 0.14 SBUH/SCS TYPEIA 100 yr Drainage Area: BSN H2 Hyd Method: SBUH Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur: 24.00 hrs Intv: 10.00 min Area CN TC Pervious 0.0363 ac 78.00 0.03 hrs Impervious 0.1079 ac 98.00 0.06 hrs Total 0.1442 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 0.0363 ac Impervious CN Data: ROADWAY 98.00 0.0712 ac DRIVEWAY 98.00 0.0367 ac Pervious TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet Across Planter Strip 6.00 ft 2.00% 0.2400 1.90 min Impervious TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time f~ u r~ ~U U Ifs l~ l{-1 L-J ~~1 ~.1 U~ ,~ ~1 ``~ ~J I~ U~ ~ ,l ~~ U r,, ~J I1`~ U ~J Shallow 27.0000 Sheet 0.40 min Channel 21.0000 Sheet 0.42 m m BSN H3 Event Summary: BasinlD Peak Q Event ------- (cfs) (hrs) BSN H3 0 06 6 mo BSN H3 0 10 2 yr BSN H3 0.15 10 yr BSN H3 0.18 25 yr BSN H3 0.20 50 yr BSN H3 0.21 100 yr Drainage Area: BSN H3 Hyd Method: Peak Factor: Storm Dur: Area CN Pervious 0.0324 ac Impervious 0.2009 ac Total 0.2333 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 Impervious CN Data: ROADWAY 98.00 DRIVEWAY 98.00 Pervious TC Data: Flow type: Time Sheet 1.90 min Impervious TC Data: Flow type: Time Shallow 27.0000 Sheet 0.35 min Channel 21.0000 Sheet 0.14 min Along Flow Line of Gutter 184.00 ft 0.50% 2.13 min Across Roadway 18.50 ft 2.00% 0 0110 Through Strom Water Pipe 50.00 ft 0.50% 0.56 min Across Driveway 20.00 ft 2.00% 0.0110 Peak T Peak Vol Area Method Raintype (ac-ft) ac /Loss 7.83 0 0182 0.23 SBUH/SCS TYPE1A 7 83 0.0310 0.23 SBUH/SCS TYPE1A 7 83 0 0494 0 23 SBUH/SCS TYPE1A 7.83 0 0587 0.23 SBUH/SCS TYPEIA 7 83 0.0634 0 23 SBUH/SCS TYPEIA 7 83 0.0681 0.23 SBUH/SCS TYPEIA SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.04 hrs 0.0324 ac 0.0862 ac 0.1147 ac Description: Length: Slope: Coeff: Travel Across Planter Strip 6.00 ft 2.00% 0.2400 Description: Length: Slope: Coeff: Travel Along Flow Line of Gutter 125.00 ft 1.02% 0.76 min Across Roadway 16.00 ft 2.00% 0.0110 Through Strom Water Pipe 80.00 ft 0.50% 0.90 min Across Sidewalks 5.00 ft 2.00% 0.0110 !~ ,+ U ~'' ~--~ ADDHYD [BSN H1] AS [6 mo] [BSN H2] AS [6 mo] TO [BSN H1 +BSN H2] Peak Flow. 0.1006 cfs Peak Time: 7.83 hrs Hyd Vol: 1463.86 cf - 0.0336 acft n ~j ADDHYD [BSN H1] AS [2 yr] [BSN H2] AS [2 yr] TO [BSN H1 +BSN H2] Peak Flow: 0.1723 cfs Peak Time: 7.83 hrs Hyd Vol: 2537.14 cf - 0.0582 acft ,~ ADDHYD [BSN H1] AS [10 yr] [BSN H2] AS [10 yr] TO [BSN H1 +BSN H2] Peak Flow: 0.2807 cfs Peak Time: 7.83 hrs Hyd Vol: 4106.23 cf - 0.0943 acft ADDHYD [BSN H1] AS [25 yr] [BSN H2] AS [25 yr] TO [BSN H1 +BSN H2] Peak Flow: 0.3363 cfs Peak Time: 7.83 hrs Hyd Vol: 4910.93 cf - 0.1127 acft r-~, ADDHYD [BSN H1] AS [50 yr] [BSN H2] AS [50 yr] TO [BSN H1 +BSN H2] Peak Flow: 0.3644 cfs Peak Time: 7.83 hrs Hyd Vol: 5316.54 cf - 0.1221 acft ADDHYD [BSN H1] AS [100 yr] [BSN H2j AS [100 yr] TO [BSN H1 +BSN H2] ~` Peak Flow 0.3927 cfs Peak Time: 7.83 hrs Hyd Vol: 5724.05 cf - 0.1314 acft 4~ ADDHYD [BSN H1 +BSN H2] AS [6 mo] [BSN H3] AS [6 mo] TO [BSN H1 +BSN H2 +BSN H3] ~ 1 Peak Flow: 0.1606 cfs Peak Time: 7.83 hrs Hyd Vol: 2256.41 cf - 0.0518 acft ~` ADDHYD [BSN H1 +BSN H2] AS [2 yr] [BSN H3] AS [2 yr] TO [BSN H1 +BSN H2 +BSN j ~ H3] ~I Peak Flow: 0.2723 cfs Peak Time: 7.83 hrs Hyd Vol: 3885.55 cf - 0.0892 acft ~'--i ADDHYD [BSN H1 +BSN H2] AS [10 yr] [BSN H3] AS [10 yr] TO [BSN H1 +BSN H2 +BSN ~ H3] Peak Flow. 0.4307 cfs Peak Time: 7.83 hrs Hyd Vol: 6259.57 cf - 0.1437 acft 1 ADDHYD [BSN H1 +BSN H2] AS [25 yr] [BSN H3] AS [25 yr] TO [BSN H1 +BSN H2 +BSN U H3] Peak Flow: 0.5163 cfs Peak Time: 7.83 hrs Hyd Vol: 7466.18 cf - 0.1714 acft ~ ~? ADDHYD [BSN H1 +BSN H2] AS [50 yr] [BSN H3] AS [50 yr] TO [BSN H1 +BSN H2 +BSN H3] Peak Flow: 0.5644 cfs Peak Time: 7.83 hrs Hyd Vol: 8080.38 cf - 0.1855 acft ADDHYD [BSN H1 +BSN H2] AS [100 yr] [BSN H3] AS [100 yr] TO [BSN H1 +BSN H2 + BSN H3] ~ Peak Flow: 0.6031 cfs Peak Time: 7.83 hrs Hyd Vol: 8692.48 cf - 0.1996 acft Hydrograph ID: BASIN H Area: 0.7064 ac Hyd Int: 10.00 min Base Flow: ~~' Peak Flow: 0.6031 cfs Peak Time: 7.83 hrs Hyd Vol: 0.1996 acft ~~, Time Flow Time Flow Time Flow hr cfs hr cfs hr cfs 0 67 0 0023 8.67 0.2299 16.33 0.0807 0 83 0.0083 8.83 0 2001 16 50 0.0807 1.00 0 0146 9.00 0 2085 16.67 0.0808 1.17 0.0219 9.17 0.1734 16.83 0.0808 l.-~ 1.33 0.0285 9.33 0.1510 17.00 0.0808 1.50 0 0326 9 50 0.1575 17 17 0.0774 1.67 0 0381 9 67 0 1457 17 33 0.0750 {~ 1__1 h ,, L~ ~ 1 83 0 0426 9 83 0 1396 17 50 0.0757 ~ 2 00 0 0452 10 00 0.1415 17 67 0.0755 2 17 0.0498 10.17 0.1311 17.83 0 0756 2 33 0.0535 10 33 0 1243 18 00 0.0756 2.50 0 0551 10 50 0.1264 18 17 0.0722 2 67 0 0569 10 67 0.1192 18.33 0 0698 2 83 0.0583 10 83 0 1148 18 50 0 0705 3.00 0 0596 11 00 0.1161 18 67 0.0703 f~ 3 17 0 0607 11 17 0.1125 18 83 0.0704 I 1' 3 33 0 0617 11.33 0 1103 19 00 0 0704 U' 3.50 0.0626 11.50 0.1110 1917 0.0669 3 67 0.0659 11 67 0.1076 19.33 0.0645 - 83 0 0684 3 11 83 0 1053 19 50 0 0652 I. ~ . 4 00 0 0687 12.00 0.1061 19 67 0.0650 J . 4.17 0.0746 12 17 0.1025 19 83 0.0651 4.33 0 0790 12.33 0 1003 20 00 0 0651 4 50 0 0787 12 50 0 1010 20 17 0.0651 f~ 4 67 0.0848 12 67 0.0975 20 33 0.0651 ~~ 4.83 0.0892 12 83 0 0952 20.50 0.0651 5 00 0 0894 13.00 0 0959 20 67 0 0651 5.17 0.0960 13.17 0.0958 20.83 0.0652 5.33 0.1009 13 33 0.0959 21 00 0.0652 5 50 0.1009 13.50 0 0959 21 17 0 0652 5.67 0.1077 13 67 0.0926 21 33 0 0652 5.83 0.1127 13 83 0.0902 21.50 0.0652 6 00 0.1126 14.00 0 0910 21 67 0.0652 ~ 6.17 0.1254 14.17 0 0908 21 83 0 0653 U 6.33 0.1347 14 33 0.0909 22.00 0.0653 6 50 0 1336 14.50 0 0909 22.17 0.0618 6.67 0 1530 14 67 0.0876 22.33 0 0593 ~'~1 6.83 0.1669 14 83 0 0852 22.50 0 0600 I 7.00 0.1648 15 00 0.0859 22 67 0.0598 iJ 7 17 0.1883 15.17 0 0857 22.83 0.0599 7 33 0 2047 15 33 0.0859 23 00 0 0599 7.50 0.2022 15 50 0 0859 23 17 0 0599 7 67 0 4338 15 67 0.0825 23.33 0 0599 ~~ 7 83 0.6031 15.83 0.0801 23.50 0.0600 8 00 0 5678 16 00 0 0808 23 67 0 0600 8.17 0.3913 16 17 0 0806 23 83 0 0600 t~ 8.33 0.2504 16.33 0.0807 24.00 0.0600 8 50 0.2908 16.50 0.0807 24 17 0.0213 ~--~ MOVEHYD [BASIN H] TO [BASIN H - 6 mo] AS [6 mo] ,~ Peak Flow: 0.1606 cfs Peak Time: 7.83 hrs Hyd Vol: 2256.41 cf - 0.0518 acft MOVEHYD [BASIN H] TO [BASIN H -100 yr] AS [1 00 yr] {--~ Peak Flow: 0.6031 cfs Peak Time: 7.83 hrs Hyd Vol: 8692.48 cf - 0.1996 acft (~ BSN 11 Event Summary: BasinlD Peak Q Peak T Peak Vol Area Method Ralntype >~ Event 1~,~ ------- (cfs) (hrs) (ac-ft) ac /Loss BSN 11 0 11 8.00 0.0377 0.45 SBUH/SCS TYPE1A 6 mo BSN 11 0.19 8.00 0.0634 0.45 SBUH/SCS TYPE1A 2 yr BSN 11 0.29 8.00 0.1000 0.45 SBUH/SCS TYPE1A 10 yr BSN 11 0.34 8 00 0 1184 0.45 SBUH/SCS TYPE1A 25 yr BSN 11 0.37 8.00 0.1277 0.45 SBUH/SCS TYPEIA 50 yr BSN 11 0 40 8.00 0.1369 0.45 SBUH/SCS TYPE1A 100 yr U Drainage Area: BSN 11 Hyd Method: SBUH Hyd Loss Method: SCS CN Number Peak Factor: 484 00 SCS Abs: 0.20 ,~ c U U ~--, l~ U ~J f~~ ~' I~ r~ t~ U ~~ ~~ ~~ 1`' ~~ 1J ~_1 Storm Dur: 24.00 hrs Intv: 10.00 min Area CN TC Pervious 0.0321 ac 78.00 0.03 hrs Impervious 0.4203 ac 98 00 0.09 hrs Total 0.4524 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 0.0321 ac Impervious CN Data: ROADWAY 98.00 0.2138 ac SIDWALK 98.00 0 0229 ac DRIVEWAY 98 00 0.1836 ac Pervious TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet Across Planter Strip 6.00 ft 2.00% 0.2400 1.90 min Impervious TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Shallow Along Flow Line of Gutter 258.00 ft 0.77% 27.0000 1.81 min Sheet Across Roadway 18.50 ft 2.00% 0.0110 0.40 min Channel Through Strom Water Pipe 257.00 ft 0.50% 21.0000 2.88 min Sheet Across Sidewalks 5.00 ft 2.00% 0.0110 0.14 min Sheet Across Driveway 20.00 ft 2.00% 0.0110 0.42 min BSN 12 Event Summary: BasinlD Peak Q Peak T Peak Vol Area Method Raintype Event ------- (cfs) (hrs) (ac-ft) ac /Loss BSN 12 0.05 8.00 0 0180 0 25 SBUH/SCS TYPE1A 6 mo BSN 12 0 09 8.00 0.0311 0 25 SBUH/SCS TYPE1A 2 yr BSN 12 0.14 8 00 0.0503 0.25 SBUH/SCS TYPE1A 10 yr BSN 12 0.17 8.00 0 0601 0.25 SBUH/SCS TYPE1A 25 yr BSN 12 0 19 8.00 0.0650 0 25 SBUH/SCS TYPE1A 50 yr BSN 12 0.20 8.00 0.0700 0 25 SBUH/SCS TYPE1A 100 yr Drainage Area: BSN 12 Hyd Method: SBUH Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur: 24.00 hrs Intv: 10.00 min Area CN TC Pervious 0.0546 ac 78.00 0.03 hrs Impervious 0.1956 ac 98.00 0.10 hrs Total 0 2502 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 0.0546 ac Impervious CN Data : ROADWAY 98.00 0.1606 ac SIDWALK 98.00 0.0350 ac Pervious TC Data: V f~ ~' Imo' u ~~ U f-' (-' f~ n U Flow type: Time Sheet 1.90 min Impervious TC Data: Flow type: Time Shallow 27.0000 Sheet 0.40 min Channel 21.0000 Sheet 0.14 min BSN 13 Event Summ ary: BasinlD Peak Q Event ------- (cfs) (hrs) BSN 13 0.09 7.83 BSN 13 0 16 7 83 BSN 13 0.25 7 83 BSN 13 0 30 7 83 BSN 13 0 33 7.83 BSN 13 0.35 7.83 Drainage Area: BSN 13 Hyd Method: Peak Factor: Storm Dur: Area CN Pervious 0.0879 ac Impervious 0.3266 ac Total 0.4145 ac Supporting Data: Pervious CN Data: Type B Solls 78.00 Impervious CN Data: ROADWAY 98.00 SIDEWALK 98.00 DRIVEWAY 98.00 Pervious TC Data: Flow type: Time Sheet 1.90 min Impervious TC Data: Flow type: Time Shallow 27.0000 Sheet 0.40 min Channel 21.0000 Sheet Description Length: Slope: Across Planter Strip 6.00 ft Description: Length: Slope: Along Flow Line of Gutter 2.78 min Across Roadway 18.50 ft Through Strom Water Plpe 2.81 min Across Sidewalks 5.00 ft Coeff: Travel 2.00% 0.2400 Coeff: Travel 387.00 ft 0.74% 2.00% 0.0110 250.00 ft 0.50% 2.00% 0.0110 Peak T Peak Vol Area Method Raintype (ac-ft) ac /Loss 0 0300 0 41 SBUH/SCS TYPE1A 6 mo 0.0519 0 41 SBUH/SCS TYPE1A 2 yr 0.0836 0 41 SBUH/SCS TYPE1A 10 yr 0.0999 0.41 SBUH/SCS TYPE1A 25 yr 0.1081 0 41 SBUH/SCS TYPE1A 50 yr 0.1163 0 41 SBUH/SCS TYPE1A 100 yr SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78 00 0.03 hrs 98.00 0.05 hrs 0.0879 ac 0.1742 ac 0.0147 ac 0.1377 ac Description: Length: Slope: Across Planter Strip 6.00 ft Description: Length: Slope: Along Flow Line of Gutter 1.48 min Across Roadway 18.50 ft Through Strom Water Pipe 0.90 min Across Sidewalks 5.00 ft Coeff: Travel 2.00% 0.2400 Coeff: Travel 200.00 ft 0.70% 2.00% 0.0110 80.00 ft 0.50% 2.00% 0.0110 U {~ ~J L__1' C L.t C V 1~ r L~ L1 n li ((`~ U 0.14 min BSN 14 Event Summary: BasinlD Peak O Event ------- (cfs) (hrs) BSN 14 0.09 8.00 BSN 14 0.15 8.00 BSN 14 0.24 8 00 BSN 14 0 29 8.00 BSN 14 0 31 7.83 BSN 14 0.34 7.83 Drainage Area: BSN 14 Hyd Method: Peak Factor: Storm Dur: Area CN Pervious 0.0876 ac Impervious 0.3264 ac Total 0.4140 ac Supporting Data: Pervious CN Data: Type B Solls 78.00 Impervious CN Data: ROADWAY 98.00 SIDWALK 98.00 DRIVEWAY 98.00 Pervious TC Data: Flow type: Time Sheet 1.90 min Impervious TC Data: Flow type: Time Shallow 27.0000 Sheet 0.40 min Channel 21.0000 Sheet 0.14 min BSN 15 Event Summary: BasInID Peak Q Event ------- (cfs) (hrs) BSN 15 0 06 7 83 BSN 15 0.10 7 83 BSN 15 0.17 7.83 BSN 15 0 20 7.83 BSN 15 0 22 7.83 BSN 15 0 24 7 83 Drainage Area: BSN 15 Peak T Peak Vol Area Method Raintype (ac-ft) ac /Loss 0 0300 0.41 SBUH/SCS TYPE1A 6 mo 0.0518 0 41 SBUH/SCS TYPE1A 2 yr 0 0835 0 41 SBUH/SCS TYPEIA 10 yr 0.0998 0 41 SBUH/SCS TYPE1A 25 yr 0 1080 0.41 SBUH/SCS TYPE1A 50 yr 0 1162 0.41 SBUH/SCS TYPE1A 100 yr SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.08 hrs 0.0876 ac 0.1747 ac 0.0140 ac 0.1377 ac Description: Length: Slope: Across Planter Strip 6.00 ft Description: Length: Slope: Along Flow Line of Gutter 1.45 min Across Roadway 18.50 ft Through Strom Water Pipe 2.81 min Across Sidewalks 5.00 ft Coeff: Travel 2.00% 0.2400 Coeff: Travel 197.00 ft 0.70% 2.00% 0.0110 250.00 ft 0.50% 2.00% 0.0110 Peak T Peak Vol Area Method (ac-ft) ac /Loss 0.0209 0.30 SBUH/SCS TYPE1A 0.0362 0.30 SBUH/SCS TYPE1A 0.0587 0 30 SBUH/SCS TYPE1A 0.0702 0 30 SBUH/SCS TYPE1A 0 0760 0 30 SBUH/SCS TYPEIA 0.0818 0 30 SBUH/SCS TYPEIA Raintype 6 mo 2 yr 10 yr 25 yr 50 yr 100 yr Hyd Method: Peak Factor: Storm Dur: f~ Area CN Pervious 0.0691 ac Impervious 0.2261 ac Total 0.2952 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 Impervious CN Data: j~ ROADWAY 98.00 SIDWALK 98.00 DRIVEWAY 98.00 Pervious TC Data: Flow type: Time Sheet 1.90 mm Impervious TC Data: ~ Flow type: Time Shallow 27.0000 Sheet U 0.40 min Channel { 21.0000 Sheet ~J 0.16 min BSN 16 Event Summary: BasinlD Peak Q Event ------ (cfs) (hrs) r BSN 16 0.08 7.83 BSN 16 0 14 7 83 BSN 16 0.23 7 83 BSN I6 0.27 7.83 BSN 16 0.29 7.83 BSN 16 0 32 7.83 Drainage Area: BSN 16 ~~' Hyd Method: V Peak Factor: Storm Dur: Area CN Pervious 0.0646 ac Impervious 0.3039 ac Total 0.3685 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 Impervious CN Data: ROADWAY 98.00 SIDWALK 98.00 DRIVEWAY 98.00 ' f U ,r` -, 1 U SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24 00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.07 hrs 0.0691 ac 0.1397 ac 0.0173 ac 0.0691 ac Description: Length: Slope: Coeff: Travel Across Planter Strip 6.00 ft 2.00% 0.2400 Description: Length: Slope: Coeff: Travel Along Flow Line of Gutter 157.00 ft 0.70% 1.16 min Across Roadway 18.50 ft 2.00% 0.0110 Through Strom Water Pipe 230.00 ft 0.50% 2.58 min Across Sidewalks 6.00 ft 2.00% 0.0110 Peak T Peak Vol Area Method Raintype (ac-ft) ac /Loss 0.0277 0.37 SBUH/SCS TYPE1A 6 mo 0.0475 0.37 SBUH/SCS TYPE1A 2 yr 0.0762 0 37 SBUH/SCS TYPEIA 10 yr 0.0908 0 37 SBUH/SCS TYPE1A 25 yr 0 0982 0.37 SBUH/SCS TYPE1A 50 yr 0.1055 0.37 SBUH/SCS TYPEIA 100 yr SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24 00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.06 hrs 0.0646 ac 0.2050 ac 0.0343 ac 0.0646 ac n ~) ~~ ', Pervious TC Data: ~ Flow type: Description: Length: Slope: Coeff: Travel Time ~' Sheet Across Planter Strip 6.00 ft 2.00% 0.2400 1.90 min Impervious TC Data: n Flow type: Description: Length: Slope: Coeff: Travel Time Shallow Along Flow Line of Gutter 247.00 ft 0.83% 27.0000 1.67 min ~ Sheet Across Roadway 18.50 ft 2.00% 0.0110 0.40 min Channel Through Strom Water Pipe 120.00 ft 0.50% ~, 21.0000 1.35 min Sheet Across Sidewalks 6.00 ft 2.00% 0.0110 ~ 0.16 min ADDHYD [BSN 11] AS [6 mo] [BSN 12] AS [6 mo] TO [BSN 11 +BSN 12] Peak Flow: 0.1646 cfs Peak Time: 8.00 hrs Hyd Vol: 2424.13 cf - 0.0557 acft ADDHYD [BSN 11] AS [2 yr] [BSN 12] AS [2 yr] TO [BSN 11 +BSN 12] UUU Peak Flow: 0.2771 cfs Peak Time: 8.00 hrs Hyd Vol: 4118.94 cf - 0.0946 acft ADDHYD [BSN 11] AS [10 yr] [BSN 12] AS [10 yr] TO [BSN 11 +BSN 12] (~ Peak Flow: 0.4369 cfs Peak Time: 8.00 hrs Hyd Vol: 6543.99 cf - 0.1502 acft ~---, ADDHYD [BSN 11] AS [25 yr] [BSN 12] AS [25 yr] TO [BSN 11 +BSN 12] Peak Flow: 0.5174 cfs Peak Time: 8.00 hrs Hyd Vol: 7774.06 cf - 0.1785 acft ADDHYD [BSN 11] AS [50 yr] [BSN 12] AS [50 yr] TO [BSN 11 +BSN 12] (^' Peak Flow: 0.5577 cfs Peak Time: 8.00 hrs Hyd Vol: 8391.86 cf - 0.1927 acft u ADDHYD [BSN 11] AS [100 yr] [BSN 12] AS [100 yr] TO [BSN 11 +BSN 12] I--, Peak Flow: 0.5982 cfs Peak Time: 8.00 hrs Hyd Vol: 9011.15 cf - 0.2069 acft ADDHYD [BSN 13] AS [6 mo] [BSN 14] AS [6 mo] TO [BSN 13 +BSN 14) Peak Flow: 0.1780 cfs Peak Time: 7.83 hrs Hyd Vol: 2614.68 cf - 0.0600 acft ADDHYD [BSN 13] AS [2 yr) [BSN 14] AS [2 yr] TO [BSN 13 +BSN 14] Peak Flow: 0.3041 cfs Peak Time: 7.83 hrs Hyd Vol: 4514.91 cf - 0.1036 acft ~~ ~ ADDHYD [BSN 13] AS [10 yr) [BSN 14] AS [10 yr] TO [BSN 13 +BSN 14] Peak Flow: 0.4932 cfs Peak Time: 7.83 hrs Hyd Vol: 7281.93 cf - 0.1672 acft ADDHYD [BSN 13] AS [25 yr] [BSN 14] AS [25 yr] TO [BSN 13 +BSN 14] Peak Flow: 0.5900 cfs Peak Time: 7.83 hrs Hyd Vol: 8698.35 cf - 0.1997 acft ~-, ADDHYD [BSN 13] AS [50 yr] [BSN 14] AS [50 yr] TO [BSN 13 +BSN 14] Peak Flow: 0.6388 cfs Peak Time: 7.83 hrs Hyd Vol: 9411.73 cf - 0.2161 acft ADDHYD [BSN 13] AS [100 yr] [BSN 14] AS [100 yr] TO [BSN 13 +BSN 14] j ~ Peak Flow: 0.6879 cfs Peak Time: 7.83 hrs Hyd Vol: 10128.29 cf - 0.2325 ~~ acft ADDHYD [BSN 15] AS [6 mo] [BSN 16] AS [6 mo] TO [BSN 15 +BSN 16] r-1 ~I V ~ ,~ Peak Flow: 0.1446 cfs Peak Time: 7.83 hrs Hyd Vol: 2117.59 cf - 0.0486 acft ADDHYD [BSN 15] AS [2 yr] [BSN 16] AS [2 yr] TO [BSN 15 +BSN 16] ,~ Peak Flow: 0 2465 cfs Peak Time: 7.83 hrs Hyd Vol: 3649.06 cf - 0.0838 acft lJ ADDHYD [BSN 15] AS [10 yr] [BSN 16] AS [10 yr] TO [BSN 15 +BSN 16] I((~~ Peak Flow: 0.3987 cfs Peak Time: 7.83 hrs Hyd Vol: 5874.55 cf - 0.1349 acft fU~ ADDHYD [BSN 15] AS [25 yr] [BSN 16] AS [25 yr] TO [BSN 15 +BSN 16] Peak Flow: 0 4764 cfs Peak Time: 7.83 hrs Hyd Vol: 7012.48 cf - 0.1610 acft ADDHYD [BSN 15] AS [50 yr] [BSN 16] AS [50 yr] TO [BSN 15 +BSN 16] Peak Flow: 0.5156 cfs Peak Time: 7.83 hrs Hyd Vol: 7585.39 cf - 0.1741 acft ADDHYD [BSN 15] AS [100 yr] [BSN 16] AS [100 yr] TO [BSN 15 +BSN 16] Peak Flow: 0.5550 cfs Peak Time- 7.83 hrs Hyd Vol: 8160.67 cf - 0.1873 acft ~~ U ' ADDHYD [BASIN 11-4] AS [6 mo] (BSN 15 +BSN 16] AS [6 mo] TO [BASIN 11-4 +BSN 15 + ~ BSN 16] ;,4 Peak Flow: 0.4872 cfs Peak Time: 7.83 hrs Hyd Vol: 7156.4 cf - 0.1643 acft `LI ADDHYD [BASIN 11-4] AS [2 yr] [BSN 15 +BSN 16] AS [2 yr) TO [BASIN 11-4 +BSN 15 + BSN 16] E-~ Peak Flow: 0.7016 cfs Peak Time: 7 83 hrs Hyd Vol: 12282.9 cf - 0.282 acft ~ ADDHYD [BASIN 11-4] AS [10 yr] [BSN 15 +BSN 16] AS [10 yr] TO [BASIN 11-4 +BSN 15 + r ~ BSN 16] Peak Flow: 1.3288 cfs Peak Time: 7.83 hrs Hyd Vol: 19700.47 cf - 0.4523 ~~ acft `-' ADDHYD [BASIN 11-4] AS [25 yr] [BSN 15 +BSN 16] AS [25 yr] TO [BASIN 11-4 +BSN 15 + BSN 16] ;n Peak Flow: 1.5838 cfs Peak Time: 7.83 hrs Hyd Vol: 23484.89 cf - 0.5392 U acft ~~ ADDHYD [BASIN 11-4] AS [50 yr] (BSN 15 +BSN 16] AS [50 yr] TO [BASIN 11-4 +BSN 15 + ' BSN 16] U Peak Flow: 1.7121 cfs Peak Time- 7.83 hrs Hyd Vol: 25.388.98 cf - 0.5829 acft In ~LJ ADDHYD [BASIN 11-4] AS [100 yr] [BSN 15 +BSN 16] AS [100 yr] TO [BASIN 11-4 +BSN 15 +BSN 16] ~~ Peak Flow: 1.8257 cfs Peak Time: 7.83 hrs Hyd Vol: 27300.11 cf - 0.6267 '. acft ;n Hydrograph ID: BASIN I Area: 2.1948 ac Hyd Int: 10.00 min Base Flow: IU Peak Flow: 1.8257 cfs Peak Time: 7.83 hrs Hyd Vol: 0.6267 acft ;-~ Time Flow Time Flow Time Flow U ,~ U I i ~l LJ ~~ I u E44 1~ ~, ~~ h ~i U ~; U Ire ~U r-, 4' , u ir-~ U hr cfs hr cfs hr cfs 0 67 0.0061 8 67 0.7490 16.50 0.2522 0.83 0.0234 8 83 0.6401 16.67 0.2523 1.00 0.0435 9 00 0.6508 16 83 0 2524 1.17 0.0660 9.17 0 5589 17.00 0 2525 1.33 0 0875 9 33 0 4830 17.17 0 2432 1 50 0 1017 9 50 0.4910 17.33 0 2352 1 67 0 1184 9 67 0 4619 17.50 0 2362 1 83 0.1334 9 83 0 4400 17.67 0 2359 2.00 0.1426 10.00 0 4426 17.83 0 2361 2.17 0 1562 10.17 0 4151 18 00 0.2361 2 33 0 1685 10 33 0.3923 18 17 0 2268 2 50 0 1747 10.50 0 3950 18 33 0 2188 2 67 0 1803 10 67 0 3763 18 50 0.2198 2 83 0.1851 10 83 0.3612 18 67 0 2195 3.00 0.1892 11.00 0 3630 18 83 0.2197 3.17 0 1928 11.17 0.3536 19 00 0 2197 3 33 0.1960 11.33 0.3462 19.17 0.2103 3 50 01988 11.50 0.3473 19.33 0.2023 3 67 0 2081 11.67 0 3381 19.50 0.2032 3 83 0 2167 11.83 0.3305 19.67 0.2029 4.00 0.2185 12.00 0 3316 19.83 0.2031 4.17 0.2346 12.17 0 3223 20.00 0.2031 4 33 0.2494 12.33 0 3147 20.17 0 2032 4 50 0 2506 12 50 0 3157 20.33 0 2032 4.67 0 2668 12 67 0 3064 20.50 0.2033 4 83 0 2820 12 83 0 2987 20 67 0.2033 5.00 0 2844 13.00 0 2997 20 83 0.2034 5.17 0 3022 13 17 0 2996 21 00 0.2034 5.33 0 3186 13.33 0 2999 21.17 0.2035 5 50 0.3206 13 50 0 3000 21 33 0.2035 5.67 0 3388 13 67 0 2909 21.50 0.2036 5 83 0 3553 13 83 0 2831 21.67 0.2036 6 00 0 3572 14 00 0 2841 21 83 0.2037 6 17 0 3914 14.17 0 2839 22 00 0 2037 6.33 0 4224 14.33 0 2842 22 17 0.1943 6 50 0.4235 14.50 0 2843 22.33 0.1862 6 67 0.4752 14.67 0.2751 22.50 0.1871 6 83 0.5216 14.83 0.2672 22.67 0 1868 7.00 0.5220 15.00 0.2682 22 83 0.1870 7.17 0.5841 15.17 0 2680 23.00 0 1870 7 33 0 6390 15.33 0 2683 23 17 0 1870 7.50 0.6393 15.50 0.2683 23.33 01871 7 67 1.2630 15.67 0 2591 23.50 0 1871 7 83 1 8257 15.83 0 2512 23.67 0 1871 8.00 1.8025 16.00 0 2521 23.83 0 1872 8.17 1.3069 16.17 0 2519 24 00 0.1872 8.33 0 8484 16.33 0.2521 24.17 0.0822 8.50 0 8960 16.50 0 2522 24.33 0 0022 MOVEHYD [BASIN I] TO [BASIN I - 6 mo] AS [6 mo] Peak Flow: 0.4872 cfs Peak Time: 7.83 hrs Hyd Vol: 7156.4 cf - 0.1643 acft MOVEHYD [BASIN I] TO [BASIN I -100 yr] AS [100 yr] Peak Flow. 1.8257 cfs Peak Time: 7.83 hrs Hyd Vol: 27300.11 cf - 0.6267 acft BSN K1 Event Summary: BasinlD Peak Q Event ------- (cfs) (hrs) BSN K10 06 7.83 BSN K10.10 7.83 Peak T Peak Vol Area Method Raintype (ac-ft) ac /Loss 0.0188 0.28 SBUH/SCS TYPE1A 6 mo 0.0328 0.28 SBUH/SCS TYPE1A 2 yr U I~ LJ I~ L_.J C i ~~ ~' n n ~J I~~ U I~ U f~~ +h i BSN K10.16 7.83 BSN K10 19 7.83 BSN K10 21 7 83 BSN K10.23 7.83 Drainage Area: BSN K1 Hyd Method: Peak Factor: Storm Dur: Area CN Pervious 0.0744 ac Impervious 0.2016 ac Total 0.2760 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 Impervious CN Data: ROADWAY 98.00 SIDWALK 98.00 DRIVEWAY 98.00 Pervious TC Data: Flow type: Time Sheet 1.90 min Impervious TC Data: Flow type: Time Shallow 27.0000 Sheet 0.40 min Channel 21.0000 Sheet 0.14 min Sheet 0.42 min BSN K2 Event Sum mary: BasinlD Peak Q Event ------- (cfs) (hrs) BSN K20.10 8.00 BSN K20.18 8.00 BSN K20.28 8.00 BSN K20.34 8.00 BSN K20 36 8.00 BSN K20.39 8 00 Drainage Area: BSN K2 Hyd Method: Peak Factor: Storm Dur: Area CN Pervious 0.0938 ac Impervious 0.3890 ac Total 0.4828 ac 0 0535 0 28 SBUH/SCS TYPE1A 10 yr 0.0642 0 28 SBUH/SCS TYPE1A 25 yr 0 0696 0.28 SBUH/SCS TYPE1A 50 yr 0 0750 0.28 SBUH/SCS TYPEIA 100 yr SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.04 hrs 0.0744 ac 0.1240 ac 0.0202 ac 0.0574 ac Description: Length: Slope: Coeff: Travel Across Planter Strip 6.00 ft 2.00% 0 2400 Description: Length: Slope: Coeff: Travel Along Flow Line of Gutter 126.00 ft 1.19% 0.71 min Across Roadway 18.50 ft 2.00% 0.0110 Through Strom Water Pipe 68.00 ft 0.50% 0.76 min Across Sidewalks 5.00 ft 2.00% 0.0110 Across Driveway 20.00 ft 2.00% 0.0110 Peak T Peak Vol Area Method Raintype (ac-ft) ac /Loss 0 0356 0 48 SBUH/SCS TYPE1A 6 mo 0.0613 0.48 SBUH/SCS TYPE1A 2 yr 0.0986 0 48 SBUH/SCS TYPEIA 10 yr 0.1176 0 48 SBUH/SCS TYPE1A 25 yr 0.1272 0 48 SBUH/SCS TYPE1A 50 yr 0.1368 0.48 SBUH/SCS TYPEIA 100 yr SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.12 hrs V U i I(I~~ U ~J I~ U 1~ I~ ~ U ~% LJ (, U (i, U n ~, n ~'~ Supporting Data: Pervious CN Data: Type B Soils 78.00 Impervious CN Data: ROADWAY 98.00 SIDWALK 98.00 DRIVEWAY 98.00 Pervious TC Data: Flow type: Time Sheet 1.90 min Impervious TC Data: Flow type: Time Shallow 27.0000 Sheet 0.40 min Channel 21 0000 Sheet 0.14 min BSN K3 Event Summary: BasinlD Peak Q Event ------- (cfs) (hrs) BSN K30 09 7.83 BSN K30.15 7.83 BSN K30.24 7.83 BSN K30.29 7.83 BSN K30.31 7 83 BSN K30 34 7 83 Drainage Area: BSN K3 Hyd Method: Peak Factor Storm Dur: Area CN Pervious 0.1009 ac Impervious 0.3013 ac Total 0.4022 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 Impervious CN Data: ROADWAY 98.00 SIDEWALK 98.00 DRIVEWAY 98.00 Pervious TC Data: Flow type: Time Sheet 1.90 min Impervious TC Data: Flow type: 0.0938 ac 0.2966 ac 0.0350 ac 0.0574 ac Description: Length: Slope: Across Planter Strip 6.00 ft Description: Length: Slope: Along Flow Line of Gutter 2.60 min Across Roadway 18.50 ft Through Strom Water Pipe 3.82 min Across Sidewalks 5.00 ft Coeff: Travel 2 00% 0.2400 Coeff: Travel 315.00 ft 0.56% 2.00% 0.0110 340.00 ft 0.50% 2.00% 0.0110 Peak T Peak Vol Area Method Raintype (ac-ft) ac /Loss 0.0279 0.40 SBUH/SCS TYPE1A 6 mo 0.0486 0.40 SBUH/SCS TYPEIA 2 yr 0 0790 0.40 SBUH/SCS TYPE1A 10 yr 0 0946 0.40 SBUH/SCS TYPE1A 25 yr 0.1025 0.40 SBUH/SCS TYPE1A 50 yr 0.1104 0 40 SBUH/SCS TYPE1A 100 yr SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.04 hrs 0.1009 ac 0.2143 ac 0.0296 ac 0.0574 ac Description: Length: Slope: Across Planter Strip 6.00 ft Description: Length: Slope Coeff: Travel 2.00% 0.2400 Coeff: Travel n V (~ I.J I~ U ~, U (~ 7 U I~'~ lJ r~~ u U U I~ L~ l~ ~~ n ~~ ~J Time Shallow 27.0000 Sheet 0.40 min Channel 21.0000 Sheet 0.14 min BSN K4 Event Summary: BasinlD Peak Q Event ------ (cfs) (hrs) BSN K40 05 7 83 BSN K40 09 7.83 BSN K40.15 7 83 BSN K40 17 7.83 BSN K40.19 7 83 BSN K40.20 7.83 Drainage Area: BSN K4 Hyd Method: Peak Factor: Storm Dur: Area CN Pervious 0.0282 ac Impervious 0.1926 ac Total 0.2208 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 Impervious CN Data: ROADWAY 98.00 SIDWALK 98.00 DRIVEWAY 98.00 Pervious TC Data: Flow type: Time Sheet 1.90 min Impervious TC Data: Flow type: Time Shallow 27.0000 Sheet 0.40 min Channel 21.0000 Sheet 0.14 min BSN K5 Event Summary: BasinlD Peak Q Event ------- (cfs) (hrs) Along Flow Line of Gutter 1.30 min Across Roadway 18.50 ft Through Strom Water Pipe 0.67 min Across Sidewalks 5.00 ft 265.00 ft 1.58% 2.00% 0.0110 60.00 ft 0.50% 2.00% 0.0110 Peak T Peak Vol Area Method Raintype (ac-ft) ac /Loss 0.0174 0.22 SBUH/SCS TYPE1A 6 mo 0.0296 0 22 SBUH/SCS TYPE1A 2 yr 0.0471 0.22 SBUH/SCS TYPE1A 10 yr 0 0560 0.22 SBUH/SCS TYPE1A 25 yr 0 0604 0.22 SBUH/SCS TYPE1A 50 yr 0.0649 0.22 SBUH/SCS TYPE1A 100 yr SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.04 hrs 0.0282 ac 0.1493 ac 0.0204 ac 0.0229 ac Description: Length: Slope: Across Planter Strip 6.00 ft Description: Length: Slope: Along Flow Line of Gutter 1.26 min Across Roadway 18.50 ft Through Strom Water Pipe 0.56 min Across Sidewalks 5.00 ft Peak T Peak Vol Area (ac-ft) ac /Loss Coeff: Travel 2.00% 0.2400 Coeff: Travel 175.00 ft ' 0.73% 2.00% 0.0110 50.00 ft 0.50% 2.00% 0.0110 Method Raintype u f~ i LJ Iii U I~ u 1J I~ U (~ L~ L f ~~ U Ir'~ LJ L Ifs U U BSN K50.15 8.00 0.0497 0 62 SBUH/SCS TYPEIA 6 mo BSN K50.25 8 00 0.0844 0.62 SBUH/SCS TYPEIA 2 yr BSN K50 39 8 00 0 1339 0 62 SBUH/SCS TYPEIA 10 yr BSN K50 46 8 00 0 1590 0 62 SBUH/SCS TYPEIA 25 yr BSN K50 49 8 00 0.1716 0 62 SBUH/SCS TYPE1A 50 yr BSN K50 53 8.00 0.1843 0 62 SBUH/SCS TYPE1A 100 yr Drainage Area: BSN K5 Hyd Method: Peak Factor: Storm Dur: Area CN Pervious 0.0721 ac Impervious 0.5512 ac Total 0.6233 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 Impervious CN Data: ROADWAY 98.00 SIDWALK 98.00 DRIVEWAY 98.00 Pervious TC Data: Flow type: Time Sheet 1.90 min Impervious TC Data: Flow type: Time Shallow 27.0000 Sheet 0.54 min Channel 21.0000 Sheet 0.28 min SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.11 hrs 0.0721 ac 0.3257 ac 0.1452 ac 0.0803 ac Description: Length: Slope: Across Planter Stnp 6.00 ft Coeff: Travel 2.00% 0.2400 Description: Length: Slope: Along Flow Line of Gutter 3.11 min Across Roadway 27.00 ft Through Strom Water Pipe 2.86 min Across Sidewalks 12.00 ft Coeff: Travel 268.00 ft 0.50% 2.00% 0.0110 255.00 ft 0.50% 2.00% 0.0110 ADDHYD [BSN K1] AS [6 mo] [BSN K2] AS [6 mo] TO [BSN K1 +BSN K2] Peak Flow: 0.1560 cfs Peak Time: 8.00 hrs Hyd Vol: 2369.71 cf - 0.0544 acft ADDHYD [BSN K1] AS [2 yr] (BSN K2] AS [2 yr] TO [BSN K1 +BSN K2] Peak Flow: 0.2683 cfs Peak Time: 8.00 hrs Hyd Vol: 4099.86 cf - 0.0941 acft ADDHYD [BSN K1] AS [10 yr] [BSN K2] AS [10 yr] TO [BSN K1 +BSN K2] Peak Flow: 0.4331 cfs Peak Time: 8.00 hrs Hyd Vol: 6624.56 cf - 0.1521 acft ADDHYD [BSN K1] AS [25 yr] [BSN K2] AS [25 yr] TO [BSN K1 +BSN K2] Peak Flow: 0.5173 cfs Peak Time: 8.00 hrs Hyd Vol: 7918.22 cf - 0.1818 acft ADDHYD [BSN K1] AS (50 yr] [BSN K2] AS [50 yr] TO [BSN K1 +BSN K2] Peak Flow: 0.5598 cfs Peak Time: 8.00 hrs Hyd Vol: 8570.03 cf - 0.1967 acft ADDHYD [BSN K1] AS [100 yr] [BSN K2] AS [100 yr] TO [BSN K1 +BSN K2] I~ U I'~ Peak Flow: 0.6024 cfs Peak Time: 8.00 hrs Hyd Vol: 9224.90 cf - 0.2118 acft ADDHYD [BSN K3] AS [6 mo] [BSN K4) AS [6 mo] TO [BSN K3 +BSN K4] Peak Flow: 0.1397 cfs Peak Time: 7.83 hrs Hyd Vol: 1976.00 cf - 0.0454 acft ~~ ADDHYD [BSN K3] AS [2 yr] [BSN K4] AS [2 yr] TO [BSN K3 +BSN K4] ~ Peak Flow: 0.2381 cfs Peak Time: 7.83 hrs Hyd Vol: 3408.91 cf - 0.0783 acft J u ADDHYD [BSN K3] AS [10 yr] [BSN K4] AS [10 yr] TO [BSN K3 +BSN K4] ~ Peak Flow: 0.3848 cfs Peak Time: 7.83 hrs Hyd Vol: 5493.47 cf - 0.1261 acft ( U ADDHYD [BSN K3] AS [25 yr] [BSN K4] AS [25 yr] TO [BSN K3 +BSN K4) Peak Flow: 0.4598 cfs Peak Time: 7.83 hrs Hyd Vol: 6560.11 cf - 0.1506 acft n I U ADDHYD [BSN K3] AS [50 yr] [BSN K4] AS [50 yr] TO [BSN K3 +BSN K4] r-, Peak Flow: 0.4977 cfs Peak Time: 7.83 hrs Hyd Vol: 7097.15 cf - 0.1629 acft I U ADDHYD [BSN K3] AS [100 yr] [BSN K4] AS [100 yr) TO [BSN K3 +BSN K4J Peak Flow: 0.5356 cfs Peak Time: 7.83 hrs Hyd Vol: 7636.58 cf - 0.1753 acft ~j MOVEHYD [BSN K5) TO [BSN K5 - 6 mo] AS [6 mo] Peak Flow: 0.1461 cfs Peak Time: 8.00 hrs Hyd Vol: 2166.67 cf - 0.0497 acft MOVEHYD [BSN K5] TO [BSN K5 - 2 yr] AS [2 yr] u Peak Flow: 0.2459 cfs Peak Time: 8.00 hrs Hyd Vol: 3676.63 cf - 0.0844 acft MOVEHYD [BSN K5] TO [BSN K5 - 10 yr] AS [10 yr] Peak Flow: 0.3872 cfs Peak Time: 8.00 hrs Hyd Vol: 5834.09 cf - 0.1339 acft MOVEHYD [BSN K5] TO [BSN K5 - 25 yr] AS [25 yr] Peak Flow: 0.4583 cfs Peak Time: 8.00 hrs Hyd Vol: 6927.65 cf - 0.1590 acft MOVEHYD [BSN K5] TO [BSN K5 - 50 yr] AS [50 yr] ~~ Peak Flow: 0.4940 cfs Peak Time: 8.00 hrs Hyd Vol: 7476.65 cf - 0.1716 acft MOVEHYD [BSN K5] TO [BSN K5 -100 yr) AS [100 yr] ~--~ Peak Flow: 0.5297 cfs Peak Time: 8.00 hrs Hyd Vol: 8027.03 cf - 0.1843 acft U ADDHYD [BASIN K1-4] AS [6 mo] [BSN K5] AS [6 mo) TO [BASIN K1-4 +BSN K5] ~ Peak Flow: 0.4418 cfs Peak Time: 7.83 hrs Hyd Vol: 6512.38 cf - 0.1495 acft ` u ADDHYD [BASIN K1-4] AS [2 yr] [BSN K5] AS [2 yr] TO [BASIN K1-4 +BSN K5) n Peak Flow: 0.7523 cfs Peak Time: 7.83 hrs Hyd Vol: 11185.4 cf - 0.2568 acft ADDHYD [BASIN K1-4] AS [10 yr] [BSN K5] AS [10 yr] TO [BASIN K1-4 +BSN K5] Peak Flow: 1.2051 cfs Peak Time: 7.83 hrs Hyd Vol: 17952.12 cf - 0.4121 r, acft ADDHYD [BASIN K1-4] AS [25 yr] [BSN K5) AS [25 yr] TO [BASIN K1-4 +BSN K5] (~ Peak Flow: 1.4354 cfs Peak Time: 7.83 hrs Hyd Vol: 21405.98 cf - 0.4914 ~~ acft ADDHYD [BASIN K1-4) AS [50 yr] [BSN K5) AS [50 yr] TO [BASIN K1-4 +BSN K5] Ire L~ r~ U n V Ire ~J~ ~J ~1 n ~.J )~' ~ I~I I l~J n U r11 LJ i I(~~ LJ J~ u I~, ~1 Peak Flow: 1.5515 cfs Peak Time: 7.83 hrs Hyd Vol: 23143.83 cf - 0.5312 acft ADDHYD [BASIN K1-4] AS [100 yr] [BSN K5] AS [100 yr] TO [BASIN K1-4 +BSN K5] Peak Flow: 1.6391 cfs Peak Time: 7.83 hrs Hyd Vol: 24888.51 cf - 0.5714 acft Hydrograph ID: BASIN K Area: 2.0051 ac Hyd Int: 10.00 min Base Flow: Peak Flow: 1.6391 cfs Peak Time: 7.83 hrs Hyd Vol acft Time Flow Time Flow Time Flow hr cfs hr cfs hr cfs 0 67 0.0055 8 67 0 6812 16.50 0.2301 0 83 0.0210 8.83 0 5902 16.67 0.2303 1 00 0.0388 9 00 0 5963 16.83 0.2303 1 17 0.0592 9.17 0 5098 17 00 0.2304 1.33 0 0786 9.33 0.4441 17.17 0.2220 1.50 0 0917 9 50 0.4499 17.33 0 2150 1.67 0 1071 9.67 0.4211 17.50 0 2158 1.83 0 1206 9 83 0 4025 17.67 0 2153 2 00 0 1291 10.00 0.4043 17.83 0 2155 2.17 0.1416 10.17 0.3787 18.00 0.2155 2.33 0.1526 10.33 0 3589 18.17 0.2070 2.50 0 1584 10.50 0.3609 18.33 0 2000 2.67 0.1637 10.67 0 3432 18.50 0.2008 2.83 0.1681 10 83 0 3302 18.67 0.2003 3.00 0.1719 11 00 0.3316 18 83 0.2005 3 17 0.1752 11.17 0.3226 19 00 0.2005 3 33 0 1781 11.33 0.3162 19.17 0.1920 3.50 0 1807 11.50 0.3170 19 33 0.1850 3 67 0 1891 11.67 0.3084 19 50 0.1857 3 83 0.1966 11 83 0.3019 19.67 0.1852 4 00 0 1984 12.00 0.3027 19 83 0.1854 4.17 0 2131 12.17 0.2940 20 00 0.1854 4.33 0 2260 12.33 0.2875 20.17 0.1855 4.50 0.2274 12.50 0.2882 20.33 0.1855 4.67 0.2425 12.67 0 2795 20.50 0.1855 4.83 0.2559 12.83 0.2729 20.67 0.1856 5 00 0.2582 13.00 0 2736 20 83 0.1856 5 17 0 2748 13.17 0.2733 21.00 0.1857 5 33 0.2890 13.33 0 2736 21.17 0 1857 5.50 0.2912 13.50 0.2737 21.33 01858 5.67 0 3082 13.67 0.2655 21.50 0.1858 5 83 0 3226 13.83 0 2586 21.67 0.1859 6 00 0 3246 14.00 0 2594 21.83 0.1859 6 17 0.3560 14 17 0 2590 22.00 0.1860 6.33 0.3831 14.33 0 2593 22.17 0.1774 6 50 0.3847 14 50 0 2594 22 33 0.1703 6 67 0 4324 14.67 0 2511 22 50 0.1710 6 83 0.4728 14.83 0.2442 22 67 0.1705 7 00 0 4741 15.00 0 2450 22 83 0.1707 7 17 0 5318 15.17 0 2445 23.00 0.1707 7 33 0 5796 15.33 0 2448 23.17 0.1707 7.50 0.5808 15.50 0.2449 23.33 0.1707 7 67 1.1475 15.67 0.2365 23.50 0 1708 7.83 1.6391 15 83 0.2296 23.67 0.1708 8.00 1.6272 16 00 0.2303 23.83 0 1709 8.17 11967 16.17 0.2299 24.00 0.1709 8.33 0.7919 16.33 0.2301 24.17 0 0756 8 50 0.8304 16 50 0.2301 24.33 0.0075 0.5714 MOVEHYD [BASIN K] TO [BASIN K - 6 mo] AS [6 mo] Peak Flow: 0.4418 cfs Peak Time: 7.83 hrs Hyd Vol: 6512.38 cf - 0.1495 acft i C (~l ~~ n ~J ~J L~ LJ Irk ~J r~~ U G C n L~ MOVEHYD [BASIN K] TO [BASIN K - 100 yr] AS [100 yr] Peak Flow: 1.6391 cfs Peak Time 7 83 hrs Hyd Vol: 24888.51 cf - 0.5714 acft BSN L1 Event Summary: BasinlD Peak Q Event ------- (cfs) (hrs) BSN L10.05 7 83 BSN L10.08 7.83 BSN L10 13 7 83 BSN L10 15 7 83 BSN L10.17 7 83 BSN L10 18 7.83 Drainage Area: BSN L1 Hyd Method: Peak Factor: Storm Dur: Area CN Pervious 0.0330 ac Impervious 0.1676 ac Total 0.2006 ac Supporting Data: Pervious CN Data: Type B Soils 78 00 Impervious CN Data: ROADWAY 98.00 SIDWALK 98.00 Pervious TC Data: Flow type: Time Sheet 1.90 min Impervious TC Data: Flow type: Time Shallow 27.0000 Sheet 0.40 min Channel 21.0000 Sheet 0.14 min BSN L2 Event Summary: BasinlD Peak Q ' Event ------ (cfs) (hrs) BSN L20.19 8.00 BSN L20 32 8.00 BSN L20.51 8 00 BSN L20.60 8 00 BSN L20 65 8 00 BSN L20.70 8.00 Peak T Peak Vol Area Method Raintype (ac-ft) ac /Loss 0 0153 0.20 SBUH/SCS TYPE1A 6 mo 0.0261 0 20 SBUH/SCS TYPE1A 2 yr 0 0418 0 20 SBUH/SCS TYPE1A 10 yr 0.0498 0 20 SBUH/SCS TYPEIA 25 yr 0.0538 0 20 SBUH/SCS TYPE1A 50 yr 0 0578 0.20 SBUH/SCS TYPEIA 100 yr SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24 00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.03 hrs 0.0330 ac 0.1213 ac 0.0463 ac Description: Length: Slope: Across Planter Strip 6.00 ft Description: Length: Slope: Along Flow Line of Gutter 0.45 min Across Roadway 18.50 ft Through Strom Water Pipe 0.56 min Across Sidewalks 5.00 ft Coeff: Travel 2 00% 0.2400 Coeff: Travel 137.00 ft 3.60% 2.00% 0.0110 50.00 ft 0.50% 2.00% 0.0110 Peak T Peak Vol Area Method (ac-ft) ac /Loss 0 0658 0.84 SBUH/SCS TYPE1A 0.1119 0.84 SBUH/SCS TYPE1A 0.1780 0.84 SBUH/SCS TYPE1A 0 2116 0 84 SBUH/SCS TYPE1A 0 2284 0.84 SBUH/SCS TYPE1A 0 2453 0.84 SBUH/SCS TYPEIA Raintype 6 mo 2 yr 10 yr 25 yr 50 yr 100 yr Drainage Area: BSN L2 Hyd Method: Peak Factor: r' Storm Dur: I u Area CN Pervious 0.1093 ac Impervious 0.7272 ac Total 0.8365 ac Supporting Data: Pervious CN Data: B S il T 00 78 o s ype . tJ Impervious CN Data: ROADWAY 98.00 ~~ SIDWALK 98.00 Pervious TC Data: Flow type: Time r, . Sheet U 1.90 min Impervious TC Data: ~ Flow type: Time Shallow 27.0000 Sheet 0.54 min Channel ~ 21.0000 Sheet 0.28 min BSN L3 Event Summary: BasinlD Peak Q Event ------- (cfs) (hrs) BSN L30.13 8.00 BSN L30 22 8.00 BSN L30.34 7 83 BSN L30 41 BSN L30 44 7.83 7 83 BSN L30.47 . 7.83 ~ Drainage Area: BSN L3 I 1 Hyd Method: ~ Peak Factor: Storm Dur: ~ Area CN ~ 1 Pervious 0.0445 ac . Impervious 0.4891 ac ~~ Total 0.5336 ac !~ Supporting Data: Pervious CN Data: Type B Soils 78.00 (`~ Impervious CN Data : 1 h ROADWAY 98.00 / SIDWALK 98.00 LJ Pervious TC Data: SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.13 hrs 0.1093 ac 0.5053 ac 0.2219 ac Description: Length: Slope: Coeff: Travel Across Planter Strip 6.00 ft 2.00% 0.2400 Description: Length: Slope: Coeff: Travel Along Flow Line of Gutter 400 00 ft 0.85% 2.68 min Across Roadway 27.00 ft 2.00% 0.0110 Through Strom Water Pipe 400.00 ft 0.50% 4.49 min Across Sidewalks 12.00 ft 2.00% 0.0110 Peak T Peak Vol Area Method Raintype (ac-ft) ac /Loss 0 0439 0 53 SBUH/SCS TYPE1A 6 mo 0 0741 0 53 SBUH/SCS TYPE1A 2 yr 0.1170 0.53 SBUH/SCS TYPE1A 10 yr 0 1387 0 53 SBUH/SCS TYPE1A 25 yr 0.1496 0 53 SBUH/SCS TYPE1A 50 yr 0.1605 0.53 SBUH/SCS TYPE1A 100 yr SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.08 hrs 0.0445 ac 0.3883 ac 0.1008 ac C ~~ Flow type: Description: Length: Slope: Coeff: Travel Time Sheet Across Planter Strip 6.00 ft 2.00% 0.2400 ~; 1.90 min Impervious TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Shallow Along Flow Line of Gutter 252.00 ft 0.50% 27.0000 2.92 min Sheet Across Roadway 27.00 ft 2.00% 0.0110 ~,~ J ` 0.54 min Channel Through Strom Water Pipe 80.00 ft 0.50% 21.0000 0.90 min ~ Sheet Across Sidewalks 12.00 ft 2.00% 0.0110 0.28 min ADDHYD [BSN L1] AS [6 mo] [BSN L2] AS [6 mo] TO [BSN L1 +BSN L2] ~ Peak Flow: 0.2336 cfs Peak Time: 8.00 hrs Hyd Vol: 3530.83 cf - 0.0811 acft , ADDHYD [BSN L1] AS [2 yr] [BSN L2] AS [2 yr] TO [BSN L1 +BSN L2] ~'1 Peak Flow: 0.3947 cfs Peak Time: 8.00 hrs Hyd Vol: 6013.36 cf - 0.1380 acft ADDHYD [BSN L1] AS [10 yr] [BSN L2] AS [10 yr] TO [BSN L1 +BSN L2] Peak Flow: 0.6246 cfs Peak Time: 8.00 hrs Hyd Vol: 9574.92 cf - 0.2198 acft ~1 ADDHYD [BSN L1] AS [25 yr] [BSN L2] AS [25 yr] TO [BSN L1 +BSN L2] Peak Flow: 0.7407 cfs Peak Time: 8.00 hrs Hyd Vol: 11384.07 cf - 0.2613 f `~ acft ~ I I ~J ADDHYD [BSN L1] AS [50 yr] [BSN L2] AS [50 yr] TO [BSN L1 +BSN L2] Peak Flow: 0.7990 cfs Peak Time: 8.00 hrs Hyd Vol: 12293.08 cf - 0.2822 acft ADDHYD [BSN L1] AS [100 yr] [BSN L2] AS [100 yr] TO [BSN L1 +BSN L2] Peak Flow: 0.8574 cfs Peak Time: 8.00 hrs Hyd Vol: 13204.63 cf - 0.3031 acft U MOVEHYD [BSN L3] TO [BSN L3 - 6 mo] AS (6 mo] Peak Flow: 0.1312 cfs Peak Time: 8.00 hrs Hyd Vol: MOVEHYD [BSN L3] TO [BSN L3 - 2 yr] AS [2 yr] Peak Flow: 0.2190 cfs Peak Time: 8.00 hrs Hyd Vol: MOVEHYD [BSN L3] TO [BSN L3 -10 yr] AS [10 yr] Peak Flow: 0.3436 cfs Peak Time: 7.83 hrs Hyd Vol: MOVEHYD [BSN L3] TO [BSN L3 - 25 yr] AS [25 yr] Peak Flow: 0.4064 cfs Peak Time: 7.83 hrs Hyd Vol: MOVEHYD [BSN L3] TO [BSN L3 - 50 yr] AS [50 yr] Peak Flow: 0.4378 cfs Peak Time: 7.83 hrs Hyd Vol: 1912.47 cf - 0.0439 acft I(~ U V ~~ 3228.35 cf - 0.0741 acft 5097.27 cf - 0.1170 acft 6041.61 cf - 0.1387 acft 6515.20 cf - 0.1496 acft MOVEHYD [BSN L3] TO [BSN L3 -100 yr] AS [100 yr] Peak Flow: 0.4693 cfs Peak Time: 7.83 hrs Hyd Vol: 6989.58 cf - 0.1605 acft ADDHYD [BSN L1 +BSN L2] AS [6 mo] [BSN L3] AS [6 mo] TO [BSN L1 +BSN L2 +BSN U ~~ L3] Peak Flow: 0.3648 cfs Peak Time: 8.00 hrs Hyd Vol: 5443.3 cf - 0.1250 acft ~ ADDHYD [BSN L 1 +BSN L2] AS [2 yr] [BSN L3] AS [2 yr] TO [BSN L1 +BSN L2 +BSN L3] ~J Peak Flow: 0.6137 cfs Peak Time: 8 00 hrs Hyd Vol: 9241.71 cf - 0.2121 acft ADDHYD [BSN L 1 +BSN L2] AS [10 yr] [BSN L3) AS [10 yr] TO [BSN L1 +BSN L2 +BSN L3] Peak Flow: 0.9682 cfs Peak Time: 8.00 hrs Hyd Vol: 14672.19 cf - 0.3368 acft C' t~ ADDHYD [BSN L 1 +BSN L2] AS [25 yr] [BSN L3] AS [25 yr] TO [BSN L1 +BSN L2 +BSN L3] (1 Peak Flow: 1.1471 cfs Peak Time: 8.00 hrs Hyd Vol: 17425.68 cf - 0.3783 acft ADDHYD [BSN L1 +BSN L2] AS [50 yr] [BSN L3] AS [50 yr] TO [BSN L1 +BSN L2 +BSN L3] !~ Peak Flow: 1.2368 cfs Peak Time: 8.00 hrs Hyd Vol: 18808.28 cf - 0.4318 acft ADDHYD [BSN L1 +BSN L2] AS [100 yr] [BSN L3] AS [100 yr] TO [BSN L1 +BSN L2 + BSN L3] ~~~ Peak Flow: 1.3231 cfs Peak Time: 8.00 hrs Hyd Vol: 20194.22 cf - 0.4636 acft Hydrograph ID: BASIN L ~ Area: 1.5707 ac Hyd Int: 10.00 min Base Flow: ~' Peak Flow: 1.3231 cfs Peak Time: 8.00 hrs Hyd Vol: 0.4636 acft ~ Time Flow Time Flow Time Flow ~ hr cfs hr cfs hr cfs 0 67 0.0042 8 83 0.4862 16.83 0.1836 0.83 0.0165 9.00 0 4808 17.00 0.1837 ' 1.00 0 0313 9.17 0 4187 17.17 0.1776 f ~ 1 17 0.0483 9 33 0.3639 17.33 0.1720 1.33 0 0648 9 50 0 3624 17.50 0.1719 1.50 0.0764 9.67 0.3415 17 67 0 1716 1 67 0.0893 9 83 0.3258 17.83 0.1717 183 01008 10.00 0.3251 18.00 0.1716 2.00 0.1085 10.17 0 3066 18 17 0.1656 217 0.1187 10.33 0.2902 18.33 0.1599 2 33 0.1282 10.50 0 2899 18.50 0.1599 2.50 0.1335 10.67 0 2771 18 67 0.1595 2.67 0 1380 10.83 0 2663 18 83 0.1596 2.83 01418 11.00 0.2661 19.00 0.1596 3.00 0.1451 11.17 0.2596 1917 0.1535 3.17 0.1479 11.33 0.2543 19.33 01478 ~~ 3.33 0 1504 11.50 0 2542 19.50 0.1478 3.50 0.1526 11.67 0 2480 19.67 0.1474 3 67 0.1593 11 83 0.2426 19.83 0.1475 3.83 0.1657 12.00 0 2425 20 00 0.1475 ~ 4.00 01677 12.17 0.2363 20.17 0.1475 , 4.17 0.1791 12.33 0.2308 20.33 0 1475 I~f 4.33 0.1901 12 50 0.2308 20.50 0.1476 4.50 0.1922 12.67 0 2245 20.67 0.1476 4.67 0.2039 4.83 0.2150 12.83 13.00 0 2190 0 2189 20.83 21.00 0.1476 0 1476 j` 5 00 0.2177 13 17 0.2187 21 17 0.1477 ~J 5.17 0 2301 13.33 0.2188 21 33 0.1477 5.33 0.2418 13 50 0 2189 21.50 0.1477 C~ I~1 5.50 0.2443 13 67 0.2129 21.67 0 1477 'r`-r U i~ i ~.1 ~~ i~ ~"`? C`' c'_j I/~~' ~J ~1 J~ ~..1 I~ ~J ~~ (~,~ ~I ~~ n 5.67 0.2568 13 83 0.2074 21 83 5.83 0.2686 14.00 0 2073 22.00 6.00 0.2709 14.17 0.2070 2217 6.17 0 2943 14.33 0 2072 22 33 6.33 0.3165 14 50 0 2072 22.50 6 50 0.3194 14.67 0.2012 22 67 6.67 0.3547 14.83 01956 22.83 6 83 0.3878 15 00 0.1956 23 00 7.00 0 3915 15.17 0.1953 23.17 7.17 0.4339 15 33 0 1954 23.33 7 33 0.4729 15 50 0.1954 23 50 7 50 0 4771 15.67 0.1894 23.67 7 67 0 8947 15 83 0 1838 23 83 7.83 1 2958 16 00 0.1837 24 00 8.00 1.3231 16.17 01834 24.17 8.17 1.0054 16 33 0 1835 24 33 8.33 0 6764 16.50 0 1835 24.50 8.50 0.6718 16.67 0 1836 24 67 8.67 0.5632 16.83 0.1836 24 83 MOVEHYD [BASIN L] TO [BASIN L - 6 mo] AS [6 mo] Peak Flow: 0.3648 cfs Peak Time: 8.00 hrs Hyd Vol MOVEHYD [BASIN L] TO [BASIN L -100 yr] AS [100 yr] Peak Flow: 1.3231 cfs Peak Time: 8 00 hrs Hyd Vol acft BSN M1 Event Summary: 0.1478 0.1478 0 1416 0.1360 0.1359 0.1355 0.1356 0 1356 0.1356 0 1356 0.1356 0.1357 0.1357 0.1357 0.0676 0 0091 0.0021 0.0005 0 0001 5443.3 cf - 0.1250 acft 20194.22 cf - 0.4636 BasinlD Peak Q Peak T Peak Vol Area Method Raintype Event ------- (cfs) (hrs) (ac-ft) ac /Loss BSN M1 0 08 7.83 0.0264 0.38 SBUH/SCS TYPE1A 6 mo BSN M1 0.14 7 83 0 0461 0.38 SBUH/SCS TYPE1A 2 yr BSN M1 0 22 7 83 0.0751 0.38 SBUH/SCS TYPE1A 10 yr BSN M1 0.27 7.83 0.0900 0.38 SBUHlSCS TYPE1A 25 yr BSN M1 0.29 7 83 0 0975 0 38 SBUH/SCS TYPE1A 50 yr BSN M1 0 31 7.83 0.1051 0.38 SBUH/SCS TYPEIA 100 yr Drainage Area: BSN M1 Hyd Method: SBUH Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur: 24.00 hrs Intv: 10.00 min Area CN TC Pervious 0.1007 ac 78.00 0.03 hrs Impervious 0.2843 ac 98.00 0.05 hrs Total 0.3850 ac Supporting Data: Pervious CN Data: Type B Sods 78.00 0.1007 ac Impervious CN Data: ROADWAY 98.00 0.2099 ac SIDWALK 98.00 0.0285 ac 1~~ I~ U ~~ U ~-,J ~l r~ C~ C? ~~ ~~ C~~~ I~ DRIVEWAY 98.00 Pervious TC Data: Flow type: Time Sheet 1.90 min Impervious TC Data: Flow type: Time Shallow 27.0000 Sheet 0.40 min Channel 21.0000 Sheet 0.14 min Sheet 0.42 min BSN M2 Event Summary: BasinlD Peak Q Event ------- (cfs) (hrs) BSN M2 0.12 6 mo BSN M2 0.20 2 yr BSN M2 0.31 10 yr BSN M2 0.37 25 yr BSN M2 0.39 50 yr BSN M2 0.42 100 yr Drainage Area: BSN M2 Hyd Method. Peak Factor: Storm Dur: Area CN Pervious 0.0586 ac Impervious 0.4363 ac Total 0.4949 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 Impervious CN Data: ROADWAY 98.00 SIDWALK 98.00 DRIVEWAY 98.00 Pervious TC Data: Flow type: Time Sheet 1 90 min Impervious TC Data: 0.0459 ac Description: Length: Slope: Coeff: Travel Across Planter Strip 6.00 ft 2.00% 0.2400 Description: Length: Slope: Coeff: Travel Along Flow Line of Gutter 233 00 ft 1.66% 1.12 min Across Roadway 18.50 ft 2.00% 0.0110 Through Strom Water Pipe 100.00 ft 0.50% 1.12 min Across Sidewalks 5.00 ft 2.00% 0.0110 Across Driveway 20.00 ft 2.00% 0.0110 Peak T Peak Vol Area Method Raintype (ac-ft) ac /Loss 8 00 0.0394 0.49 SBUH/SCS TYPE1A 8 00 0 0669 0 49 SBUH/SCS TYPE1A 8 00 0.1062 0.49 SBUH/SCS TYPEIA 8.00 0.1261 0 49 SBUH/SCS TYPE1A 8 00 0 1361 0.49 SBUH/SCS TYPE1A 8.00 0.1461 0.49 SBUH/SCS TYPE1A SBUH Hyd Loss Method: SCS CN Number 484 00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.10 hrs 0.0586 ac 0.2625 ac 0.1164 ac 0.0574 ac Description: Length: Slope: Across Planter Strip 6.00 ft Coeff: Travel 2.00% 0.2400 l~ 14 _J ~J I~ l__1 ~~ ~) ~~ ~`1 ~~ ~-~~ ~J ~ "~ ~! ~~ I~ U I~~ ~.J I~~ ~! ~J Flow type Description: Length: Slope: Coeff: Travel Time Shallow Along Flow Line of Gutter 212.00 ft 0.50% 27.0000 2.46 min Sheet Across Roadway 27.00 ft 2.00% 0.0110 0.54 min Channel Through Strom Water Pipe 238.00 ft 0.50% 21.0000 2.67 min Sheet Across Sidewalks 12.00 ft 2.00% 0.0110 0 28 min ADDHYD [BSN M1] AS [6 mo] [BSN M2] AS [6 mo] TO [BSN M1 +BSN M2] Peak Flow: 0.1921 cfs Peak Time: 8.00 hrs Hyd Vol: 2867.14 cf - 0.0658 acft ADDHYD [BSN M1] AS [2 yr] [BSN M2] AS [2 yr] TO [BSN M1 +BSN M2] Peak Flow: 0.3271 cfs Peak Time: 8.00 hrs Hyd Vol: 4921.48 cf - 0.1130 acft ADDHYD [BSN M1] AS [10 yr] [BSN M2] AS [10 yr] TO [BSN M1 +BSN M2] Peak Flow: 0.5224 cfs Peak Time: 8.00 hrs Hyd Vol: 7894.47 cf - 0.1812 acft ADDHYD [BSN M1] AS [25 yr] [BSN M2] AS [25 yr] TO [BSN M1 +BSN M2] Peak Flow: 0.6229 cfs Peak Time: 7.83 hrs Hyd Vol: 9411.41 cf - 0.2161 acft ADDHYD [BSN M1] AS [50 yr] (BSN M2] AS [50 yr] TO [BSN M1 +BSN M2] Peak Flow: 0.6737 cfs Peak Time: 7.83 hrs Hyd Vol: 10174.60 cf - 0.2336 acft ADDHYD [BSN M1] AS [100 yr] [BSN M2] AS [100 yr] TO [BSN M1 +BSN M2] Peak Flow: 0.7247 cfs Peak Time: 7.83 hrs Hyd Vol: 10940.68 cf - 0.2512 acft Hydrograph ID: BASIN M Area: 0.8799 ac Hyd Int: 10.00 min Base Flow: Peak Flow: 0.7247 cfs Peak Time 7.83 hrs Hyd Vol acft Time Flow Time Flow Time Flow hr cfs hr cfs hr cfs 0.67 0 0024 8 67 0 3015 16 50 0.1011 0.83 0 0092 8 83 0 2579 16 67 0.1011 1.00 0.0171 9.00 0.2610 16.83 0.1012 1.17 0.0261 9.17 0.2248 17.00 0.1012 1.33 0 0347 9.33 0.1945 17 17 0.0976 1 50 0.0405 9 50 0.1969 17.33 0.0944 1.67 0.0472 9 67 0 1854 17 50 0.0947 1 83 0.0532 9 83 0.1766 17.67 0.0946 2 00 0 0570 10 00 0.1774 17.83 0.0946 2.17 0 0624 10.17 0.1666 18.00 0.0947 2.33 0.0673 10.33 0.1575 18 17 0 0910 2 50 0.0699 10.50 0.1583 18 33 0.0878 2 67 0.0722 10.67 0.1510 18 50 0.0881 2 83 0 0741 10.83 0.1449 18.67 0.0880 3.00 0 0757 11.00 0.1455 18.83 0.0881 3 17 0.0772 11.17 0 1418 19.00 0 0881 3.33 0.0785 11.33 0.1389 19 17 0 0844 3.50 0 0796 11.50 0 1392 19 33 0.0812 3.67 0.0832 11 67 0.1356 19.50 0 0815 3.83 0.0867 11.83 0.1326 19 67 0 0813 4 00 0.0875 12.00 0.1329 19.83 0.0814 4.17 0.0938 12.17 01293 20.00 0.0814 0.2512 f~ Its 1~1 I b~ J~J ~~' l__J 5 ~11 ~J (~ I I~? ~.J ~~ I~j ~.Jj ~, ~~ L.Ji (`' I~ 4.33 0.0997 12 33 4 50 0.1003 12.50 4 67 0 1067 12 67 4.83 0.1128 12.83 5.00 0.1139 13.00 5.17 0 1209 13.17 5.33 0 1274 13 33 5.50 0.1284 13 50 5.67 0.1356 13 67 5.83 0 1422 13.83 6 00 0 1431 14 00 6.17 0.1565 14 17 6.33 0.1689 14.33 6.50 0.1696 14.50 6 67 0 1899 14.67 6.83 0 2084 14.83 7.00 0 2091 15.00 7 17 0.2334 15 17 7 33 0 2554 15 33 7.50 0.2561 15 50 7.67 0.5000 15.67 7 83 0.7247 15.83 8 00 0.7215 16.00 8.17 0.5287 16 17 8.33 0.3456 16.33 8.50 0.3597 16.50 Hydrograph ID: BASIN M Area : 0.8799 ac Hyd Int: Peak Flow: 0.7247 cfs acft 0 1262 20.17 0 0814 0.1265 20.33 0.0815 0.1229 20.50 0.0815 0 1198 20 67 0.0815 0 1201 20.83 0 0815 0.1201 21.00 0 0815 0.1202 21 17 0.0816 01202 2133 0.0816 0 1167 21.50 0.0816 0.1136 21.67 0.0816 0.1139 21.83 0.0816 0 1138 22 00 0.0817 0.1139 22.17 0.0779 0.1139 22 33 0 0747 0 1104 22 50 0 0750 0 1072 22 67 0 0749 0.1075 22.83 0.0749 0.1074 23 00 0.0749 0.1075 2317 0.0750 0.1076 23.33 0 0750 0.1039 23.50 0 0750 0.1008 23.67 0.0750 0 1011 23 83 0.0750 0 1010 24 00 0 0750 0.1011 24.17 0.0339 0.1011 24.33 0.0018 10.00 min Base Flow: Peak Tlme: 7.83 hrs Hyd Vol MOVEHYD [BASIN M] TO [BASIN M - 6 mo] AS [6 mo] Peak Flow 0.1921 cfs Peak Time: 8.00 hrs Hyd Vol MOVEHYD [BASIN M] TO [BASIN M -100 yr] AS [100 yr] Peak Flow. 0.7247 cfs Peak Tlme: 7.83 hrs Hyd Vol BASIN N Event Summary: BasInID Peak Q Event ------- (cfs) (hrs) BASIN N 0.16 6 mo BASIN N 0.27 2 yr BASIN N 0.42 10 yr BASIN N 0 50 25 yr BASIN N 0.54 50 yr BASIN N 0.58 100 yr Peak T Peak Vol Area 0.2512 2867.14 cf - 0.0658 acft 10940.68 cf - 0.2512 acft Method Raintype (ac-ft) ac /Loss 8.00 0.0546 0.68 SBUH/SCS TYPE1A 8.00 0.0924 0.68 SBUH/SCS TYPE1A 8.00 0 1465 0 68 SBUH/SCS TYPE1A 8.00 0.1739 0.68 SBUH/SCS TYPE1A 8 00 0.1876 0.68 SBUH/SCS TYPE1A 8 00 0.2014 0 68 SBUH/SCS TYPE1A Drainage Area: BASIN N Hyd Method: Peak Factor: Storm Dur: Area CN Pervious 0.0727 ac Impervious 0.6054 ac Total 0.6781 ac SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.12 hrs Supporting Data: ~ Pervious CN Data: Type B Sods 78.00 0 0727 ac `~ Impervious CN Data: ~~ ROADWAY 98.00 0.4280 ac SIDWALK 98.00 0.1774 ac ~ Pervious TC Data: Flow type: Description: Length: Slope: Coeff~ Travel ~--~ Time Sheet Across Planter Strip 6.00 ft 2.00% 0.2400 ~~~ 1.90 min ~ Impervious TC Data: Flow type Description: Length: Slope: Coeff: Travel ~ Time Shallow Along Flow Line of Gutter 370.00 ft 0.50% 27.0000 4.29 min Sheet Across Roadway 27.00 ft 2.00% 0.0110 0.54 min ~~ Channel Through Strom Water Pipe 215.00 ft 0.50% 21.0000 2.41 min ~I {~ Sheet Across Sidewalks 5.00 ft 0 14 min 2.00% 0.0110 MOVEHYD [BASIN N] TO [BASIN N - 6 mo] AS [6 mo] ~`1 Peak Flow: 0.1595 cfs Peak Time: 8.00 hrs Hyd Vol: 2376.28 cf - 0.0546 acft ~) MOVEHYD [BASIN N] TO [BASIN N - 2 yr] AS [2 yr] ,~--y Peak Flow: 0.2680 cfs Peak Time: 8.00 hrs Hyd Vol: 4026.78 cf - 0.0924 acft MOVEHYD [BASIN N] TO [BASIN N -10 yr] AS [10 yr] Peak Flow: 0.4214 cfs Peak Time: 8.00 hrs Hyd Vol: 6381.20 cf - 0.1465 acft I~ MOVEHYD [BASIN N] TO [BASIN N - 25 yr] AS [25 yr] Peak Flow: 0.4985 cfs Peak Time: 8.00 hrs Hyd Vol: 7573.61 cf - 0.1739 acft ~`--~ J MOVEHYD [BASIN N] TO [BASIN N - 50 yr] AS [50 yr] Peak Flow: 0.5372 cfs Peak Time: 8 00 hrs Hyd Vol: 8172.06 cf - 0.1876 acft S"t' MOVEHYD [BASIN N] TO [BASIN N - 100 yr] AS [100 yr] ~1 Peak Flow: 0.5759 cfs Peak Time: 8.00 hrs Hyd Vol: 8771.93 cf - 0.2014 acft ,~ Hydrograph ID: BASIN N - 100 yr Area: 0.6781 ac Hyd Int: 10.00 min Base Flow: Peak Flow: 0.5759 cfs Peak Time: 8.00 hrs Hyd Vol: 0.2014 acft t~ Time Flow Time Flow Time Flow (~~ hr cfs hr cfs hr cfs 0 67 0 0016 8 83 0.2148 16.67 0.0795 0 83 0 0064 9.00 0.2088 16 83 0.0795 ~~ 1.00 0.0128 9.17 0.1855 17 00 0.0795 1.17 0.0201 9.33 01609 1717 0.0773 133 0.0274 9.50 0.1571 17.33 0.0748 1.50 0.0328 9.67 0 1495 17 50 0 0744 ~ ~'1 1.67 0 0383 9.83 0.1421 17 67 0 0743 1.83 0 0434 10.00 0 1410 17.83 0 0743 2.00 0 0470 10.17 0.1341 18.00 0.0743 2.17 0.0513 10 33 0.1268 18 17 0.0721 ~`r 2.33 0.0555 10 50 0.1257 18.33 0.0696 , U 1~ I C~ ;~ ~~~ (-' U r-i ~~ J~ C~ t__) I~ v~ H I~ U ,1 J r`-t ~1 2 50 0.0581 10.67 2 67 0.0601 10 83 2.83 0.0618 11.00 3.00 0 0633 11 17 3 17 0 0645 11 33 3.33 0 0657 11 50 3 50 0.0666 11.67 3.67 0 0692 11 83 3.83 0.0721 12 00 4.00 0.0733 12.17 4.17 0 0776 12 33 4 33 0 0825 12 50 4.50 0 0840 12 67 4 67 0 0884 12.83 4.83 0 0935 13 00 5.00 0.0951 13.17 5 17 0 0998 13.33 5.33 0.1051 13 50 5 50 0.1067 13.67 5.67 0 1114 13.83 5.83 0.1167 14 00 6 00 0.1182 14 17 6 17 0 1269 14.33 6.33 0 1368 14 50 6 50 0.1393 14 67 6 67 0.1524 14 83 6 83 0.1672 15 00 7.00 0 1706 15 17 7.17 0.1863 15 33 7 33 0.2039 15 50 7.50 0 2077 15.67 7.67 0 3626 15.83 7 83 0.5414 16.00 8.00 0 5759 16 17 8.17 0.4570 16 33 8.33 0 3127 16 50 8 50 0.2903 16 67 8 67 0.2516 16 83 Hyd rograph ID: BASIN N -100 yr Area : 0.6781 ac Hyd Int: Peak Flow: 0.5759 cfs acft 0 1210 18 50 0 0692 0.1161 18 67 0 0691 0.1153 18.83 0 0691 0 1130 19 00 0 0691 0.1105 19.17 0 0668 0.1102 19 33 0 0643 0.1079 19 50 0 0639 0.1054 19.67 0 0638 0.1051 19.83 0 0638 0 1028 20 00 0 0638 0.1003 20.17 0 0639 0.1000 20 33 0.0639 0 0977 20 50 0 0639 0 0952 20.67 0 0639 0.0949 20 83 0.0639 0 0948 21 00 0.0639 0 0948 21.17 0 0639 0.0948 21.33 0.0639 0 0926 21 50 0 0639 0 0901 21.67 0.0639 0.0898 21.83 0 0640 0 0897 22 00 0 0640 0.0897 2217 0.0617 0 0898 22.33 0.0592 0.0875 22 50 0 0588 0 0850 22 67 0.0587 0 0847 22.83 0.0587 0.0846 23.00 0 0587 0 0846 23.17 0.0587 0 0846 23 33 0.0587 0.0824 23.50 0 0587 0.0799 23.67 0 0587 0 0795 23.83 0 0587 0 0794 24 00 0.0587 0.0795 24.17 0 0334 0 0795 24.33 0 0061 0 0795 24 50 0 0012 0 0795 24.67 0.0002 10.00 min Base Flow: Peak Time: 8.00 hrs Hyd Vol: MOVEHYD (BASIN N] TO [BASIN N - 6 mo] AS [6 mo] Peak Flow: 0.1595 cfs Peak Time: 8.00 hrs Hyd Vol MOVEHYD [BASIN N] TO [BASIN N - 100 yr] AS [100 yr] Peak Flow: 0.5759 cfs Peak Time: 8.00 hrs Hyd Vol BSN 01 Event Summary: BasinlD Peak Q Event --- (cfs) (hrs) BSN 01 0 10 6 mo BSN 01 0 17 2 yr BSN 01 0.28 10 yr BSN 01 0.33 25 yr Peak T Peak Vol Area 0.2014 2376.28 cf - 0.0546 acft 8771.93 cf - 0.2014 acft Method Raintype (ac-ft) ac /Loss 7.83 0 0335 0.44 SBUH/SCS TYPE1A 7.83 0.0572 0.44 SBUH/SCS TYPE1A 7.83 0 0914 0.44 SBUH/SCS TYPE1A 7.83 0.1088 0.44 SBUHlSCS TYPE1A r, (--' 1~ a ~~ ~~ [~ IJ ~~ if t~ ~t~ U 1~ )` ~J 'Vl 1 ; U ~~ f`1 ~~ LJ BSN 01 0.35 50 yr BSN 01 0.38 100 yr Drainage Area: BSN 01 Hyd Method: Peak Factor: Storm Dur: Area CN Pervious 0.0690 ac Impervious 0.3680 ac Total 0.4370 ac Supporting Data: Pervious CN Data: Type B Soils 78.00 Impervious CN Data: ROADWAY 98.00 SIDWALK 98.00 Pervious TC Data: Flow type: Time Sheet 1.90 min Impervious TC Data: Flow type: Time Shallow 27.0000 Sheet 0.39 min Channel 21.0000 Sheet 0.14 min BSN 02 Event Sum mary: BasinlD Peak Q Event ------ (cfs) (hrs) BSN 02 0.21 6 mo BSN 02 0.36 2 yr BSN 02 0.55 10 yr BSN 02 0.65 25 yr BSN 02 0 70 50 yr BSN 02 0.75 100 yr Drainage Area: BSN 02 Hyd Method: Peak Factor: Storm Dur: Area CN Pervious 0.0627 ac 7.83 0 1176 7.83 0.1263 0.44 SBUH/SCS TYPE1A 0.44 SBUH/SCS TYPE1A SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0.03 hrs 98.00 0.06 hrs 0.0690 ac 0.2769 ac 0.0911 ac Description: Length: Slope: Coeff: Travel Across Planter Strip 6.00 ft 2.00% 0.2400 Description: Length: Slope: Coeff: Travel Along Flow Line of Gutter 304.00 ft 1.27% 1.67 min Across Roadway 18.00 ft 2.00% 0.0110 Through Strom Water Pipe 105.00 ft 0.50% 1.18 min Across Sidewalks 5.00 ft 2.00% 0.0110 Peak T Peak Vol Area Method Raintype (ac-ft) ac /Loss 8.00 0 0713 0.86 SBUH/SCS TYPE1A 8.00 0.1202 0 86 SBUH/SCS TYPEIA 8 00 0.1895 0.86 SBUH/SCS TYPE1A 8.00 0 2245 0.86 SBUH/SCS TYPE1A 8 00 0.2420 0.86 SBUH/SCS TYPE1A 8.00 0.2596 0.86 SBUH/SCS TYPE1A SBUH Hyd Loss Method: SCS CN Number 484.00 SCS Abs: 0.20 24.00 hrs Intv: 10.00 min TC 78.00 0.03 hrs U r---r '~ Impervious 0.7959 ac 98.00 0 09 hrs Total 0.8586 ac Supporting Data: (~ Pervious CN Data: ~, Type B Soils 78.00 0.0627 ac Impervious CN Data: --~, ROADWAY 98.00 0.7754 ac ~ SIDWALK 98.00 0.0205 ac Pervious TC Data: Flow type: Description: Length: Slope: Coeff: Travel ~~' Time 1~ Sheet Across Planter Strip 6.00 ft 2.00% 0.2400 1.90 min ~-~ Impervious TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Shallow Along Flow Line of Gutter 360.00 ft 1.00% 27.0000 2.22 m m Sheet Across Parking 24.00 ft 2.00% 0.0110 0.49 min Channel Through Strom Water Pipe 238.00 ft 0.50% ~ 21.0000 2.67 min -~ Sheet Across Sidewalks 5.00 ft 2.00% 0.0110 0.14 min 5~ j~j ADDHYD [BSN 01] AS [6 mo] [BSN 02] AS [6 mo] TO [BSN 01 +BSN 02] Peak Flow: 0.3111 cfs Peak Time: 8.00 hrs Hyd Vol: 4564.69 cf - 0.1048 acft ~ ADDHYD [BSN 01] AS (2 yr] [BSN 02] AS [2 yr] TO [BSN 01 +BSN 02] -~ Peak Flow• 0.5212 cfs Peak Time: 8.00 hrs Hyd Vol: 7727.89 cf - 0.1774 acft f~~ ADDHYD [BSN 01] AS [10 yr] [BSN 02] AS [10 yr] TO [BSN 01 +BSN 02] ~~ Peak Flow: 0.8176 cfs Peak Time: 7.83 hrs Hyd Vol: 12235.76 cf - 0.2809 acft 1 ~ ADDHYD [BSN 01] AS [25 yr] [BSN 02] AS [25 yr] TO [BSN 01 +BSN 02) Peak Flow: 0.9685 cfs Peak Time: 7.83 hrs Hyd Vol: 14517.66 cf - 0.3333 acft ~~ ~j ADDHYD [BSN 01] AS [50 yr] [BSN 02] AS [50 yr] TO [BSN 01 +BSN 02] Peak Flow: 1.0441 cfs Peak Time: 7.83 hrs Hyd Vol: 15662.58 cf - 0.3596 ~~ acft ~ ADDHYD [BSN 01] AS [100 yr] [BSN 02] AS [100 yr] TO [BSN 01 + BSN 02] Peak Flow: 1.1199 cfs Peak Time: 7.83 hrs Hyd Vol: 16810.00 cf - 0.3859 j~ acft ~~ Hydrograph ID: BASIN O ~ Area: 1.2956 ac Hyd Int: 10.00 min Base Flow: 1 Peak Flow: 1.1199 cfs Peak Time: 7.83 hrs Hyd Vol: 0.3859 acft Time Flow Time Flow Time Flow ~ hr cfs hr cfs hr cfs 0 67 0.0038 8 67 0.4640 16 50 0 1521 0.83 0 0148 8.83 0.3943 16.67 0.1521 1.00 0.0277 9.00 0 3976 16.83 0.1521 ~ 1.17 0.0423 9.17 0.3445 17.00 0.1522 '}`1 ~J {, u r--~ i ~J r~ ~J !F-1 !U r~--~ t~ U (~ ~~ ~1 U~ I r~ ~J i~ ~'~ ~l ~~ ~'~ ;i ,r~, I i~ r~ ~i 1 33 0 0562 9.33 0.2968 17.17 0.1468 1.50 0.0655 9.50 0 2993 17.33 0 1419 1.67 0.0763 9 67 0 2828 17.50 0 1422 1 83 0 0860 9 83 0 2687 17.67 0 1421 2 00 0 0921 10.00 0 2696 17 83 0.1422 2.17 0.1008 10 17 0 2537 18.00 0 1422 2 33 0.1088 10 33 0 2394 18 17 0 1369 2.50 0.1129 10.50 0.2402 18.33 01319 2.67 0.1166 10 67 0.2295 18.50 0.1322 2.83 0 1197 10 83 0.2200 18.67 0.1321 3.00 0.1223 11.00 0.2205 18 83 0.1322 3.17 01247 11.17 0.2151 19.00 0.1322 3 33 0 1268 11 33 0 2104 19.17 0 1268 3.50 0.1286 11.50 0 2108 19.33 0 1219 3 67 0.1344 11 67 0.2055 19 50 0.1222 3.83 0.1400 11.83 0.2007 19 67 0.1221 4.00 0.1414 12.00 0 2011 19.83 0 1221 4.17 0.1514 12.17 0.1957 20.00 01221 4 33 0.1611 12 33 0 1909 20 17 0.1222 4.50 0 1621 12 50 0.1913 20 33 0.1222 4.67 0.1723 12 67 0.1859 20.50 0.1222 4 83 0.1820 12.83 0.1811 20.67 0 1222 5.00 0 1834 13 00 0.1814 20.83 0 1222 5.17 01941 13.17 0.1814 2100 0.1223 5 33 0.2043 13.33 0 1815 21.17 0.1223 5.50 0.2055 13.50 01815 21.33 0.1223 5.67 0 2162 13.67 0 1763 21.50 0.1223 5.83 0.2265 13 83 0.1714 21.67 0.1223 6 00 0.2275 14.00 0.1717 21 83 0 1223 6.17 0.2479 14.17 0.1717 22 00 0 1224 6 33 0.2673 14 33 0.1717 22 17 0.1170 6 50 0.2682 14 50 0.1718 22.33 0.1120 6.67 0 2989 14 67 0 1665 22.50 0.1123 6 83 0.3278 14.83 0.1616 22.67 0 1122 7.00 0.3285 15.00 0.1619 22 83 0 1122 7.17 0 3650 15.17 0.1619 23 00 0 1122 7.33 0.3991 15 33 0 1619 23.17 0.1123 7 50 0.3997 15.50 0.1620 23.33 0.1123 7 67 0.7693 15.67 0.1566 23.50 0.1123 7 83 1 1199 15 83 0.1518 23.67 0.1123 8.00 1.1156 16 00 0.1521 23 83 0 1123 8.17 0 8191 16.17 0.1520 24.00 0 1123 8 33 0.5327 16.33 0 1520 24.17 0.0527 8.50 0.5472 16.50 01521 24.33 0.0018 Hydrograph ID: BASIN O Area: 1.2956 ac Hyd Int: 10.00 min Base Flow: Peak Flow: 1.1199 cfs Peak Time: 7.83 hrs Hyd Vol: acft MOVEHYD [BASIN O] TO [BASIN O - 6 mo] AS [6 mo] Peak Flow: 0.3111 cfs Peak Time: 8.00 hrs Hyd Vol: MOVEHYD [BASIN O] TO [BASIN O - 100 yr] AS [100 yrJ Peak Flow: 1.1199 cfs Peak Time: 7.83 hrs Hyd Vol: acft FINAL DRAINAGE CALCULATIONS 0.3859 4564.69 cf - 0.1048 acft 16810.00 cf - 0.3859 r~ ~~ (J ~-' The following calculations are based on the requirements contained in the 1992 Washington U State Department of Ecology (WSDOE) Stormwater Management Manual for the Puget Sound Basin. t~~ 1~ DESIGN AND BASIN INFORMATION SUMMARY: ~'? Soil Classification (Soil Survey of Thurston County, WA): SCS Soil Classification: Spanaway, Nisqually ~~ Hydrologic Group: B L,I Design Infiltration Rate: 20 inches hour ~'~ SCS Runoff Curve Number: (Table III-1.3 WSDOE Storm Manual) ~~ Post-developed (Lawns, 75% + grass cover): CN = 78 ~'-~ Post-development (impervious) CN = 98 Post-development wet ponds CN=100 r1 Rainfall Design Storms: (WSDOE Isopluvial Maps -App. AIII-1.1 of WSDOE Storm ~ ~ Manual) 6 month storm (64% of 2 yr. storm) = 1.28" ~~~ 2 yr./24 hour storm = 2.0" ~ 10 yr./24 hour storm = 3.0" 25 yr./24 hour storm = ~. ~" (`--~ 50 yr./24 hour storm = 3.'73" " ~ 100 yr./24 hour storm = 4.0 r U ~i~ i ~1 ~ i V I~ 1~ (`~ '~ U FINAL DETAILED CALCULATIONS: ~, Basin `A': '~ Minimum Stormwater Storage Volume Required According to 1992 DOE Stormwater Management Manual for the Puget Sound Basins is 6mo. 24 hour storm volume. f'~ ~ According to StormShed Hydrograph Basin A the 6mo. 24 hour Vol.= 6,176 cf - 0.1417acft V (b-Swale) provided at 2ft depth = 6,900 cf is greater than 6mo. 24 hour storm so O.K. ~ Bio-retention Cell will be 10 ft wide x 300ft long bottom and one side 3:1 slope with rockery wall at one side, and Oft deep minimum (option#1). Storage Volume Provided = 6900 cf. > Required Volume = 6,176 cf. Therefore is adequate. According to StormShed the 100-year/24-hour storm event will result in peak volume of 22,024 ~~ cf - 0.5056 acft. V' The underground infiltration gallery was designed to Store and Infiltrate 100-year storm event from Basin `A'. ~~ The required volume of 22,024 cf will be stored and infiltrated using (1) underground infiltration drain rock galleries Bottom 300 ft. long x 10 ft. wide x 6 ft. deep. ~ Total gallery storage capacity using 1:3 void ratio: V = N((L*H-A pipe))*0.3+(A pipe*L)) = 2100 cf. + 5247 cf. = 7347 cf. n From calculations provided above the 48-hour capacity of Infiltration Swale is: At elevation 330' Q(a) = 0.83 * (0 + 10) / 10* 3000 = 2490 cf /hour j~ At elevation 331' Q(a) = 0.83 * (1 + 10) / 10 * 3000 = 2739 cf /hour ~.f At elevation 332' Q(a) = 0.83 * (2 + 10) / 10 * 3000 = 2988 cf /hour At elevation 333' Q(a) = 0.83 * (3 + 10) / 10 * X000 = 3237 cf /hour ~ At elevation 334' Q(a) = 0.83 * (4 + 10) / 10 * 3000 = 3486 cf /hour ~j At elevation 335' Q(a) = 0.83 * (5 + 10) / 10 * 3000 = 3735 cf /hour ~''~ The 10 yr 24-hours Infiltration provided = 59,760 cf. > Required Volume = 16,161 cf. therefore is L~1 adequate. The 100 yr 48-hours Infiltration provided = 119,520 cf. > Required Volume = 22,025 cf. therefore ~ is adequate. Basin `B': Minimum Stormwater Storage Volume Required According to 1992 DOE Stormwater Management Manual for the Puget Sound Basins is 6mo. 24 hour storm volume. According to StormShed Hydrograph Basin B the 6mo. 24 hour Vol.= 4,152 cf - 0.0953 acft V (b-swale) provided at 2ft depth = 4,900 cf is greater than 6mo. 24 hour storm so O.K. ~ Bio-retention Cell will be 10 ft wide x 200ft long bottom and one side 3:1 slope with rockery wall a one side, and Oft deep minimum (option#1). Storage Volume Provided = 4900 c£ > Required Volume = 4,152 cf. Therefore is adequate. According to StormShed the 100-year/24-hour storm event will result in peak volume of 15,341 cf - 0.3522 acft. The underground infiltration gallery was designed to Store and Infiltrate 100-year storm event rr1 l~ U ~? ~' from Basin `B'. The required volume of 15,341 cf will be stored and infiltrated using (1) underground infiltration drain rock galleries Bottom 200 ft. long x 10 ft. wide x 5 ft. deep. Total gallery storage capacity using 3:1 void ratio: V = N((L*H-A pipe))*0.3+(Apipe*L)) = 2838 c£ + 1400 c£ = 4238 cf. ~~ U From calculations provided above the 48-hour capacity of Infiltration Swale is: At elevation 330' Q(a) = 0.83 * (0 + 10) / 10* 2000 = 1660 cf /hour LJ At elevation 331' Q(a) = 0.83 * (1 + 10) / 10 * 2000 = 1826 cf /hour At elevation 332' Q(a) = 0.83 * (2 + 10) / 10 * 2000 = 1992 ~f /hour (-1 At elevation 333' Q(a) = 0.83 * (3 + 10) / 10 * 2000 = 2158 cf /hour At elevation 334' Q(a) = 0.83 * (4 + 10) / 10 * 2000 = 2324 cf /hour At elevation 335' Q(a) = 0.83 * (5 + 10) / 10 * 2000 = 2490 cf /hour The 10 yr 24-hours Infiltration provided = 39,840 c£ > Required Volume = 11,158 cf. therefore is adequate. ~ The 100 yr 48-hours Infiltration provided = 79,520 c£ > Required Volume = 15,341 cf. therefore is adequate. u Basin `C': Minimum Stormwater Storage Volume Required According to 1992 DOE Stormwater Management Manual for the Puget Sound Basins is 6mo. 24 hour storm volume. According to StormShed Hydrograph Basin C the 6mo. 24 hour Vol.= 4,421 cf - 0.1015 acft (~ V (b-Swale) provided at 2ft depth = 6,400 cf is greater than 6mo. 24 hour storm so O.K. Bio-retention Cell will be 10 ft wide x 200ft long bottom and all sides 3:1 slope, and Oft deep minimum (option#3). ~~ ` , Storage Volume Provided = 6400 cf. > Required Volume = 4,421 cf. Therefore is adequate. ~ According to StormShed the 100-year/24-hour storm event will result in peak volume of 16,836 u cf - 0.3865 acft. The underground infiltration gallery was designed to Store and Infiltrate 100-year storm event from Basin `C'. a„1 The required volume of 16,836 cf will be stored and infiltrated using (1) underground infiltration drain rock galleries bottom 200 ft. long x 10 ft. wide x 6 ft. deep. ~'`~ Total gallery storage capacity using 1:3 void ratio: V V = N((L*H-A pipe))*0.3+(A pipe*L)) = 3498 cf. + 1400 cf. = 4898 cf. ~, ~~ From calculations provided above the 48-hour capacity of Infiltration Swale is: ~ At elevation 330' Q(a) = 0.83 * (0 + 10) / 10* 2000 = 1660 cf /hour At elevation 331' Q(a) = 0.83 * (1 + 10) / 10 * 2000 = 1826 cf /hour `-~ At elevation 332' Q(a) = 0.83 * (2 + 10) / 10 * 2000 = 1992 cf /hour At elevation 333' Q(a) = 0.83 * (3 + 10) / 10 * 2000 = 2158 cf /hour f`r i~ Li ~ At elevation 334' Q(a) = 0.83 * (4 + 10) / 10 * 2000 = 2324 cf /hour ~ At elevation 335' Q(a) = 0.83 * (5 + 10) / 10 * 2000 = 2490 cf /hour The 10 yr 24-hours Infiltration provided = 39,840 c£ > Required Volume = 12,158 cf. therefore is adequate. U 48-hours Infiltration Provided = 79,680 c£ > Required Volume = 16,836 cf. therefore is adequate. {~ (_j Basin `D': Minimum Stormwater Storage Volume Required According to 1992 DOE Stormwater t'~ Management Manual for the Puget Sound Basins is 6mo. 24 hour storm volume. i According to StormShed Hydrograph Basin D the 6mo. 24 hour Vol.= 2,897 cf - 0.0665 acft ~ V (b-Swale) provided at 2ft depth = 4,550 cf is greater than 6mo. 24 hour storm so O.K. Bio-retention Cell will be 10 ft wide x 160 ft long bottom and one side 3:1 slope with rockery wall at one side, and Oft deep minimum (option#1). 1 Storage Volume Provided = 4550 c£ > Required Volume = 2,897cf. Therefore is adequate. ~} According to StormShed the 100-year/24-hour storm event will result in peak volume of 11,038 ~1 cf - 0.2534 acft. LJ The underground infiltration gallery was designed to Store and Infiltrate 100-year storm event r`-'i from Basin `D'. The required volume of 11,038 cf will be stored and infiltrated using (1) underground infiltration drain rock galleries Bottom 160 ft. long x 10 ft. wide x 5 ft. deep. I~ Total gallery storage capacity using 1:3 void ratio: U V= N L*H-A i e *0.3+ A i e*L 2 897 c£ + l 120 cf. = 3390 cf. (( P P )) ( P P )) _ , r'~ ~~ From calculations provided above the 48-hour capacity of Infiltration Swale is: ~ At elevation 330' Q(a) = 0.83 * (0 + 10) / 10* 1600 = 1328 cf /hour ~~ At elevation 331' Q(a) = 0.83 * (1 + 10) / 10 * 1600 = 1461 cf /hour At elevation 332' Q(a) = 0.83 * (2 + 10) / 10 * 1600 = 1593 cf /hour At elevation 333' Q(a) = 0.83 * (3 + 10) / 10 * 1600 = 1726 cf /hour ~! At elevation 334' Q(a) = 0.83 * (4 + 10) / 10 * 1600 = 1859 cf /hour ~,,/ At elevation 335' Q(a) = 0.83 * (5 + 10) / 10 * 1600 = 1992 cf /hour U` The 10 yr 24-hours Infiltration provided = 31,872 cf. > Required Volume = 7,968 cf. therefore is adequate. 48-hours Infiltration Provided = 63,744 cf. > Required Volume = 11,038 cf. therefore is adequate. f' i~ ~ Basin `E': ~ Minimum Stormwater Storage Volume Required According to 1992 DOE Stormwater ~ Management Manual for the Puget Sound Basins is 6mo. 24 hour storm volume. ~' ~--~ According to StormShed Hydrograph Basin E the 6mo. 24 hour Vol.= 2,531 cf - 0.0581acft V (b-Swale) provided at 2ft depth = 2660 cf is greater than 6mo. 24 hour storm so O.K. ~ Bio-retention Cell will be 16 ft wide x 70 ft long bottom and one side 3:1 slope with rockery wall at one side, and Oft deep minimum (option # 5). ~~ Storage Volume Provided = 2660 cf. > Required Volume = 2,531 cf. Therefore is adequate. According to StormShed the 100-year/24-hour storm event will result in peak volume of 10,071 r~ cf - 0.2312 acft. ~~ ~~ The underground infiltration gallery was designed to Store and Infiltrate 100-year storm event f ~ from Basin `E'. U The required volume of 10,071 cf will be stored and infiltrated using (1) underground infiltration drain rock galleries Bottom 70 ft. long x 16 ft. wide x 6 ft. deep. Total gallery storage capacity using 1:3 void ratio: ~, V = N((L*H-A pipe))*0.3+(A pipe*L)) = 2545 c£ + 490 cf. = 2545 cf. ~ From calculations provided above the 48-hour capacity of Infiltration Swale is: ~~ At elevation 330' Q(a) = 0.83 * (0 + 10) / 10* 1120 = 929 cf /hour r-~ At elevation 331' Q(a) = 0.83 * (1 + 10) / 10 * 1120 = 1022 cf /hour ~ At elevation 332' Q(a) = 0.83 * (2 + 10) / 10 * 1120 = 1115 cf /hour At elevation 333' Q(a) = 0.83 * (3 + 10) / 10 * 1120 = 1208 cf /hour r~ At elevation 334' Q(a) = 0.83 * (4 + 10) / 10 * 1120 = 1568 cf /hour At elevation 335' Q(a) = 0.83 * (5 + 10) / 10 * 1120 = 1394 cf /hour r'~ ' The 10 yr 24-hours Infiltration provided = 22,296 c£ > Required Volume = 7,195 cf. therefore is ~ adequate. ~ 48-hours Infiltration Provided = 44,592 cf. > Required Volume = 10,071 cf. therefore is ~~ adequate. Basin `F': Minimum Stormwater Storage Volume Required According to 1992 DOE Stormwater Management Manual for the Puget Sound Basins is 6mo. 24 hour storm volume. According to StormShed Hydrograph Basin F the 6mo. 24 hour Vol.= 1,680 cf - 0.0386 acft V (b-Swale) provided at 2ft depth = 1,820 cf is greater than 6mo. 24 hour storm so O.K. ~ Bio-retention Cell will be 10 ft wide x 70ft long bottom and one side 3:1 slope at one side with ~~ rockery wall, and Oft deep minimum (option #1). ~ Storage Volume Provided = 1820 cf. > Required Volume = 1,680 c£ Therefore is adequate I/ According to StormShed the 100-year/24-hour storm event will result in peak volume of 6,456.02 cf - 0.1482 acft. n LJ 1~ ~,, U L~ n i~ ~' t~ u I~ tJ U f`~ ~J ~~ U ~~ I~ n C~ The underground infiltration gallery was designed to Store and Infiltrate 100-year storm event from Basin `F'. The required volume of 6,456.02 cf will be stored and infiltrated using (1) underground infiltration drain rock galleries Bottom 70 ft. long x 10 ft. wide x 5 ft. deep. Total gallery storage capacity using 1:3 void ratio: V = N((L*H-A pipe))*0.3+(A pipe*L)) = 1224 cf. + 490 cf. = 1714 cf. From calculations provided above the 48-hour capacity of Infiltration Swale is: At elevation 330' At elevation 331' At elevation 332' At elevation 333' At elevation 334' At elevation 335' Q(a) = 0.83 * (0 + Q(a)= 0.83* (l+ Q(a) = 0.83 * (2 + Q(a) = 0.83 * (3 + Q(a)= 0.83* (4+ Q(a) = 0.83 * (5 + 10) / 10* 700 = 581 cf /hour 10) / 10 * 700 = 639 cf /hour 10) / 10 * 700 = 697 cf /hour 10) / 10 * 700 = 755 cf /hour 10) / 10 * 700 = 813 cf /hour 10) / 10 * 700 = 871 cf /hour The 10 yr 24-hours Infiltration provided = 13,944 cf. > Required Volume = 4,651 cf. therefore is adequate. 48-hours Infiltration Provided = 27,888 c£ > Required Volume = 6,456 cf. therefore is adequate. Basin `G': Minimum Stormwater Storage Volume Required According to 1992 DOE Stormwater Management Manual for the Puget Sound Basins is 6mo. 24 hour storm volume. According to StormShed Hydrograph Basin G the 6mo. 24 hour Vol.= 3,519 cf - 0.0808 acft V (b-swale) provided at 2ft depth = 4,160 cf is greater than 6mo. 24 hour storm so O.K. Bio-retention Cell will be 10 ft wide x 160 ft long bottom and one side 3:1 slope with rockery wall at one side, and Oft deep minimum (option #1). Storage Volume Provided = 4,160 cf. > Required Volume = 3,519 cf. Therefore is adequate. According to StormShed the 100-year/24-hour storm event will result in peak volume of 13,378 cf - 0.3071 acft. The underground infiltration gallery was designed to Store and Infiltrate 100-year storm event from Basin `G'. The required volume of 13,378 cf will be stored and infiltrated using (1) underground infiltration drain rock galleries Bottom 160 ft. long x 10 ft. wide x 6 ft. deep. Total gallery storage capacity using 1:3 void ratio: V = N((L*H-A pipe))*0.3+(A pipe*L)) = 2,798 + 1120 cf. = 3918 cf. From calculations provided above the 48-hour capacity of Infiltration Swale is: At elevation 330' Q(a) = 0.83 * (0 + 10) / 10* 1600 = 1328 cf /hour At elevation 331' Q(a) = 0.83 * (1 + 10) / 10 * 1600 = 1461 cf /hour U At elevation 332' At elevation 333' At elevation 334' At elevation 335' Q(a) = 0.83 * (2 + Q(a) = 0.83 * (3 + Q(a) = 0.83 * (4 + Q(a) = 0.83 * (5 + 10) / 10 * 1600 = 1593 cf /hour 10) / 10 * 1600 = 1726 cf /hour 10) / 10 * 1600 = 1859 cf /hour 10) / 10 * 1600 = 1992 cf /hour ~n ~i I~ n ~~~1 ~J I~I t~ r' ~.J ~~ ~i The 10 yr 24-hours Infiltration provided = 31,872 c£ > Required Volume = 9,662 cf. therefore is adequate. 48-hours Infiltration Provided = 63,744 cf. > Required Volume = 13,378 cf. therefore is adequate. Basin `H': Minimum Stormwater Storage Volume Required According to 1992 DOE Stormwater Management Manual for the Puget Sound Basins is 6mo. 24 hour storm volume. According to StormShed Hydrograph Basin H the 6mo. 24 hour Vol.= 2,257 cf - 0.0518 acft V (b-swale) provided at 2ft depth = 3,520 cf is greater than 6mo. 24 hour storm so O.K. Bio-retention Cell will be 8 ft wide x 160 ft long bottom and one side 3:1 slope with rockery wall at one side, and Oft deep minimum (option #4). Storage Volume Provided = 3,520 cf. > Required Volume = 2257 cf. Therefore is adequate. According to StormShed the 100-year/24-hour storm event will result in peak volume of 8,693 cf - 0.1996 acft. The underground infiltration gallery was designed to Store and Infiltrate 100-year storm event from Basin `H'. The required volume of 8,693 cf will be stored and infiltrated using (1) underground infiltration drain rock galleries Bottom 160 ft. long x 8 ft. wide x 5 ft. deep. Total gallery storage capacity using 1:3 void ratio: V = N((L*H-A pipe))*0.3+(A pipe*L)) = 1120 c£ + 1743 cf. = 2,863 cf. From calculations provided above the 48-hour capacity of Infiltration Swale is: r~ At elevation 330' At elevation 331' At elevation 332' ~ At elevation 333' U At elevation 334' At elevation 335' n u (n lJ Q(a) = 0.83 * (0 + Q(a)=0.83* (1+ Q(a)=0.83* (2+ Q(a) = 0.83 * (3 + Q(a) = 0.83 * (4 + Q(a) = 0.83 * (5 + 10) / 10* 1280 = 1063 cf /hour 10) / 10 * 1280 = 1169 cf /hour 10) / 10 * 1280 = 1275 cf /hour 10) / 10 * 1280 = 1381cf /hour 10) / 10 * 1280 = 1488 cf /hour 10) / 10 * 1280 = 1593 cf /hour The 10 yr 24-hours Infiltration provided = 25,512 cf. > Required Volume = 6,260 cf. therefore is adequate. 48-hours Infiltration Provided = 51,024 cf. > Required Volume = 8,693 cf. therefore is adequate. LJ ~'-t ~,J i11 U !~ v r' -~ ,~ Lam' (~ ~1 I~'~ U ~~ Basin `I': StormShed software was used to model the runoff from Longmire Street SE form new Tahoma Terra Boulevard to Yelm Highway. The 6-month storm event resulted in a peak flow rate of 0.6552 cfs, and a peak volume of 10,836 cf - 0.2489 acft from contributing Longmire Street SE improvements, and proposed Basin I a peak flow of 0.4872 cfs, a peak volume of 7157 cf - 0.1643 acft. The DOE manual, section III-4.3.2, requires that "the permanent pool volume equals the runoff volume from the 6-month, 24-hour design storm." ACRD software was used to calculate provided wet pond volume. The two cell 3 foot deep "dead storage" pool with 5775 sf of bottom and side area each will provide total 22,046 cf of available permanent pool volume which exceeds the required volume of 17,993 c£ BMP treatment capacity for Phase I &II of Tahoma Terra. The stage capacities are: Wet Ponds: From elevation 327 to 328 - 2,502cf 328 to 329 - 3,196 cf 329 to 330 - 5,325 cf Total: 11,023 cf "Live Pool" capacities: 330 to 331- 6,226 cf 331 to 332 - 7,184 cf 332 to 333 - 8,198 cf Subtotal: 21,608 cf Infiltration Pond: Total Wet Ponds: 22,046 cf (EACH) From elevation 329 to 330 - 11,286 cf 330 to 331 - 12,765 cf 331 to 332 - 14,395 cf 332 to 333 - 16,035 cf 343 to 344 - 17,731 cf (1' FREEBORD) Ll ~', L~ Infiltration: Total Infiltration Pond: 72,212 cf The 1992 edition of the WSDOE Stormwater Management Manual was used to calculate the infiltration rate. The calculations were based on design infiltration rate of 20-inches/hour. The Darcy's Law of ground water movement was use to demonstrate sufficient infiltration capacity of infiltration ponds. n ~, V ~J (~ r~ ~1 ~~ r~ U ~1 r`~ ~~ ~J n U n i n r tJ Q=f*i*A,where Q =flow rate at which runoff is infiltrated/filtrated by infiltration pond f =infiltration rate of soil or filtration media i =hydraulic gradient A =surface area of the BMP Conservatives values of "f' were used. Safety factor "two" was applied to the recommended design infiltration rate of 20 in/hr, thus Fd = 20 inches/hour * 0.5 = 10 inches/hour = 0.83 ft/hr The hydraulic gradient is the equation: i=h+L/L Where h is the height of the water column over the infiltration/filtration media and L is the distance from the top surface of BMP to the water table or impermeable layer. Q=f*h+L/L*A For design purposes hydraulic gradient I was set equal to 1, which made discharge independent of stage. L = 3 feet (Per Soil Report 105"-69"=36") Basin `I' cnt. According to StormShed the 100-year/24-hour storm will result in peak total volume of 70,642 cf. Bottom surface area A at elevation 329' = 10,506 sf thus at elevation 329' infiltration pond will have flow rate: 1~ U ~'~ ~--~ At elevation 329' Q(a) = 0.83 * (0 + 3) / 3* 10,596 = 8,720 cf /hour IU At elevation 330' Q(a) = 0.83 * (1 + 3) / 3 * 10,596 = 11,726 cf /hour • At elevation 331' Q(a) = 0.83 * (2 + 3) / 3 * 20,087 = 14,657 cf /hour f ~ At elevation 332' Q(a) = 0.83 * (3 + 3) / 3 * 22,234 = 17,589 cf/ hour 8,720 cf/hr * 48 hrs = 418,560 cf (Required) ~U Thus 3 feet depth of Infiltration Pond with bottom area of 10,596 sf (Required) will have capacity to infiltrate 418,560 cf per 48 hours period witch exceed the minimum volume of 100- ~~ year event of 70,642 cf which will infiltrated in the 16 hour using Fs = 2. The 10 yr 24-hours Infiltration provided = 209,280 cf. > Required Volume = 50,976 cf. therefore is adequate. r~ The Wet Ponds are designed as a Combination Ponds and top part is Live Storage with ~~ additional sides infiltration capacity of wetted area up to 17,928 cf for 10 yr 24-hour, and 35,856 cf for 100 yr 48-hours storm events. ~ The infiltration pond (Proposed) bottom area at elevation 229' = 15,962 sf, and volume provided for 100-yr event = 76,280 cf for Longmire Street SE improvement project. Thuse 2 feet depth of Infiltration Pond with proposed bottom and side area of 20,087 cf and r~ 33,478 cf/hr rate will have capacity to infiltrate up to 1,606,944 cf per 48 hours. h` Therefore, ponds have been design with additional storage and infiltration capacity to r~~ accommodate winter season ground water changing conditions. ~~ ~ Basin `K': ~.~ Minimum Stormwater Storage Volume Required According to 1992 DOE Stormwater Management Manual for the Puget Sound Basins is 6mo. 24 hour storm volume. According to StormShed Hydrograph Basin K the 6mo. 24 hour Vol.= 6,512 cf - 0.1495 acft r~~ V (b-Swale) provided at 2ft depth = 8000 cf is greater than 6mo. 24 hour storm so O.K. ~ Bio-retention Cell will be 10 ft wide x 250 ft long bottom and all side 3:1 slope, and Oft deep - minimum (option #3). r~ Storage Volume Provided = 8000 cf. > Required Volume = 6,512 cf. Therefore is adequate. ~ According to StormShed the 100-yearl24-hour storm event will result in peak volume of 24,888 cf - 0.5714 acft. The underground infiltration gallery was designed to Store and Infiltrate 100-year storm event from Basin `K'. The required volume of 24,888 cf will be stored and infiltrated using (1) underground n infiltration drain rock galleries Bottom 250 ft. long x 10 ft. wide x 6 ft. deep. Total gallery storage capacity using 1:3 void ratio: ~1 V = N((L*H-A pipe))*0.3+(A pipe*L)) = 4373 cf. + 1750 cf. = 6123 cf. f~ U l-1 C~' ~ From calculations provided above the 48-hour capacity of Infiltration Swale is: r'-~ U At elevation 330' Q(a) = 0.83 * (0 + 10) / 10* 2500 = 2075 cf /hour At elevation 331' Q(a) = 0.83 * (1 + 10) / 10 * 2500 = 2282 cf /hour At elevation 332' Q(a) = 0.83 * (2 + 10) / 10 * 2500 = 2490 cf /hour At elevation 333' Q(a) = 0.83 * (3 + 10) / 10 * 2500 = 2697 cf /hour At elevation 334' Q(a) = 0.83 * (4 + 10) / 10 * 2500 = 2905 cf /hour At elevation 335' Q(a) = 0.83 * (5 + 10) / 10 ~` 2500 = 3112 cf /hour (~ u The 10 yr 24-hours Infiltration provided = 49,800 cf. > Required Volume = 17,952 cf. therefore is +f`~ adequate. ~1 48-hours Infiltration Provided = 99,600 c£ > Required Volume = 24,888 cf. therefore is ~ adequate. ~--, Basin `L': { Minimum Stormwater Storage Volume Required According to 1992 DOE Stormwater 1_..1 Management Manual for the Puget Sound Basins is 6mo. 24 hour storm volume. According to StormShed Hydrograph Basin L the 6mo. 24 hour Vol.= 5,443 cf - 0.1250 acft LJ V (b-swale) provided at 2ft depth = 7200 cf is greater than 6mo. 24 hour storm so O.K. Bio-retention Cell will be 12 ft wide x 200 ft long bottom and all sides 3:1 slope, and Oft deep minimum (option #3 -without menhole and perforated pipe). Storage Volume Provided = 7200 c£ > Required Volume = 5443 cf. Therefore is adequate. C, ~; According to StormShed the 100-year/24-hour storm event will result in peak volume of 20,194 cf - 0.4636 acft. The underground infiltration rock gallery was designed to Store and Infiltrate 100-year storm event from Basin `L'. The required volume of 20,194 cf will be stored and infiltrated at surface using drain rock ~~ galleries bottom 200 ft. long x 12 ft. wide x 4 ft. deep Bio-retention Cell. Total gallery storage capacity using 1:3 void ratio: Vrg = N((L*H))*0.33 = 4752 cf The infiltration rate for the closest location is recommended to be 2 in/hr. per Soil Report Log #9 No underground drain is recommended because of ground water depth of 76". From calculations provided above the 48-hour capacity of Infiltration Swale is: At elevation 330' Q(a) = 0.167 * (0 + 3) / 3* 2400 = 401 cf /hour At elevation 331' Q(a) = 0.167 * (1 + 3) / 3 * 2400 = 534 cf /hour At elevation 332' Q(a) = 0.167 * (2 +3) / 3 * 2400 = 668 cf /hour n At elevation 333' Q(a) = 0.167 * (3 +3) / 3 * 2400 = 1202 cf /hour Calculate site infiltration capacity. ~`' r`~ r~ L.J~ ~J r'-`~ 1~ U i U V U At elevation 331' Q(a) = 0.167 * (1 +3) / 3 * 1200 = 267 cf /hour At elevation 332' Q(a) = 0.167 * (2 +3) / 3 * 1200 = 334 cf /hour 48-hours Infiltration Provided at 2' depth = 41,664 cf. > Required Volume = 20,194 cf. therefore is adequate. 24-hours Infiltration Provided at 2' depth = 20,832 cf. > Required Volume = 14,672 cf. therefore is adequate. Basin `M': Minimum Stormwater Storage Volume Required According to 1992 DOE Stormwater Management Manual for the Puget Sound Basins is 6mo. 24 hour storm volume. According to StormShed Hydrograph Basin M the 6mo. 24 hour Vol.= 2,867 cf - 0.0658 acft V (b-Swale) provided at 2ft depth = 4,480 cf is greater than 6mo. 24 hour storm so O.K. Bio-retention Cell will be 10 ft wide x 140 ft long bottom and all side 3:1 slope walls, and Oft deep minimum (option #3). Storage Volume Provided = 4480 c£ > Required Volume = 2,867 c£ Therefore is adequate. According to StormShed the 100-year/24-hour storm event will result in peak volume of 10,940 cf - 0.2512 acft. G The underground infiltration gallery was designed to Store and Infiltrate 100-year storm event from Basin `M'. The required volume of 10,941 cf will be stored and infiltrated using (1) underground '~ infiltration drain rock galleries Bottom 140 ft. long x 10 ft. wide x 5 ft. deep. Total gallery storage capacity using 3:1 void ratio: r~ V = N((L*H-A pipe))*0.3+(A pipe*L)) = 1905 c£ + 1225 cf. = 3130 cf. ~ From calculations provided above the 48-hour capacity of Infiltration Swale is: At elevation 330' Q(a) = 0.83 * (0 + 10) / 10* 1400 = 1162 cf /hour U At elevation 331' Q(a) = 0.83 * (1 + 10) / 10 * 1400 = 1278 cf /hour At elevation 332' Q(a) = 0.83 * (2 + 10) / 10 * 1400 = 1394 cf /hour ~, At elevation 333' Q(a) = 0.83 * (3 + 10) / 10 * 1400 = 1510 cf /hour At elevation 334' Q(a) = 0.83 * (4 + 10) / 10 * 1400 = 1627 cf /hour At elevation 335' Q(a) = 0.83 * (5 + 10) / 10 * 1400 = 1743 cf /hour n lJ ~~ 48-hours Infiltration Provided = 55,776 cf. > Required Volume = 10,941 cf. therefore is adequate. 24-hours Infiltration Provided = 27,888 c£ > Required Volume = 7,895 cf. therefore is ~..~ adequate. ~'~ r~ 'u Basin `N': Minimum Stormwater Storage Volume Required According to 1992 DOE Stormwater Management Manual for the Puget Sound Basins is 6mo. 24 hour storm volume. According to StormShed Hydrograph Basin N the 6mo. 24 hour Vol.= 2,376 cf - 0.0546 acft C V (b-swale) provided at 2ft depth = 4,000 cf is greater than 6mo. 24 hour storm so O.K. Bio-retention Cell will be 8 ft wide x 125 ft long bottom and all side 3:1 slope with rockery wall optional at one side, and Oft deep minimum (option #2). (~ U Storage Volume Provided = 4000cf. > Required Volume = 2376 cf. Therefore is adequate. ~"~ According to StormShed the 100-year/24-hour storm event will result in peak volume of 8.772 cf LI - 0.2014 acft. ~-r The underground infiltration gallery was designed to Store and Infiltrate 100-year storm event from Basin `N'. The required volume of 8,772 cf will be stored and infiltrated using (1) underground infiltration drain rock galleries Bottom 125 ft. long x 8 ft. wide x 6 ft. deep. Total gallery storage capacity using 3:1 void ratio: ~ V = N((L*H-A pipe))*0.3+(A pipe*L)) = 1691 cf. + 875 c£ = 2,566 cf. ~--~ From calculations provided above the 48-hour capacity of Infiltration Swale is: At elevation 330' Q(a) = 0.83 * (0 + 10) / 10* 1000 = 830 cf /hour At elevation 331' Q(a) = 0.83 * (1 + 10) / 10 * 1000 = 913 cf /hour At elevation 332' Q(a) = 0.83 * (2 + 10) / 10 * 1000 = 996 cf /hour At elevation 333' Q(a) = 0.83 * (3 + 10) / 10 * 1000 = 1079 cf /hour C At elevation 334' Q(a) = 0.83 * (4 + 10) / 10 * 1000 = 1162 cf /hour At elevation 335' Q(a) = 0.83 * (5 + 10) / 10 * 1000 = 1245 cf /hour '~ 24-hours Infiltration Provided = 19,920 c£ > Required Volume = 6,382 cf. therefore is adequate. n' 48-hours Infiltration Provided = 39,840 cf. > Required Volume = 8,772 cf. therefore is ~ adequate. Ir ~ LJ Basin `O': Minimum Stormwater Storage Volume Required According to 1992 DOE Stormwater ~ Management Manual for the Puget Sound Basins is 6mo. 24 hour storm volume. U According to StormShed Hydrograph Basin O the 6mo. 24 hour Vol.= 4,565 cf - 0.1048 acft ~ V (b-Swale) provided at 2ft depth = 6,400 cf is greater than 6mo. 24 hour storm so O.K. Bio-retention Cell will be 10 ft wide x 200ft long bottom and all side 3:1 slope, and Oft deep minimun (option #3). LJ Storage Volume Provided = 6400 cf. > Required Volume = 4,565 cf. Therefore is adequate. I~ According to StormShed the 100-year/24-hour storm event will result in peak volume of 16,810 u ~' ~U n U ~' ~J r~ ((n U cf - 0.3859 acft. The underground infiltration gallery was designed to Store and Infiltrate 100-year storm event from Basin `O'. The required volume of 16,810 cf will be stored and infiltrated using (1) underground infiltration drain rock galleries Bottom 200 ft. long x 10 ft. wide x 6 ft. deep. Total gallery storage capacity using 1:3 void ratio: V = N((L*H-A pipe))*0.3+(A pipe*L)) = 3,498 c£ + 1,400 c£ = 4,898 cf. From calculations provided above the 48-hour capacity of Infiltration Swale is: ~ At elevation 330' At elevation 331' At elevation 332' f ~ At elevation 333' At elevation 334' At elevation 335' (~ ~i I~ U ~~~ n i I LJ Q(a) = 0.83 * (0 + 10) / 10* 2000 = 1660 cf /hour Q(a) = 0.83 * (1 + 10) / 10 * 2000 = 1826 cf /hour Q(a) = 0.83 * (2 + 10) / 10 * 2000 = 1992 cf /hour Q(a) = 0.83 * (3 + 10) / 10 * 2000 = 2158 cf /hour Q(a) = 0.83 * (4 + 10) / 10 * 2000 = 2324 cf /hour Q(a) = 0.83 * (5 + 10) / 10 * 2000 = 2490 cf /hour 24-hours Infiltration Provided = 39,840 c£ > Required Volume = 12,236 cf. therefore is adequate. 48-hours Infiltration Provided = 79,680 cf. > Required Volume = 16,810 cf. therefore is adequate. ROOF DRY WELL CALCULATIONS TYP. Minimum Stormwater Storage Volume Required According to 1992 DOE Stormwater Management Manual for the Puget Sound Basins is 10-yers 24 hour storm volume. Roof Area Ar = 1500 - 2000 SF P 10 = 3.0 in Im = 20 in/hr Fs = 2, To Im = 0.1665 in/hr Ai = 0.054 * 3.0 * 2000 / 10 * 0.1665 = 195 sf L = 195 sf / 6 = 32.5 ft, to use 3' wide X 3' deep X 35' long per each house will be adequate also. L = 195 sf / 4 = 49 ft, to use 2.5' wide X 3' deep X 50' long per each house will be adequate. Or, The 6" minnimum diameter of perforated ADS pipe is recommended. See Apendix #8 for Detail. WESTERN WASHINGTON HYDROLOGY MODEL V2 PROJECT REPORT Project Name: Tahoma Terra_BASIN -I(CP) Site Address: Tahoma Terra, LLC City Yelm, Washington C Report Date : 8/5/2005 Gage Olympia Data Start 1955 ~ Data End 1999 (adjusted) Precip Scale: 0.80 I(~ L.J PREDEVELOPED LAND USE Basin Basin I (CP) Flows To Point of Compliance ~r, Groundwater: No Land Use Acres U OUTWASH PASTURE: 13.19 ~ IMPERVIOUS: 1.37 ~~ DEVELOPED LAND USE U Basin Basin I (CP) rh Flows To Wet Cell_1 Groundwater: No U Land Use Acres ~ OUTWASH GRASS: 7.95 C IMPERVIOUS: 6.61 RCHRES (POND) INFORMATION ~~ Pond Name: Wet Cell_1 jJ Pond Type: Trapezoidal Pond Pond Flows to Point of Compliance Pond Rain / Evap is not activated. Dimensions Depth: aft. Bottom Length: 109ft. (-1 Bottom Width 55ft. Side slope 1: 3 To 1 Side slope 2: 3 To 1 Side slope 3: 3 To 1 Side slope 4: 3 To 1 Volume at Riser Head: 0.501 acre-ft. Discharge Structure (--~ Riser Height: 2 . 9 ft . ~ Riser Diameter: 10000 in. ~l Pond Hydraulic Table Stage (f t) Area(acr) Volume(acr-f t) Dschrg(cfs) Infilt(cfs) J 330.0 I 0.138 0.000 0.000 0.000 __ 330.0 0.139 0.006 0.000 1.398 330.1 0.140 0.012 0.000 1.409 n, 330.1 0.141 0.019 0.000 1.420 330.2 0.142 0.025 0.000 1.431 I~ U I~ U I~ U I~ l__J I~ u In LJ ~J ~~ If-`~ U LJ n 330.2 0.143 0.031 0.000 1.442 330.3 0.144 0.038 0.000 1.452 330.3 0.145 0.044 0.000 1.463 330.4 0.146 0.050 0.000 1.474 330.4 0.147 0.057 0.000 1.485 330.4 0.148 0.063 0.000 1.496 330.5 0.149 0.070 0.000 1.507 330.5 0.150 0.077 0.000 1.518 330.6 0.151 0.083 0.000 1.529 330.6 0.152 0.090 0.000 1.591 330.7 0.153 0.097 0.000 1.552 330.7 0.154 0.104 0.000 1.563 330.8 0.155 0.111 0.000 1.574 330.8 0.156 0.117 0.000 1.585 330.8 0.157 0.124 0.000 1.597 330.9 0.158 0.131 0.000 1.608 330.9 0.159 0.139 0.000 1.619 331.0 0.161 0.146 0.000 1.631 331.0 0.162 0.153 0.000 1.642 331.1 0.163 0.160 0.000 1.654 331.1 0.164 0.167 0.000 1.665 331.2 0.165 0.175 0.000 1.677 331.2 0.166 0.182 0.000 1.688 331.2 0.167 0.189 0.000 1.700 331.3 0.168 0.197 0.000 1.712 331.3 0.169 0.204 0.000 1.723 331.4 0.170 0.212 0.000 1.735 331.4 0.171 0.219 0.000 1.747 331.5 0.173 0.227 0.000 1.759 331.5 0.174 0.235 0.000 1.771 331.6 0.175 0.242 0.000 1.782 331.6 0.176 0.250 0.000 1.794 331.6 0.177 0.258 0.000 1.806 331.7 0.178 0.266 0.000 1.818 331.7 0.179 0.274 0.000 1.830 331.8 0.180 0.282 0.000 1.842 331.8 0.182 0.290 0.000 1.854 331.9 0.183 0.298 0.000 1.867 331.9 0.184 0.306 0.000 1.879 332.0 0.185 0.314 0.000 1.891 332.0 0.186 0.323 0.000 1.903 332.0 0.187 0.331 0.000 1.915 332.1 0.188 0.339 0.000 1.928 332.1 0.190 0.348 0.000 1.940 332.2 0.191 0.356 0.000 1.952 332.2 0.192 0.365 0.000 1.965 332.3 0.193 0.373 0.000 1.977 332.3 0.194 0.382 0.000 1.990 332.4 0.195 0.390 0.000 2.002 332.4 0.197 0.399 0.000 2.015 332.4 0.198 0.408 0.000 2.027 332.5 0.199 0.417 0.000 2.040 332.5 0.200 0.426 0.000 2.052 332.6 0.201 0.435 0.000 2.065 332.6 0.203 0.444 0.000 2.078 332.7 0.204 0.453 0.000 2.090 332.7 0.205 0.462 0.000 2.103 332.8 0.206 0.471 0.000 2.116 332.8 0.207 0.480 0.000 2.129 332.8 0.209 0.489 0.000 2.142 332.9 0.210 0.498 0.000 2.155 332.9 0.211 0.508 49.39 2.168 333.0 0.212 0.517 176.0 2.181 333.0 0.213 0.527 346.8 2.194 ANALYSIS RESULTS C Flow Frequency Return Periods for Predeveloped Return Period Flow(cfs) 2 year 0.342124 5 year 0.415844 10 year 0.461502 25 year 0.51658 50 year 0.556113 C 100 year 0.594617 Flow Frequency Return Periods for Developed Unmitigated ~ Return Period Flow(cfs) 2 year 1.604129 5 year 1.962435 10 year 2.185437 25 year 2.455417 50 year 2.649796 100 year 2.839554 Flow Frequency Return Periods for Developed Mitigated LLLJJJ Return Period Flow (cfs) ,,,CCL__,,, I ' 2 year 5 year 0.54587 1.518176 IU 10 year 2.680528 25 year 5.044867 50 year 7.701283 C 100 year 11.37838 ~'-~ Yearly Peaks for Predeveloped and Developed-Mitigated Year Predeveloped Developed (J 1956 0.309 0.000 1957 0.521 0.000 ~~~ 1958 0.299 0.000 1959 0.352 0.000 u 1960 0.388 0.000 i 1961 0.250 0.000 (, 1962 0.280 0.000 I 1963 0.526 0.000 LJ 1964 0.407 0.000 1965 0.371 0.000 1966 0.268 0.000 1967 0.309 0.000 1968 0.255 0.000 1969 0.254 0.000 ~~, 1970 0.256 0.000 j~ 1971 0.313 0.000 1972 0.458 0.000 i 1973 0.298 0.000 1974 0.347 0.000 1975 0.300 0.000 1976 0.342 0.000 1977 0.438 0.000 1978 0.372 0.000 U 1979 0.442 0.000 1980 0.332 0.000 1981 0.377 0.000 1982 0.439 0.000 1983 0.470 0.000 1984 0.284 0.000 1985 0.333 0.000 1986 0.361 0.000 1987 0.364 0.000 1988 0.220 0.000 1989 0.263 0.000 1990 0.512 0.000 1991 0.482 0.000 1992 0.323 0.000 1993 0.237 0.000 1994 0.263 0.000 C 1995 0.381 0.000 1996 0.386 0.000 1997 0.311 0.000 ~, 1998 0.436 0.000 1999 0.376 0.000 C Ranked Yearly Peaks for Predeveloped and Developed-Mitigated Rank Predeveloped Developed 1 0.5208 0.0000 `~ 2 0.5125 0.0000 1 3 0.4824 0.0000 ~ 4 0.4695 0.0000 5 0.4581 0.0000 ~~ 6 0.4425 0.0000 7 0.4388 0.0000 8 0.4379 0.0000 9 0.4363 0.0000 ~ 10 0.4074 0.0000 ~ 11 0.3875 0.0000 12 0.3865 0.0000 13 0.3806 0.0000 ~~ 14 0.3769 0.0000 LJ 15 0.3758 0.0000 16 0.3718 0.0000 ' 17 0.3710 0.0000 r , 18 0.3639 0.0000 19 0.3607 0.0000 20 0.3520 0.0000 21 0.3468 0.0000 22 0.3423 0.0000 LJ 23 0.3326 0.0000 24 0.3320 0.0000 25 0.3230 0.0000 26 0.3127 0.0000 27 0.3112 0.0000 28 0.3095 0.0000 29 0.3087 0.0000 30 0.3004 0.0000 31 0.2988 0.0000 32 0.2977 0.0000 ~ 33 0.2844 0.0000 ~ ~ 34 0.2804 0.0000 35 0.2677 0.0000 36 0.2629 0.0000 ~ 37 0.2628 0.0000 38 0.2555 0.0000 39 0.2548 0.0000 40 0.2535 0.0000 ~, 41 0.2503 0.0000 42 0.2366 0.0000 43 0.2197 0.0000 V I~ ~ L_ J U I~ Ls' 1/2 2 year to 50 year Flow(CFS) Predev Final Percentage Pass/Fail 0.1711 1061 0 .0 Pass 0.1750 1020 0 .0 Pass 0.1788 940 0 .0 Pass 0.1827 878 0 .0 Pass 0.1866 816 0 .0 Pass 0.1905 739 0 .0 Pass 0.1944 690 0 .0 Pass 0.1983 638 0 .0 Pass 0.2022 593 0 .0 Pass 0.2061 549 0 .0 Pass 0.2100 518 0 .0 Pass 0.2138 485 0 .0 Pass 0.2177 451 0 .0 Pass 0.2216 417 0 .0 Pass i~ U 2255 0 379 0 .0 Pass . 0.2294 352 0 .0 Pass 0.2333 323 0 .0 Pass 0.2372 307 0 .0 Pass 0.2411 283 0 .0 Pass 0.2450 266 0 .0 Pass 0.2489 243 0 .0 Pass C 0.2527 224 0 .0 Pass 0.2566 209 0 .0 Pass 0.2605 197 0 .0 Pass 0.2644 183 0 .0 Pass ~ 0.2683 173 0 .0 Pass 0.2722 164 0 .0 Pass 0.2761 155 0 .0 Pass 0.2800 150 0 .0 Pass 0.2839 143 0 .0 Pass 0.2877 138 0 .0 Pass 0.2916 134 0 .0 Pass ~ 0.2955 127 0 .0 Pass 0.2994 116 0 .0 Pass 0.3033 109 0 .0 Pass 0.3072 101 0 .0 Pass ~ 0.3111 94 0 .0 Pass I~ 0.3150 90 0 .0 Pass 0.3189 87 0 .0 Pass 0.3227 84 0 .0 Pass ~ 0.3266 75 0 .0 Pass J 0.3305 73 0 .0 Pass 0.3344 68 0 .0 Pass 0.3383 62 0 .0 Pass 0.3422 59 0 .0 Pass U 0.3461 56 0 .0 Pass 0.3500 54 0 .0 Pass 0.3539 0.3578 50 48 0 0 .0 .0 Pass Pass '~.J 0.3616 45 0 .0 Pass 0.3655 41 0 .0 Pass n 0.3694 38 0 .0 Pass 0.3733 36 0 .0 Pass 0.3772 33 0 .0 Pass 0.3811 29 0 .0 Pass 0.3850 28 0 .0 Pass C 0.3889 25 0 .0 Pass 0.3928 24 0 .0 Pass 0.3966 22 0 .0 Pass ~' 0.4005 21 0 .0 Pass U 0.4044 19 0 .0 Pass 0.4083 18 0 .0 Pass 0.4122 17 0 .0 Pass 0.4161 16 0 .0 Pass 0.4200 16 0 .0 Pass 0.4239 15 0 .0 Pass 0.4278 13 0 .0 Pass 0.4317 13 0 .0 Pass 0.4355 13 0 .0 Pass 0.4394 10 0 .0 Pass 0.4433 8 0 .0 Pass C 0.4472 8 0 .0 Pass 0.4511 8 0 .0 Pass 0.4550 8 0 .0 Pass 0.4589 7 0 .0 Pass 0.4628 6 0 .0 Pass 0.4667 6 0 .0 Pass 0.4705 5 0 .0 Pass i 0.4744 5 0 .0 Pass C; 0.4783 5 0 .0 Pass 0.4822 5 0 .0 Pass 0.4861 4 0 .0 Pass ~ 0.4900 4 0 .0 Pass L 0.4939 4 0 .0 Pass J 0.4978 4 0 .0 Pass 0.5017 4 0 .0 Pass 0.5056 4 0 .0 Pass 0.5094 4 0 .0 Pass 0.5133 3 0 .0 Pass 0.5172 3 0 .0 Pass 5211 0 1 0 .0 Pass l~ . 0.5250 1 0 .0 Pass LJ 0.5289 0 0 .0 Pass 0.5328 0 0 .0 Pass 0.5367 0 0 .0 Pass ~ 0.5406 0 0 .0 Pass ~ 0.5444 0 0 .0 Pass 0.5483 0 0 .0 Pass 0.5522 0 0 .0 Pass ~~ 0.5561 0 0 .0 Pass r'-) Water Quality BMP Flow and Volume. II__I On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. program and accompanying documentation as provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by the user. AQUA TERRA Consultants and the Washington State Department of Ecology disclaims all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall AQUA TERRA Consultants and/or the Washington State Department of Ecology be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the user of, or inability to use this program even if AQUA TERRA Consultants or the Washington State Department of Ecology has been advised of the possibility of such damages. A r I-1 t~ LJ r1 l~ ~l Ii LJ n ~F I~ U r n ~J ~~ i~ ~J U n n ~r' r, LJ n ~t I~`~ L_ J 3Q0 ~xxxxxxxxxxxxyotoo~~aooosxxxxxxx~?~xxk ... t~ 10E-2 a: :; 1 ,_7i1 ~8 ~ 90 50 ~~ 7~ 80 98 -; ~~ 99 Ctamul~#'rve;F'rob~bfl Yearly Peaks for Predeveloped Flow Frequency Chart TEAit & FLOC ~t~s) 1l~' 11,38 , £ 3 ~ ~ 3 t j 7t i f 50 -7.701 ~` ~ ~~;~~ ~~ §~,_, ~~ I ~~~3]}]3~ ~ ~~ 3j X333 ~~ h ~ £~# ~~ 3z X777] '~ii ~; t~i;~z ';~#jfj ~~~~;~~'i ~£ ~3~ ~ j i3£$I ~~3£i ~~E tf fi ' ~ ~ i ~ 3, ~ i j ~ ~ } 3 ~ ~ 1 ` E ~ Yi 3£ ~ 1 ~j> 3t 25 5.045 3 a'`~~3 j 9 ~~E I ~~ I?~ r s :~ @~ i~~ ~~ is j~ s 3 ~ (' 1~ 2 681 -;'-4.~. 5 .1818' ~~ - ~ ----~--___._ .2 .5959.,..,. i-_ _ ~~ ..~.. _-~__~~, ~': ;. Yearly Peaks for Developed W/Pond 7.0 oo4ooao4o ~ ~yq°`~J°°~~~ ©Predeve~p~d, ,~ loea x ge~reloped Mitigated 0.56 ~--~--~-_.___.__.._m.~raeanpue----~---- '~ x l~veloped ~~ F~ity 0.46 ~. _.~........~..._~...~ +~ 0.~ '~' i027 0:17 a .~ _ .» ~ ..«~ c , 1~-5 a 10E-d 10E 3 10E-2 10E-1 1 10~~ °~~~:::: Duration ~~ ~~ Yearly Peaks for developed W/O Pond C WESTERN WASHINGTON HYDROLOGY MODEL V2 PROJECT REPORT ~~ Project Name: Tahoma Terra BASIN -I(CP) Site Address: Tahoma Terra, LLC City Yelm, Washington Report Date 8/5/2005 Gage Olympia Data Start 1955 r`l Data End 19 9 9 ~~ (adjusted) Precip Scale: 0.80 ~1 ~~ - Pf'.EDEVELOPED LAND USE ~ Basin Basin I (CP) GI Flows To . Point of Compliance Groundwater: No r~ Land Use Acres OUTWASH PASTURE: 13.19 IMPERVIOUS: 1.37 n LJ DEVELOPED LAND USE Basin Basin I (CP) ` Flows To Wet Cell_2 C Groundwater: No Land Use Acres '~ OUTWASH GRASS: 7.95 ~ IMPERVIOUS: 6.61 l~ U RCHRES (POND) INFORMATION ~ Pond Name: Wet Cell_1 Pond Type: Trapezoidal Pond Pond Flows to Point of Compliance ~ Pond Rain / Evap is not activated. Dimensions Depth: aft. Bottom Length: 109ft. Bottom Width 55ft. ~i Side slope 1: 3 To 1 Side slope 2: 3 To 1 Side slope 3: 3 To 1 Side slope 4: 3 To 1 Volume at Riser Head: 0.501 acre-ft. Discharge Structure r-~ Riser Height: 2.9 ft. Riser Diameter: 10000 in. Pond Hydraulic Table Stage (f t) Area(acr) Volume(acr-f t) Dschrg(efs) Infilt(cfs) 330.0 0.138 0.000 0.000 0.0 00 330.0 0.139 0.006 0.000 1.388 330.1 0.140 0.012 0.000 1.388 ~ 330.1 0.141 0.019 0.000 1.388 ~ 330.2 0.142 0.025 0.000 1.388 ~` U ,~ I~ U ~1 ~'1 U In LJ u ~, V I(~ U ~~ ~~ n ~~ U ~~ u I~~ t_.J I~ U r`~ 330.2 0.143 0.031 0.000 1.388 330.3 0.144 0.038 0.000 1.388 330.3 0.145 0.044 0.000 1.388 330.4 0.146 0.050 0.000 1.388 330.4 0.147 0.057 0.000 1.388 330.4 0.148 0.063 0.000 1.388 330.5 0.149 0.070 0.000 1.388 330.5 0.150 0.077 0.000 1.388 330.6 0.151 0.083 0.000 1.388 330.6 0.152 0.090 0.000 1.388 330.7 0.153 0.097 0.000 1.388 330.7 0.154 0.104 0.000 1.388 330.8 0.155 0.111 0.000 1.388 330.8 0.156 0.117 0.000 1.388 330.8 0.157 0.124 0.000 1.388 330.9 0.158 0.131 0.000 1.388 330.9 0.159 0.139 0.000 1.388 331.0 0.161 0.146 0.000 1.388 331.0 0.162 0.153 0.000 1.388 331.1 0.163 0.160 0.000 1.388 331.1 0.164 0.167 0.000 1.388 331.2 0.165 0.175 0.000 1.388 331.2 0.166 0.182 0.000 1.388 331.2 0.167 0.189 0.000 1.388 331.3 0.168 0.197 0.000 1.388 331.3 0.169 0.204 0.000 1.388 331.4 0.170 0.212 0.000 1.388 331.4 0.171 0.219 0.000 1.388 331.5 0.173 0.227 0.000 1.388 331.5 0.174 0.235 0.000 1.388 331.6 0.175 0.242 0.000 1.388 331.6 0.176 0.250 0.000 1.388 331.6 0.177 0.258 0.000 1.388 331.7 0.178 0.266 0.000 1.388 331.7 0.179 0.274 0.000 1.388 331.8 0.180 0.282 0.000 1.388 331.8 0.182 0.290 0.000 1.388 331.9 0.183 0.298 0.000 1.388 331.9 0.184 0.306 0.000 1.388 332.0 0.185 0.314 0.000 1.388 332.0 0.186 0.323 0.000 1.388 332.0 0.187 0.331 0.000 1.388 332.1 0.188 0.339 0.000 1.388 332.1 0.190 0.348 0.000 1.388 332.2 0.191 0.356 0.000 1.388 332.2 0.192 0.365 0.000 1.388 332.3 0.193 0.373 0.000 1.388 332.3 0.194 0.382 0.000 1.388 332.4 0.195 0.390 0.000 1.388 332.4 0.197 0.399 0.000 1.388 332.4 0.198 0.408 0.000 1.388 332.5 0.199 0.417 0.000 1.388 332.5 0.200 0.426 0.000 1.388 332.6 0.201 0.435 0.000 1.388 332.6 0.203 0.494 0.000 1.388 332.7 0.204 0.453 0.000 1.388 332.7 0.205 0.462 0.000 1.388 332.8 0.206 0.471 0.000 1.388 332.8 0.207 0.480 0.000 1.388 332.8 0.209 0.489 0.000 1.388 332.9 0.210 0.498 0.000 1.388 332.9 0.211 0.508 49.39 1.388 333.0 0.212 0.517 176.0 1.388 333.0 0.213 0.527 346.8 1.388 ANALYSIS RESULTS C Flow Frequency Return Periods for Predeveloped Return Period Flow(cfs) 2 year 0.342124 n 5 year 0.415844 .li 10 year 0.461502 25 year 0.51658 i---~ 50 year 0.556113 100 year 0.594617 Flow Frequency Return Periods for Developed Unmitigated ~l Return Period Flow(cfs) L1 2 year 1.604129 5 year 1.962435 10 year 2.185437 ~ ~ 25 year 2.455417 Lj 50 year 2.649796 100 year 2.839554 G Flow Frequency Return Periods for Developed Mitigated Return Period Flow (cfs) 2 year 0.54587 !`~ 5 year 1.518176 ~ 10 year 2.680528 25 year 5.044867 50 year 7.701283 100 year 11.37838 r--~ Yearly Peaks for Predeveloped and Developed-Mitigated Year Predeveloped Developed ~1 1956 0.309 0.000 1957 0.521 0.000 ~ 1958 0.299 0.000 ~, 1959 0.352 0.000 1960 0.388 0.000 1961 0.250 0.000 ~ ~ 1962 0.280 0.000 1 1963 0.526 0.000 LJ 1964 0.407 0.000 1965 0.371 0.000 1966 0.268 0.000 1967 0.309 0.000 1968 0.255 0.000 1969 0.254 0.000 '~ 1970 0.256 0.000 1971 0.313 0.000 1972 0.458 0.000 1973 0.298 0.000 1974 0.347 0.000 ~` 1975 0.300 0.000 1976 0.342 0.000 ' 1977 0.438 0.000 1 1978 0.372 0.000 U 1979 0.442 0.000 1980 0.332 0.000 ~' 1981 1982 0.377 0.439 0.000 0.000 1983 0.470 0.000 1984 0.284 0.000 1985 0.333 0.000 1986 0.361 0.000 1987 0.364 0.000 1988 0.220 0.000 (`~ 1989 0.263 0.000 1990 0.512 0.000 1991 0.482 0.000 1992 0.323 0.000 `~ 1993 0.237 0.000 1994 0.263 0.000 I~ L' 1995 0.381 0.000 1996 0.386 0.000 1997 0.311 0.000 1998 0.436 0.000 1999 0.376 0.000 If`~ U ~~ U ff`~ U (r'~ L~ I(~ LJ r~ III ~, I` ~~ r'~ L~ V Ranked Yearly Peaks for Predeveloped and Developed-Mitigated Rank Predeveloped Developed 1 0.5208 0.0000 2 0.5125 0.0000 3 0.4824 0.0000 4 0.4695 0.0000 5 0.4581 0.0000 6 0.4425 0.0000 7 0.4388 0.0000 8 0.4379 0.0000 9 0.4363 0.0000 10 0.4074 0.0000 11 0.3875 0.0000 12 0.3865 0.0000 13 0.3806 0.0000 14 0.3769 0.0000 15 0.3758 0.0000 16 0.3718 0.0000 17 0.3710 0.0000 18 0.3639 0.0000 19 0.3607 0.0000 20 0.3520 0.0000 21 0.3468 0.0000 22 0.3423 0.0000 23 0.3326 0.0000 24 0.3320 0.0000 25 0.3230 0.0000 26 0.3127 0.0000 27 0.3112 0.0000 28 0.3095 0.0000 29 0.3087 0.0000 30 0.3004 0.0000 31 0.2988 0.0000 32 0.2977 0.0000 33 0.2844 0.0000 34 0.2804 0.0000 35 0.2677 0.0000 36 0.2629 0.0000 37 0.2628 0.0000 38 0.2555 0.0000 39 0.2548 0.0000 40 0.2535 0.0000 41 0.2503 0.0000 42 0.2366 0.0000 43 0.2197 0.0000 1/2 2 year to 50 year Flow(CFS) Predev Final Percentage Pass/Fail 0.1711 1061 0 .0 Pass 0.1750 1020 0 .0 Pass 0.1788 940 0 .0 Pass 0.1827 878 0 .0 Pass 0.1866 816 0 .0 Pass 0.1905 739 0 .0 Pass 0.1944 690 0 .0 Pass 0.1983 638 0 .0 Pass 0.2022 593 0 .0 Pass 0.2061 549 0 .0 Pass 0.2100 518 0 .0 Pass 0.2138 485 0 .0 Pass 0.2177 451 0 .0 Pass 0.2216 417 0 .0 Pass ;~ ~, 0.2255 379 0 .0 Pass 0.2294 352 0 .0 Pass 0.2333 323 0 .0 Pass 0.2372 307 0 .0 Pass 0.2411 283 0 .0 Pass 0.2450 266 0 .0 Pass 2489 0 243 0 .0 Pass . 0.2527 224 0 .0 Pass L~ 0.2566 209 0 .0 Pass 0.2605 197 0 .0 Pass ~ 0.2644 183 0 .0 Pass 0.2683 173 0 .0 Pass 0.2722 164 0 .0 Pass 0.2761 155 0 .0 Pass ~ ~ 0.2800 150 0 .0 Pass 4 0.2839 143 0 .0 Pass u 0.2877 138 0 .0 Pass ~ 0.2916 134 0 .0 Pass ~, 0.2955 127 0 .0 Pass 0.2994 116 0 .0 Pass L_I 0.3033 109 0 .0 Pass ~ 0.3072 101 0 .0 Pass ~~ 0.3111 94 0 .0 Pass 0.3150 90 0 .0 Pass 0.3189 87 0 .0 Pass 3227 0 84 0 .0 Pass . 0.3266 75 0 .0 Pass ~~ 0.3305 73 0 .0 Pass 0.3344 68 0 .0 Pass ~ 0.3383 62 0 .0 Pass r ~ ~ 0.3422 59 0 .0 Pass Lj 0.3461 56 0 .0 Pass 0.3500 54 0 .0 Pass r~ 0.3539 50 0 .0 Pass lJ 0.3578 0.3616 48 45 0 0 .0 .0 Pass Pass 0.3655 41 0 .0 Pass ~ ' 0.3694 0.3733 38 36 0 0 .0 .0 Pass Pass 0.3772 33 0 .0 Pass 0.3811 29 0 .0 Pass 0.3850 28 0 .0 Pass 0.3889 25 0 .0 Pass 0.3928 24 0 .0 Pass -- 0.3966 22 0 .0 Pass ~i 0.4005 21 0 .0 Pass ~~ 0.4044 19 0 .0 Pass 0.4083 18 0 .0 Pass 0.4122 17 0 .0 Pass r~ 0.4161 16 0 .0 Pass 1J 0.4200 16 0 .0 Pass 0.4239 15 0 .0 Pass 0.4278 13 0 .0 Pass ~, 0.4317 13 0 .0 Pass , L1 0.4355 13 0 .0 Pass 0.4394 10 0 .0 Pass 0.4433 8 0 .0 Pass ~i 0.4472 8 0 .0 Pass LJ 0.4511 8 0 .0 Pass 0.4550 8 0 .0 Pass ~ 0.4589 7 0 .0 Pass ~ ~ 0.4628 6 0 .0 Pass , ~.J 0.4667 6 0 .0 Pass 0.4705 5 0 .0 Pass ~ 0.4744 5 0 .0 Pass ~ 0.4783 5 0 .0 Pass i.J 0.4822 5 0 .0 Pass 0.4861 4 0 .0 Pass 0.4900 4 0 .0 Pass C` 0.4939 4 0 .0 Pass r 0.4978 4 0 .0 Pass 0.5017 4 0 .0 Pass 0.5056 4 0 .0 Pass ~ 0.5094 4 0 .0 Pass 0.5133 3 0 .0 Pass 0.5172 3 0 .0 Pass 0.5211 1 0 .0 Pass n 0.5250 0.5289 1 0 0 0 .0 .0 Pass Pass 0.5328 0 0 .0 Pass ' 0.5367 0.5406 0 0 0 0 .0 .0 Pass Pass 0.5444 0 0 .0 Pass 0.5483 0 0 .0 Pass 0.5522 0 0 .0 Pass C 0.5561 0 0 .0 Pass i Water Quality BMP Flow and Volume. On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. 1~ Adjusted for 15 min: 0 cfs. I1 I program and accompanying documentation as provided 'as-is' without warranty of any kind. The entire risk regarding U the performance and results of this program is assumed by the user. AQOA TERRA Consultants and the Washington State Department of Ecology disclaims all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall AQUA TERRA Consultants and/or the (~ Washington State Department of Ecology be liable for any damages whatsoever (including without limitation to damages U for loss of business profits, loss of business information, business interruption, and the like) arising out of the user of, or inability to use this program even if AQUA TERRA Consultants or the Washington State Department of Ecology has been advised of the possibility of such damages. (i 1 t U ~~ ~ i__1 U~ I~ U I~~ u u I U l.J V YEAR FlOiU ~Cts) ao~ ss as 1Q0 ~~~x;xx~xxxx xxxxkxx~Kxk~ . ii} ~~ 3 { I 3 3 ~ t 3 ~~ j~ ~ r rr~ JV ~.JJO~ ~ i 3i 1~~~ ~S } ~I ~ e 3 ~ 9 S ~ ~ ~ Y 3 ~ ~ ii 'i~0 3 ~ _E tf } 9 0 9D .461 ~ ~ ~ dal' ~~? E j, . ~ 475$ - ~ ~ ~ t 7 ~ , ~ l a ~ I ? ~ ~ ppppgpoo9~4 . ~ { ~ s 3 lei 3~ ~tl (~3 j ~ t t ~~ ,' ~ ~ A^ ~A ~ 0 I ~~~Q~ ~ ~ j ~ ~ ' 3 t _ _ w ~ ~ 1~-1 {' ,{. ,,,{ 3 lo~~.~ TTiii~tll~~ 'A 17 .~P .~~ 2 t t ~ r '~ ~ 3 ~~ y3 ##~7Sly _ ~ ~ ~[St `' l lit ~~' ~ t ~ 7 ~ ~ - r ' ~ " - ~10E-~ ~,. : : x- ,: 1 1i! ~ '20 ~ ,40 54 6i1 '70 $0~ ; 9D 99 ;; Cumulative Probab~l' Yearly Peaks for Predeveloped Flow Frequency Chart O.s6 ~ ~.w:~.-~-. ~ x Developed ~ f acility ~.°. 0.46 ~ 0.36 ,. -• 0.27 ; 0.1T _............ _ _ 4~ ~ ~ p u~ ~... ' ~~ ;~DE-4 10E-3 1UE-2 10E-;i 1 10 10Ea ~ { per~erit%Ex+~~eclln YEAR - i=t.OW {r(s} -- 100 11 ~3$ , 77 to ~ `~ ~~i ;( i~ x~i; ~ '~ ! s ii~[~~3~,31 1 #jj 9 ~E }7 ~~lj~ ( ~ )~' 3' t 50 7.7111 i i 'ji~'~~' i?~~'3~ ~~'''~'' t~l~~ ~~~ ~~ t ~. ~'' ~ .~Itl= ~ _ , ,, , ~~( ~ t;i ~;t ~, ilk ~=i I j •EJ ~Jd1`r7 ~ 7 `} ~,3 t~ Iii ~ i..~~~ i ~ t #j _ ,3~ I~,~}, ~. '~' ~~,; ~~ 10 ~2.6~$1 -- rj;3 iii ~; `i ~ l Yearly Peaks for Developed W/Pond Duration Graph Yearly Peaks for developed W/O Pond I-' WESTERN WASHINGTON HYDROLOGY MODEL V2 PROJECT REPORT Lj Project Name: Tahoma Terra BASIN -I (IP) Site Address: Tahoma Terra, LLC City Yelm, Washington Report Date 8/5/2005 C Gage Olympia Data Start 1955 Data End 1999 G1 (adjusted) Precip Scale: 0.80 C rr PREDEVELOPED LAND USE I~ Basin Basin I (IP) ~J Flows To Point of Compliance Groundwater: No ~~ Land Use Acres `~ OUTWASH PASTURE: 13.19 i IMPERVIOUS: 1.37 C I C DEVELOPED LAND USE Basin Basin I (IP) r' Flows To Infiltration Pond ILJJ Groundwater: No Land Use Acres ~~ OUTWASH GRASS: 7.95 IMPERVIOUS: 6.61 U RCHRES (POND) INFORMATION Pond Name: Infiltration Pond U Pond Type: Trapezoidal Pond Pond Flows to Point of Compliance ' Pond Rain / Evap is not activated. Dimensions Depth: aft. Bottom Length: 208ft. (~ Bottom Width 52ft. (~J; Side slope 1: 3 To 1 Side slope 2: 3 To 1 Side slope 3: 3 To 1 Side slope 4: 3 To 1 i Volume at R~.ser Head: 0.914 acre-ft. Discharge Structure Riser Height: 3 ft. Riser Diameter: 10000 in. Pond Hydraulic Table ~I Stage (f t) Area(acr) Volume(acr-ft) Dschrg(cfs) Infilt(cfs) 329.0 0.248 0.000 0.000 0.000 329.0 0.250 0.011 0.000 2.521 329.1 0.251 0.022 0.000 2.538 ~' 329.1 0.253 0.033 0.000 2.555 329.2 0.255 0.045 0.000 2.572 +n U f-? i I~'~ u I~ l__1 ~~ ~. LJ I(-`' 1.J (~ 329.2 0.256 0.056 0.000 2.589 329.3 0.258 0.067 0.000 2.606 329.3 0.260 0.079 0.000 2.623 329.4 0.261 0.091 0.000 2.640 329.4 0.263 0.102 0.000 2.657 329.4 0.264 0.114 0.000 2.675 329.5 0.266 0.126 0.000 2.692 329.5 0.268 0.138 0.000 2.709 329.6 0.269 0.149 0.000 2.727 329.6 0.271 0.161 0.000 2.744 329.7 0.273 0.174 0.000 2.761 329.7 0.274 0.186 0.000 2.779 329.8 0.276 0.198 0.000 2.796 329.8 0.277 0.210 0.000 2.814 329.8 0.279 0.223 0.000 2.831 329.9 0.281 0.235 0.000 2.849 329.9 0.282 0.248 0.000 2.867 330.0 0.284 0.260 0.000 2.884 330.0 0.286 0.273 0.000 2.902 330.1 0.287 0.286 0.000 2.920 330.1 0.289 0.298 0.000 2.937 330.2 0.291 0.311 0.000 2.955 330.2 0.292 0.324 0.000 2.973 330.2 0.294 0.337 0.000 2.991 330.3 0.296 0.350 0.000 3.009 330.3 0.298 0.364 0.000 3.027 330.4 0.299 0.377 0.000 3.045 330.4 0.301 0.390 0.000 3.063 330.5 0.303 0.404 0.000 3.081 330.5 0.304 0.417 0.000 3.099 330.6 0.306 0.431 0.000 3.117 330.6 0.308 0.444 0.000 3.135 330.6 0.309 0.458 0.000 3.153 330.7 0.311 0.472 0.000 3.172 330.7 0.313 0.486 0.000 3.190 330.8 0.315 0.500 0.000 3.208 330.8 0.316 0.514 0.000 3.226 330.9 0.318 0.528 0.000 3.245 330.9 0.320 0.542 0.000 3.263 331.0 0.321 0.556 0.000 3.282 331.0 0.323 0.570 0.000 3.300 331.0 0.325 0.585 0.000 3.319 331.1 0.327 0.599 0.000 3.337 331.1 0.328 0.614 0.000 3.356 331.2 0.330 0.629 0.000 3.374 331.2 0.332 0.643 0.000 3.393 331.3 0.334 0.658 0.000 3.412 331.3 0.335 0.673 0.000 3.430 331.4 0.337 0.688 0.000 3.449 331.4 0.339 0.703 0.000 3.468 331.4 0.341 0.718 0.000 3.487 331.5 0.343 0.733 0.000 3.505 331.5 0.344 0.748 0.000 3.524 331.6 0.346 0.764 0.000 3.543 331.6 0.348 0.779 0.000 3.562 331.7 0.350 0.795 0.000 3.581 331.7 0.351 0.810 0.000 3.600 331.8 0.353 0.826 0.000 3.619 331.8 0.355 0.842 0.000 3.638 331.8 0.357 0.857 0.000 3.657 331.9 0.359 0.873 0.000 3.677 331.9 0.360 0.889 0.000 3.696 332.0 0.362 0.905 0.000 3.715 332.0 0.364 0.922 26.89 3.734 ANALYSIS RESULTS I(~ LJ i I~~ u 4 ("'l U r Ir~~ l_.1 V I I~ U +~ U i r~ U ~~~ u ~' I~~ U Flow Frequency Return Periods for Predeveloped Return Period Flow(cfs) 2 year 0.342124 5 year 0.415844 10 year 0.461502 25 year 0.51658 50 year 0.556113 100 year 0.594617 Flow Frequency Return Periods for Developed Unmitigated Return Period Flow(cfs) 2 year 1.604129 5 year 1.962435 10 year 2.185437 25 year 2.455417 50 year 2.649796 100 year 2.839554 Flow Frequency Return Periods for Developed Mitigated Return Period Flow(cfs) 2 year 0.54587 5 year 1.518176 10 year 2.680528 25 year 5.044867 50 year 7.701283 100 year 11.37838 Yearly Peaks for Predeveloped and Developed-Mitigated Year Predeveloped Developed 1956 0.309 0.000 1957 0.521 0.000 1958 0.299 0.000 1959 0.352 0.000 1960 0.388 0.000 1961 0.250 0.000 1962 0.280 0.000 1963 0.526 0.000 1964 0.407 0.000 1965 0.371 0.000 1966 0.268 0.000 1967 0.309 0.000 1968 0.255 0.000 1969 0.254 0.000 1970 0.256 0.000 1971 0.313 0.000 1972 0.458 0.000 1973 0.298 0.000 1974 0.347 0.000 1975 0.300 0.000 1976 0.342 0.000 1977 0.438 0.000 1978 0.372 0.000 1979 0.442 0.000 1980 0.332 0.000 1981 0.377 0.000 1982 0.439 0.000 1983 0.470 0.000 1984 0.284 0.000 1985 0.333 0.000 1986 0.361 0.000 1987 0.364 0.000 1988 0.220 0.000 1989 0.263 0.000 1990 0.512 0.000 1991 0.482 0.000 1992 0.323 0.000 1993 0.237 0.000 1994 0.263 0.000 C 1995 0.381 0.000 1996 0.386 0.000 ~ 1997 0.311 0.000 1998 0.436 0.000 1999 0.376 0.000 ~, Ranked Yearly Peaks for Predeveloped and Developed-Mita.gated U Rank Predeveloped Developed 1 0.5208 0.0000 2 0.5125 0.0000 3 0.4824 0.0000 4 0.4695 0.0000 ~,- 5 0.4581 0.0000 6 7 0.4425 0.4388 0.0000 0.0000 8 0.4379 0.0000 9 0.4363 0.0000 ~ 10 0.4074 0.0000 I 11 0.3875 0.0000 u 12 0.3865 0.0000 ~ 13 0.3806 0.0000 14 0.3769 0.0000 15 0.3758 0.0000 16 0.3718 0.0000 ~ 17 0.3710 0.0000 (, 18 0.3639 0.0000 19 0.3607 0.0000 20 0.3520 0.0000 21 0.3468 0.0000 n 22 0.3423 0.0000 23 0.3326 0.0000 24 0.3320 0.0000 ~ 25 0.3230 0.0000 (, 26 0.3127 0.0000 27 0.3112 0.0000 28 0.3095 0.0000 i 29 0.3087 0.0000 30 0.3004 0.0000 31 0.2988 0.0000 32 0.2977 0.0000 ~ C 33 34 0.2844 0.2804 0.0000 0.0000 35 0.2677 0.0000 36 0.2629 0.0000 r~ 37 0.2628 0.0000 ' 38 0.2555 0.0000 U 39 0.2548 0.0000 40 0.2535 0.0000 n 41 0.2503 0.0000 I 42 0.2366 0.0000 U 43 0.2197 0.0000 In u n U r`1 L~ Irk U i V 1/2 2 year to 50 year Flow(CFS) Predev Final Percentage Pass/Fail 0.1711 1061 0 .0 Pass 0.1750 1020 0 .0 Pass 0.1788 940 0 .0 Pass 0.1827 878 0 .0 Pass 0.1866 816 0 .0 Pass 0.1905 739 0 .0 Pass 0.1944 690 0 .0 Pass 0.1983 638 0 .0 Pass 0.2022 593 0 .0 Pass 0.2061 549 0 .0 Pass 0.2100 518 0 .0 Pass 0.2138 485 0 .0 Pass 0.2177 451 0 .0 Pass 0.2216 417 0 .0 Pass L__1 i I~ L~ { ~, ~~ V f~ I~I ~ LJ~ n I 0.2255 379 0 .0 Pass 0.2294 352 0 .0 Pass 0.2333 323 0 .0 Pass 0.2372 307 0 .0 Pass 0.2411 283 0 .0 Pass 0.2450 266 0 .0 Pass 0.2489 243 0 .0 Pass 0.2527 224 0 .0 Pass 0.2566 209 0 .0 Pass 0.2605 197 0 .0 Pass 0.2644 183 0 .0 Pass 0.2683 173 0 .0 Pass 0.2722 164 0 .0 Pass 0.2761 155 0 .0 Pass 0.2800 150 0 .0 Pass 0.2839 143 0 .0 Pass 0.2877 138 0 .0 Pass 0.2916 134 0 .0 Pass 0.2955 127 0 .0 Pass 0.2994 116 0 .0 Pass 0.3033 109 0 .0 Pass 0.3072 101 0 .0 Pass 0.3111 94 0 .0 Pass 0.3150 90 0 .0 Pass 0.3189 87 0 .0 Pass 0.3227 84 0 .0 Pass 0.3266 75 0 .0 Pass 0.3305 73 0 .0 Pass 0.3344 68 0 .0 Pass 0.3383 62 0 .0 Pass 0.3422 59 0 .0 Pass 0.3461 56 0 .0 Pass 0.3500 54 0 .0 Pass 0.3539 50 0 .0 Pass 0.3578 48 0 .0 Pass 0.3616 45 0 .0 Pass 0.3655 41 0 .0 Pass 0.3694 38 0 .0 Pass 0.3733 36 0 .0 Pass 0.3772 33 0 .0 Pass 0.3811 29 0 .0 Pass 0.3850 28 0 .0 Pass 0.3889 25 0 .0 Pass 0.3928 24 0 .0 Pass 0.3966 22 0 .0 Pass 0.4005 21 0 .0 Pass 0.4044 19 0 .0 Pass 0.4083 18 0 .0 Pass 0.4122 17 0 .0 Pass 0.4161 16 0 .0 Pass 0.4200 16 0 .0 Pass 0.4239 15 0 .0 Pass 0.4278 13 0 .0 Pass 0.4317 13 0 .0 Pass 0.4355 13 0 .0 Pass 0.4394 10 0 .0 Pass 0.4433 8 0 .0 Pass 0.4472 8 0 .0 Pass 0.4511 8 0 .0 Pass 0.4550 8 0 .0 Pass 0.4589 7 0 .0 Pass 0.4628 6 0 .0 Pass 0.4667 6 0 .0 Pass 0.4705 5 0 .0 Pass 0.4744 5 0 .0 Pass 0.4783 5 0 .0 Pass 0.4822 5 0 .0 Pass 0.4861 4 0 .0 Pass 0.4900 4 0 .0 Pass 0.4939 4 0 .0 Pass n 0.4978 4 0 .0 Pass U 0.5017 4 0 .0 Pass 0.5056 4 0 .0 Pass ~-~ 0.5094 4 0 .0 Pass U 0.5133 3 0 .0 Pass 0.5172 3 0 .0 Pass 0.5211 1 0 .0 Pass ~ 0.5250 1 0 .0 Pass ~~ 0.5289 0 0 .0 Pass 0.5328 0 0 .0 Pass ' 0.5367 0.5406 0 0 0 0 .0 .0 Pass Pass 0.5444 0 0 .0 Pass 0.5483 0 0 .0 Pass ' 0.5522 0 0 .0 Pass 0.5561 0 0 .0 Pass V Water Quality BMP Flow and Volume. On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. ~J AdOusted for 15 m~.n: 0 cfs. - Off-line facility target flow: 0 cfs. ' Adjusted for 15 min: 0 cfs. program and accompanying documentation as provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by the user. AQUA TERRA Consultants and the Washington State Department of Ecology disclaims all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall AQUA TERRA Consultants and/or the Washington State Department of Ecology be liable for any damages whatsoever (including without limitation to damages ~~ for loss of business profits, loss of business information, business interruption, and the like) arising out of the user of, or inability to use this program even if AQUA TERRA Consultants or the Washington State Department of Ecology has been advised of the possibility of such damages. `~ u L I~ U i, f I 4~-~ C G 4 r ~ U C l__l u ~~ r~ V 1QU ~kkkkkkkkkkk kkhkkkkkkkkk ..~+. 1-U fji p40440 0 440 ~ 44~ o Predxveloped, 10E 1 x D~uelopEd M~tjgated ~. ~a :Y ~o ,zo ~~ 40 3o so za ° ao ~ ~~ FE, Guniui~tive'Pr>~bab~li nr Yearly Peaks for Predeveloped Flow Frequency Chart 1'9;AR ~ ftOS~ ~tks? 100 11.38 ;~'~ ~;I~` f) ~`i~i''~~ ~'`i ' i' i3~~j~ I, '~ ~ l~i?,?l ~ <i 50 7.701 7#i E )' ~~~~757j~ ~ ~ ~~ ~~ `~l,i7i ;, j ~ { ~+ r 3 ~~F~ 3i33~7~ ~~ 25 5.045..~...'..-~ ~ ~ )~~i's~'~,~ ~~ ~~~j~', ~~~ x 10 '2,881... _ ~ 5 1.598 '...,.__ ~. Yearly Peaks for Developed W/Pond 0.50 ~r~~ate'~e-~------.•... ~' x Deueloped ~~ Faaltyy 0.40 _....W...........-. _.._.._.. 0.36 .. . q .r. 0.27 - 0.97 , .. ~ w C'1 1~•5 t 10E-4 10E 3 10E•2 10E-1 1 1d PBrCt~l'1~ ~XGB@t~~Clt~; Duration Graph Yearly Peaks for developed W/O Pond -, ~U C`' 1 U ~J ~J (~' ~U ~.J ~p~endix 2 Basin Map ~ - G~ ~ '-- ~ ~~ L~ __ - _-- __ r / ~ ` ~ ~ ~ ~,~ o ~z `~' zo 'r ~ z cry N~ d O+ n ~ O d N ~ Y1 ~w p ~O o~ -1 ~ z "D ~' vm q ~ ~Z y~y y u, ~ ~ Z ~~ ~m0 O -_{ v z ~,~ `^ ~ o z~ n ~ O C~ ~ ~, c z G ~ z ... rn Q z Z y MnltF, ~ 1 ~ s t ` z ~~ O ~ ,~O ~~~ / 6R Z~ ' / ~S n ~~ ~~~ $ z ~ t ~ ~ i I / ~ m a m~ ~ ~ I / 1 t i ~ N t /~ J r ~ ~ ~ a ~ R (/ k i ~ 0 ~ , l ,i ~ ~ '~ , ~ j ( I J ~ i ~ ' ( I ~ ~' 0 z a C~ 8 O z 't1 Z r °' y N Z m n O g o ~ r ~ r ~ p Z ~m ~ G m 1 ° iny n~~ a b~c A ~ A T O u o r ~m° r, o ~+ m ~ v_~ ~o 0 ~ ~ ~, T ~ ~' Q z '- '~ G' ~ ~ z C7 ~~ ems" ; Ku`,_ :'% \ FUTURE ~ m 1 I ~ ~ ' ~ ' ' ~Q ~ ~~ ~~ Z _ I ~ ~ ~ ' ~ ~ ~ ~ ~ "' ~ ~ m ~ I ° ® A ~ ® OO ~ ~f11 i ~ ~1~1 1 ' ~ 1 I "`+d~ f ~ O~ l ~ ~, ~` p ~~ I [fi u+ ~ ~ ~ ~ nn c a o O g g ~. O w ~ s ~ ~, ~, ~ o ~ ° ~ ~ ~ 0 o A p ~ ~' ~ ~ i' v ~ ~ ~ a B ~ ~ N be ~ ~ ~ o ~ g ~ o ~ ~ ~ ~ ~ m ~, ~ ~ ~ ~ ~ ~ ~ < ~ ~ ~ ~ o 0 ~ ~ o o v -, ~, ~-, ;-~ ~1 r~ ~~ r~ ~~ Appendix 3 Vicinity Map U ~, U r-i, u ~~ (~. T AI.{pMA TERRA VICINITY MAP EXN-E 3 I~ U Ir`1 ~J I~ ~.l ~..y f -' I~~~ ~J I~ l_.1 LI rye U ~; ~,~ Appendix 4 FEMA Map ~~ ~~ ~~ ~ ~..-- U ~~ ~, ~j ~' ~~~ 1~ ~~ ~. ~i 0 m ~` ~ 1 ~~ 't O ~ p ~ d 7t l~ z m ~ m cn o ~ ~~ Wo X ~~ z m ° ~ O o ~~ z ~ ~, v z m r c m in ~) ~' I ~~ U ~~ 5 ~ j V 4J 1..~ J__J, ~4 U Appendix S Facility Summary Forms i~ ~`; ~`` L~ ~~ ~~ ~'~ ;I ~~ ~~ l~ I~ l~l3~ ~J u ~~ THURSTON COUNTY REGION FACILITY SUMMARY FORM Complete one (1) for each facility (detention/retention, coalescing plate filter, etc.) on the project site. Attach 8 i/2 x i 1 sketch showing location of facility. Proponent's Facility Name or Identifier (e.g., Pond A) ............ . Name of Road or Street to Access Facility :..................... . Hearings Examiner Case Number :........................... . Development Rev. Project No./Bldg. Permit No .:................ . Parcel Number: ........................................... :Bio-infiltration swales and Wet Pods with Infiltration Pond Yelm Avenue SE Longmire Street SE, Berry Valley Road, Durant Street and new Tahoma Terra Blvd. Terra View St. SE, Terra Glenn St SE 21724319100 21724340100, etc To be completed by Utility Staff: Utility Facility Number Project Number (num) Parcel Number Status: (num, 1ch) 0, Known; 1, Public; 2 Unknown; 3, Unassigned Basin and Subbasin: (num, 6ch) (2ch for basin, 2ch for subbasin, 2ch future Responsible CITY: (alpha, 1 ch) Hall Equities Group Contact: Steven L. Chamberlain 4200 6th Avenue SE, Suite 401 Lacey, WA 98503 Part 1 - Proiect Name and Proponent Project Name ................................ Tahoma Terra LLC, Longmire Street SE Improvement. Project DEVELOPER ......................... . Project Contact ............. . ............... . Address ................................... Phone ..................................... Project Proponent: (if different) ................. . Address .................................... Phone ..................................... Project Engineer ............................. Firm ....................................... Steven L. Chamberlain 4200 6`" Avenue SE Suite 301 Same Same Same Marek J. Danilowicz, P.E. SCA Consulting Group 360-493-6002 l~ ' Part 2 -Proiect Location ~ Section(s) 33 Township 18 N ('~ Range 1 W, Willamette Meridian ~; Part 3 - Type of Permit Application ~ Type of permit (e.g., Commercial Bldg.): ~ Other Permits (circle) DOFNV HPA COE 404 ~ COE Wetlands DOE Dam Safety ~ FEMA Floodp/ain L-.J' Shoreline Mgmt Rockery/Retaining Wall Encroachment Grading r-~ NPDES ~' OtherAS REQUIRED BY CITY OF YELM ~ ~ Other Agencies (Federal, State, Local, etc.) that have had or will review this ,~ Drainage Erosion Control Plan: N/A ~~ Part 4 -Proposed Proiect Description What stream basin is this project in (e.g., Percival, Woodland)........ Thomson Creek, Nisqualy River Project Size, acres .......................................... 47.65Ac Zoning ................................................... '~' f On-site: Residential Subdivision: Number of Lots :............................ 216 Lot size (average), acres :.................... 0.1147 Building Permit /Commercial :............................ . Building Footprint, acres:.. 8.22 Concrete Paving, acres ::................... 5.06 {'~~ Gravel Surface, acres ::.................... . ~ ' Lattice Block Paving, acres: .:................ . -- Porous paving, acres Public Roads (including gravel shoulder), acres :.............. 12.41 t ' ~ Private Roads (including gravel shoulder), acres :............ . 23 66 acres : rface Total i S I it O L.l . .................... , mperv ous u n-s e Part 5 -Pre-Developed Proiect Site Characteristics (~, . ...NO Stream through site, y/n: N/A JJ ... , - .. • • . . ............................. Name: . DNR Type: ............................................N/A ~ Type of feature this facility discharges to (i.e., lake, stream, intermittent Groundwater --~ stream, pothole, roadside ditch, sheetf/ow to adjacent private property, etc.); ('~, Infiltration into ground,y/n :::::::::::::::::::::::::::::::. /n:: Ravines Swales Yes No , y , Steep slopes (steeper than 15%) y/n :.................... No ~ Erosion Hazard, y/n : .................................. 100 yr. F/oodplain, y/n :..................... ........... No Yes Lakes or Wetlands, y/n :................................ No Seeps/Springs, y/n ::.................................. No ~ High Groundwater Table, y/n :........................... No s`-t ~~ ~~ ~~ h ~~ ~~ f~, ~~ l~ ~~-~ ~~ LJ r''-~ ~~ ~'~ ~~ ~l W ~,l ~~ 1~ Wellhead Protection or Aquifer Sensitive Area, y/n:.......... Yes ctcm~y uG~Vnuutn i - ow n niniauv~ ~ ai iu n uuu auv~ ~ uaucuc~ Total Area Tributary to Facility lnc/uding Off-site (acres):............ 47.65 ac Total On-site Area Tributary to Facility (acres) :................... 47.65 ac Design Impervious Area Tributary to Facility (acres) :............... 10.38 ac Design Landscaped Area Tributary to Facility (acres) :.............. 23.72 ac Design Total Tributary Area to Facility (acres) :.................... 10.38 ac Enter a one (1) for the type of facility: ) :......................... . Wet pond detention .................................... 2 Wet pond water sun`ace area ........................... . Dry pond detention ................................... . Underground detention ................................. Infiltration pond ........................................ 1 Dry well infiltration .................................... . Coalescing plate separator ............................. . Centrifuge separator ................................. .. Biofilter .Cells ......................................... 14 .... Other............ Outlet type (Enter a one (1) for each type present) Filter ................................................ Oil water separator ..................................... Single orifice .......................................... 1 Multiple orifice ........................................ . Weir ................................................1 Spillway ............................................. 1 Pump(s) .................. .......................... Other (infiltration to groundwater) ..........................1 Part 7 -Release to Groundwater Design Percolation Rate to Groundwater (if applicable)............ 20 inches/hour t~ I~ ~y ~'-i l~ 2.J 1~ ~-,J ~~ U ~~~ ~~ r~-~ ~~ i,_ 1 1~ I~~~ L__.1 N ~J ~~ (~ 1 ~~~ U Appendix 6 Soil Evaluation Report ~, 1~ I l~ ~~ L;_) r ~,~ ~~ U ~~ U ~, 1~ ~~ ~..r fi SOIL EVALUATION REPORT FORM 1: GENERAL SITE INFORMATION PROJECT TITLE: Tahoma Terra SHEET: 1 OF 1 PROJECT NO.: 05100 DATE: 1/19/05 PREPARED BY: William Parnell, P.E. 1. SITE ADDRESS OR LEGAL DESCRIPTION: 14848 Longmire Street SE Yelm, WA 98597 TPN:21724310100 2. PROJECT DESCRIPTION: Create a residential subdivision with all associated roadway, utility and landscaping improvements. 3. SITE DESCRiP710N: The project site is currently occupied by one residential building and several outbuildings centrally located on the parcel. Site relief is relatively flat with no distinguishing features. Vegetation consists of actively used agricultural pasture grasses. The project site is bounded by Berry Valley Road to the north, Longmire Street SE to the south, residential to the east and undeveloped property to the west. On-site soils are well drained and formed in glacial outwash. 4. SUMMARY OF SOILS WORK PERFORMED: Thirteen test pits were excavated by backhoe to a maximum depth of 180" below existing grade. Soils were inspected by entering and visually logging each test pit to a depth of four feet. Soils beyond four feet were inspected by examining backhoe tailings. Falling head percolation tests were completed in test pits #2, 5, 7, 9, 11 and 13 at a depth of 60" below the existing grade. Test pit soil log data sheets and percolation test results are included in this report. 5. ADDITIONAL SOILS WORK RECOMMENDED: Additional soils work should not be necessary unless drainage infiltration facilities are located outside the general area encompassed by the soil test pits. 6. FINDINGS: The National Resource Conservation Service of Thurston County mapped the on-site soils as a Spanaway Gravelly Sandy Loam (110). All test pits confirm this designation. All test pits generally revealed gravelly fine sandy loam surface soils, overlying an extremely gravelly and cobbley coarse sand substratum. Substratum soils were moderately loose with na fines present. Winter water table was not present in any test pits. Falling head percolation tests were completed revealing the following infiltration rates: Test pit #2 - 2160 in/hr, #5 -144 inlhr, #7 - 188 in/hr, # 9 - 617 in/hr, #11 - 360 in/hr, #13 - 68.5 in/hr. Tests were completed utilizing a 6" diameter PVC pipe to prevent sidewall collapse 7. RECOMMENDATIONS: The Spanaway soil serves is a somewhat excessively drained sod that formed in glacial outwash. Infiltration rates are generally rapid in the substratum sods. The substratum soils should be targeted for all drainage infiltration facilites. A design infiltration rate of 20 in/hr or less would be appropriate for all targeted C-horizon sods as recommended in the attached soil log formation sheets. DOring construction, care must be taken to prevent erosion of exposed soils. Drainage facility infiltration surfaces must be properly protected from contamination by the fine-grained upper horizon sods and from compaction by site construction activities. Soils not properly protected will cause drainage infiltration facilities to prematurely fad. I hereby certify that 1 prepared this report, and conducted or supervised the pertormance of related work. I certify that I am qualified to do this work. I represent my work to be complete an accurate within the bounds of uncertainty inherent t practice of soils science, and to be suitable for its intended use. ~ -= ~~ ~=-mss.---~' ~,~~. ' ,,:~j~,~r SIGNED• C ~Y .'°~ DATE: ~ / C//~S ~~ ~ ~'~ -x -' s-~~`~"~°°~ ~, u III`~ LJ I~~ V ~, ~' ~~, ~,J ~'~ I~ j f`~? ~~ ~~ ~4 jt~ Horz ~~ A Bw ~~ C 1 ^J C2 I ' r~ ~~ r~ 1~ !~ SOIL EVALUATION REPORT FORM 2: SOIL LOG INFORMATION PROJECT TITLE: Tahoma Terra SHEET: 1 OF 13 PROJECT N0.:05100 DATE. 1/6/05 PREPARED BY: William Parnell, P.E. SOIL LOG: #1 LOCATION: 380 ft. west and 335 ft. south of the N.E. property comer. 1. TYPES OF TEST DONE: Z. SCS SOILS SERIES: 3. LAND FORM: None Spanaway Gravelly Sandy Terrace Loam (110) 4. DEPOSITION HISTORY: 5. HYDROLOGIC SOIL 6. DEPTH OF SEASONAL HW: Glacial outwash & volcanic ash GROUP: Unknown B 7. CURRENT WATER 8. DEPTH TO IMPERVIOUS 9. MISCELLANEOUS: DEPTH: LAYER: Level Greater than bottom of hole Greater than bottom of hole 10. POTENTIAL FOR: EROSION RUNOFF PONDING Slight Slow Mirnmal 11. SOIL STRATA DESCRIPTION: See Following chart 12. SITE PERCOLATION RATE: See FSP 13. FINDINGS & RECOMMENDATIONS: Use a design infiltration rate of 20 in/hr or less for drainage infiltration facilities located in the C horizon soils at 42° or greater below the existing ground surface. Soils Strata Description Soil Log #1 Depth Color Texture 0"- 21" 10YR2/1 GrFiSaLm 21 "- 42" 10YR3l2 LmFiSa 4,2;~,~2" 10YR5/4 LmMSa 4- 92"-144" 10YR5/1 Gravel wdh Coarse Sand Binder %CL %ORG CF STR MOT IND CEM ROO <X> FSP <20 <5 <10 1SBK - - - ff 2-6 2 <10 - <5 1SBK - - - ff 2-6 4 <5 - <5 SG - - - ff 6-20 20 <1 - <98 SG - - - - >20 20 1~ U U ~i ~~ f~ r~ ~-`I ~l (1~, ~./ ~II ~11 ~l (~~' Horz A Bw ,J C1 (~ C2 Ls ~ C2 ~'~ ~7 U `r`l 1J ~T a SOIL EVALUATION REPORT FORM 2: SOIL LOG INFORMATION PROJECT TITLE: Tahoma Terra SHEET: 2 OF 13 PROJECT N0.:05100 DATE: 1/6/05 PREPARED BY: William Parnell, P.E. SOIL LOG: #2 LOCATION: 380 ft. west and 595 ft. south of the N.E. property comer. 1. TYPES OF TEST DONE: 2. SCS SOILS SERIES: 3. LAND FORM: Falling Head Percolation Spanaway Gravelly Sandy Terrace Loam (110) 4. DEPOSITION HISTORY: 5. HYDROLOGIC SOIL 6. DEPTH OF SEASONAL HW: Glacial outwash & volcanic ash GROUP: Unknown B 7. CURRENT WATER 8. DEPTH TO IMPERVIOUS 9. MISCELLANEOUS: DEPTH: LAYER: Level Greater than bottom of hole Greater than bottom of hole 10. POTENTIAL FOR: EROSION RUNOFF PONDING Slight Slow Minimal 11. SOIL STRATA DESCRIPTION: See Following chart 12. SITE PERCOLATION RATE. See FSP 13. FINDINGS & RECOMMENDATIONS: A falling head percolation test completed at 60" below the existing grade yielded an infiltration rate of 2160 in/hr. Test was completed utilizing a 6" PVC pipe to prevent sidewall collapse. Use a design infiltration rate of 20 in/hr or less for drainage infiltration facilities located in the C honzon soils at 60" or greater below the existing ground surface. Soils Strata Description Soil Log #2 Depth Color Texture 0"- 28" 10YR2/1 GrFiSaLm 28~~-36" t0YR3/2 GrSaLm "r+ 36"- 60" t0YR4/4 VGrLmM-FSa 60"- 68" t0YR5l1 Gravel with Coarse Sand Binder 68"-132" 10YR5/1 ExGr&Cob CSa %CL %ORG CF STR MOT <20 <S <5 1SBK - <20 - <10 1 SBK - <10 - <50 SG - <7 - <98 SG - <1 - <90 SG - IND CEM ROO <X> FSP - - ff 2-6 2 - - ff 2-6 4 - - ff 6-20 20 - - - >20 20 - - - >20 20 I 1 U ~~ ~~ (~ l~ C~ C~ ~ ~~ ~, tY1 ~~ I,~j ~ `~ U ~, ~~ ~~ SOIL EVALUATION REPORT FORM 2: SOIL LOG INFORMATION PROJECT TITLE: Tahoma Terra SHEET: 3 OF 13 PROJECT N0.:05100 DATE: 1/6/05 PREPARED BY: William Parnell, P.E. SOIL LOG: #3 LOCATION: 380 ft. west and 855 ft. south of the N.E. property corner. 1. TYPES OF TEST DONE: 2. SCS SOILS SERIES: 3. LAND FORM: None Spanaway Gravelly Sandy Terrace Loam (110) 4. DEPOSITION HISTORY• 5. HYDROLOGIC SOIL 6. DEPTH OF SEASONAL HW: Glacial outwash & volcanic ash GROUP: Unknown B 7. CURRENT WATER 8. DEPTH TO IMPERVIOUS 9. MISCELLANEOUS: DEPTH: LAYER: Level Greater than bottom of hole Greater than bottom of hole 10. POTENTIAL FOR: EROSION RUNOFF PONDING Slight Slow Minimal 11. SOIL STRATA DESCRIPTION: See Following chart 12. SITE PERCOLATION RATE: See FSP 13. FINDINGS & RECOMMENDATIONS. Use a design infiltration rate of 20 in/hr or less for drainage infiltration facilities located in the C horizon soils at 67" or greater below the existing ground surface. U (-t Horz Depth p 4 A 0"- 36" Bw 36"- 40" ~~ " , C 1 44:x.67 U C2 6T 144" ~~ I L~ ~, U (~ I ~~ ~, ~~ L~ Color Texture 10YR2/1 GrFiSaLm t0YR3/2 GrLmFiSa t OYR4/4 VGrLmM-FSa 10YRSl1 ExGrBCob CSa Soils Strata Description Soil Log #3 %CL %ORG CF STR <20 <5 <5 1 SBK <20 - <20 1SBK <10 - <SS SG <1 - <85 SG MOT IND CEM ROO <X> FSP - - - ff 2-6 2 - - - ff 2-6 6 - - - ff 6-20 20 - - - - >20 20 ~~ '~ SOIL EVALUATION REPORT FORM 2: SOIL LOG INFORMATION aI ~I U ,- ~~ )~~ ~~ ~~ ~~ n r~ PROJECT TITLE: Tahoma Terra SHEET: 4 OF 13 PROJECT N0.:05100 DATE: 1/6/05 PREPARED BY: William Parnell, P.E. SOIL LOG: #4 LOCATION: 313 ft. west and 85 ft. north of the S.E. property comer. 1. TYPES OF TEST DONE: 2. SCS SOILS SERIES: 3. LAND FORM: None Spanaway Gravelly Sandy Terrace Loam (110) 4. DEPOSITION HISTORY: 5. HYDROLOGIC SOIL 6. DEPTH OF SEASONAL HW: Glacial ouiwash & volcanic ash GROUP: Unknown B 7. CURRENT WATER 8. DEPTH TO IMPERVIOUS 9. MISCELLANEOUS: DEPTH: LAYER: Level Greater than bottom of hole Greater than bottom of hole 10. POTENTIAL FOR: EROSION RUNOFF PONDING Slight Slow Minimal 11. SOIL STRATA DESCRIPTION: See Following chart 12. SITE PERCOLATION RATE: See FSP 13. FINDINGS & RECOMMENDATIONS: Use a design infiltration rate of 20 in/hr or less for drainage infiltration facilities located in the C horizon sods at 48" or greater below the existing ground surface. , ` U Horz Depth Color Texture ~~ A 0"- 24" t OYR2/1 GrFiSaLm Bw 24"- 30" t0YR3/2 GrLmFiSa {~ C1 30Y 48" 10YR4/4 VGrLmM-FSa I ` F 0`' V C2 4$ 96" 10YR5/1 ExGr&Cob C-MSa, some stones C3 96"-114" 10YR5/1 Gravel vnth CSa border ~, C4 114"-144" 10YR5/1 ExGrBCob ~ J C-MSa ~~ i Soils Strata Description Soil Log #d %CL %ORG CF STR MOT IND CEM ROO <X> FSP <20 <5 <10 1 SBK - - - ff 2-6 2 <20 - <20 1SBK - - - ff 2-6 6 <10 - <45 SG - - - ff 6-20 20 <5 - <75 SG - - - - >20 20 <5 - <95 SG <5 - <75 SG >20 20 >20 20 ~`~ U r-T U ~,1 u ~~ f~ l~j ~~ ~{~~, i i C fi~ U ~~ ~~ n, 1 , ~~ ~~ I~ L_ J SOIL EVALUATION REPORT FORM 2: SOIL LOG INFORMATION PROJECT TITLE. Tahoma Terra SHEET: 5 OF 13 PROJECT N0.:05100 DATE: 1/6/05 PREPARED BY- William Parnell, P.E. SOIL LOG: #5 LOCATION: 572 ft. west and 85 ft. north of the S.E. property comer. 1. TYPES OF TEST DONE: 2. SCS SOILS SERIES: 3. LAND FORM: Falling Head Percolation Spanaway Gravelly Sandy Terrace Loam (110) 4. DEPOSITION HISTORY: 5. HYDROLOGIC SOIL 6. DEPTH OF SEASONAL HW: Glacial outwash & volcanic ash GROUP: Unknown B 7. CURRENT WATER 8. DEPTH TO IMPERVIOUS 9. MISCELLANEOUS: DEPTH: LAYER: Level Greater than bottom of hole Greater than bottom of hole 10. POTENTIAL FOR: EROSION RUNOFF PONDING Slight Slow Minimal 11. SOIL STRATA DESCRIPTION: See Following chart 12. SITE PERCOLATION RATE. See FSP 13. FINDINGS & RECOMMENDATIONS: A falling head percolation test completed at 60" below the existing grade yielded an infiltration rate of 144 in/hr. Test was completed utilizing a 6" PVC pipe to prevent sidewall collapse. Use a design infiltration rate of 20 in/hr or less for drainage infiltration facilities located in the C horizon soils at 36" or greater below the existing ground surface. Horz ~e ~ -i Color Texture A 0"- 24" 10YR2/1 GrFiSaLm Bw 24"- 26" 10YR3/2 GrLmFiSa C1 26"- 36" 10YR4/4 VGrLmM-FSa C2 36"- 72" t0YR5/1 ExGr&Cob C-MSa, some stones C2 72"-144" 10YR5/1 Gravel with CSa binder, many stones Soils Strata Description Soil Log #5 %CL %ORG CF STR <20 <5 <10 1SBK <20 - <20 1SBK <10 - <45 SG <5 - <75 SG <5 - <90 SG MOT IND CEM ROO <X> FSP - - - ff 2-6 2 - - - ff 2-6 6 - - - ff 6-20 20 - - - - >20 20 - - - - >20 20 1J C -? ,, IJ ~~ }~ u ~J (~ ~~ ~~ li'~ ~~-I 1~ I f7 i 1r'~ <1 ~~ U !~ L_,l U SOIL EVALUATION REPORT FORM 2: SOIL LOG INFORMATION PROJECT TITLE: Tahoma Terra SHEET: 6 OF 13 PROJECT N0.:05100 DATE: 1/6105 PREPARED BY: William Parnell, P.E. SOIL LOG: #6 LOCATION: 100 ft. west and 115 ft. south of the N.E. properly corner. 1. TYPES OF TEST DONE: 2. SCS SOILS SERIES: 3. LAND FORM: None Spanaway Gravelly Sandy Terrace Loam (110) 4. DEPOSITION HISTORY: 5. HYDROLOGIC SOIL 6. DEPTH OF SEASONAL HW: Glacial outwash & volcanic ash GROUP: Unknown B 7. CURRENT WATER 8. DEPTH TO IMPERVIOUS 9. MISCELLANEOUS: DEPTH: LAYER: Level Greater than bottom of hole Greater than bottom of hole 10. POTENTIAL FOR: EROSION RUNOFF PONDING Slight Slow Minimal 11. SOIL STRATA DESCRIPTION: See Following chart 12. SITE PERCOLATION RATE: See FSP 13. FINDINGS & RECOMMENDATIONS: Use a design infiltration rate of 20 in/hr or less for drainage infiltration facilities located in the C horizon soils at 26" or greater below the existing ground surface. Soils Strata Description Soil Log #6 Horz Depth Color Texture A 0"- 23" 10YR2/1 GrFiSaLm Bw 23"- 26" 10YR316 VGrCSai.m C1 26~,:Z4" 10YR5/6 ExGr&Cob "r ~ . C-MSa, some stones C2 74"-144" 10YR5/6 Gravel &Cob Huth C-MSa binder %CL %ORG CF STR MOT IND CEM ROO <X> FSP <20 <5 <10 1SBK - - - ff 2-6 2 <20 - <55 1 SBK - - - ff 6-20 6 <2 _ <g0 SG - - - - >20 20 <5 - <95 SG - - - - >20 20 ri 1J >~ ,~ r-~ ~I u f~ U ~~ f~~ ~J (~~ i~ ~+ U 1"`1 U ~1, i ~~ ~~ l~ I~ L-J SOIL EVALUATION REPORT FORM 2: SO{L LOG INFORMATION PROJECT TITLE. Tahoma Ten•a SHEET: 7 OF 13 PROJECT N0.:05100 DATE: 1/6/05 PREPARED BY: William Parnell, P.E. SOIL LOG: #7 LOCATfON: 70 ft. west and 475 ft. south of the N.E. property corner. 1. TYPES OF TEST DONE: 2. SCS SOILS SERIES: 3. LAND FORM: Falling Head Percolation Spanaway Gravelly Sandy Terrace Loam (110) 4. DEPOSITION HISTORY: 5. HYDROLOGIC SOIL 6. DEPTH OF SEASONAL HW: Glacial outwash & volcanic ash GROUP: Unknown B 7. CURRENT WATER 8. DEPTH TO IMPERVIOUS 9. MISCELLANEOUS: DEPTH: LAYER: Level Greater than bottom of hole Greater than bottom of hole 10. POTENTIAL FOR: EROSION RUNOFF PONDING Slight Slow Minimal 11. SOIL STRATA DESCRIPTION: See Following chart 12. SITE PERCOLATION RATE: See FSP 13. FINDINGS & RECOMMENDATIONS: A falling head percolation test completed at 60" below the existing grade yielded an infiltration rate of 188 in/hr. Test was completed utilizing a 6" PVC pipe to prevent sidewall collapse. Use a design infiltration rate of 20 in/hr or less for drainage infiltration facilities located in the C horizon sods at 48" or greater below the existing ground surface. Soils Strata Description Soil Log #7 Horz Depth Color Texture A 0"- 26" 10YR2/1 GrF~SaLm Bw ~-H -39" t OYR3/2 GrLmFiSa i4 • ' C1 39"- 48" 10YR4J4 ExGrLmCSa C2 48"-144" 10YR5/1 ExGr&Cob CSa, some stones %CL %ORG CF STR MOT IND CEM ROO <X> FSP <20 <5 <10 1 SBK - - - ff 2-6 2 <20 - <25 1 SBK - - - ff 2-6 4 <5 - <85 SG - - - ff >20 20 <2 - <90 SG - - - - >20 20 u~ ~-I L~ I~ 1 IU f~_i t~ S~~ i~ U ~7 ~~ (r'-~~ U ~~ U ~~ ~~ ~ , {~ `r-, U f ~1 r- 7 ~~ i~ LJ ~-- ~ SOIL EVALUATION REPORT FORM 2: SOIL LOG INFORMATION PROJECT TITLE: Tahoma Terra SHEET: 8 OF 13 PROJECT N0.:05100 DATE: 1/6/05 PREPARED BY: William Parnell, P.E. SOIL LOG #8 LOCATION: 70 ft. west and 725 ft. south of the N.E. property comer. 1. TYPES OF TEST DONE: 2. SCS SOILS SERIES: 3. LAND FORM: None Spanaway Gravelly Sandy Terrace Loam (110) 4. DEPOSITION HISTORY: 5. HYDROLOGIC SOIL 6. DEPTH OF SEASONAL HW: Glacial outwash & volcanic ash GROUP: Unknown B 7. CURRENT WATER 8. DEPTH TO IMPERVIOUS 9. MISCELLANEOUS: DEPTH: LAYER: Level Greater than bottom of hole Greater than bottom of hole 10. POTENTIAL FOR: EROSION RUNOFF PONpING Slight Slow Minimal 11. SOIL STRATA DESCRIPTION: See Following chart 12. SITE PERCOLATION RATE. See FSP 13. FINDINGS & RECOMMENDATIONS: Use a design infiltration rate of 20 in/hr or less for drainage infiltration facilities located in the C horizon soils at 30" or greater below the existing ground surface. Soils Strata Description Horz Depth A 0"- 27" Bw 27"- 30" C 1 3~~; 62" C2 " 6~`--144" Color Textura 10YR2/1 GrFiSaLm 10YR4/4 ExGrLmCSa t0YR4/4 ExGrC-MSa 10YR5/1 ExGrBCob CSa Soil Log #8 °IoCL %ORG CF STR <20 <$ <10 1SBK <5 _ <70 SG <5 - <90 SG <2 - <g0 SG MOT IND CEM ROO <X> FSP _ _ _ ff 2-6 2 - - - ff >20 20 _ _ - ff >20 20 _ _ _ - >20 20 d~ ~ ` ~.-I ~~ SOIL EVALUATION REPORT ~ FORM 2: SOIL LOG INFORMATION r, (, (~ U 1~ ~~ l~ ~~ L__1 r ~J~ rLt PROJECT TITLE: Tahoma Terra SHEET: 9 OF 13 PROJECT N0..05100 DATE. 1/6/05 PREPARED BY: William Parnell, P.E. SOIL LOG: #9 LOCATION: 70 ft. west and 975 ft. south of the N.E. property corner. 1. TYPES OF TEST DONE: 2. SCS SOILS SERIES: 3. LAND FORM: Falling Head Percolation Spanaway Gravelly Sandy Terrace Loam (110) 4. DEPOSITION HISTORY: 5. HYDROLOGIC SOIL 6. DEPTH OF SEASONAL HW: Glacial outwash & volcanic ash GROUP: Unknown B 7. CURRENT WATER 8. DEPTH TO IMPERVIOUS 9. MISCELLANEOUS. DEPTH: LAYER: Level Greater than bottom of hole Greater than bottom of hole 10. POTENTIAL FOR: EROSION RUNOFF PONDING Slight Slow Minimal 11. SOIL STRATA DESCRIPTION: See Following chart 12. SITE PERCOLATION RATE: See FSP 13. FINDINGS & RECOMMENDATIONS: A falling head percolation test completed at 60" below the existing grade yielded an infiltration rate of 617 in/hr. Test was completed utilizing a 6" PVC pipe to prevent sidewall collapse. Use a design infiltration rate of 20 in/hr or less for drainage infiltration facilities located in the C horizon soils at 32" or greater below the existing ground surface. i I L.~ ~ ~ Horz Depth Color Texture A 0"- 26" 10YR2/1 GrRSaLm Bw 2C"`32" 10YR3/6 VGrCSaLm " n4~ C1 32"- 68" 10YR4/4 VCobLm ~.~ C-MSa C2 68"-116" 10YR5/1 ExGr&Cob CSa r~ C2 116"-180" 10YR5/1 Gravel & I~ ~ Cobbles wdh C-MSa binder r"1 L~1 Soils Strata Description Soil Log #9 %CL %ORG CF STR MOT IND CEM ROO <X> FSP <20 <5 <20 1 S B K - - - ff 2-6 2 <20 - <55 1SBK - - - ff 6-20 6 <5 - <80 SG - - - ff >20 20 <2 - <90 SG - - - - >20 20 <2 - <95 SG - - - - >20 20 ff? ,~ U j~ U `~ i~ ~"r F r'-1 ~~ U~ r'~+ ,~ U Horz ~ A 5 'I Bw U C1. , f'1 C2 i~ n U ~~ ICS L--1 SOIL EVALUATION REPORT FORM 2: SOIL LOG INFORMATION PROJECT TITLE: Tahoma Terra SHEET: 10 OF 13 PROJECT N0.:05100 DATE: 1/6/05 PREPARED BY: William Parnell, P.E. SOIL LOG: #t+10 LOCATION: 850 ft. west S.E. property corner. 1. TYPES OF TEST DONE. 2. SCS SOILS SERIES: 3. LAND FORM: None Spanaway Gravelly Sandy Terrace Loam (110) 4. DEPOSITION HISTORY: 5. HYDROLOGIC SOIL 6. DEPTH OF SEASONAL HW: Glacial outwash & volcanic ash GROUP: Unknown B 7. CURRENT WATER 8. DEPTH TO IMPERVIOUS 9. MISCELLANEOUS: DEPTH: LAYER: Level Greater than bottom of hole Greater than bottom of hole 10. POTENTIAL FOR: EROSION RUNOFF PONDING Slight Slow Minimal 11. SOIL STRATA DESCRIPTION: See Following chart 12. SITE PERCOLATION RATE. See FSP 13. FINDINGS & RECOMMENDATIONS: The C3 horizon was extremely stained from manganese discoloration and was very hard and cemented. Use a design infiltr ation rate of 20 in/hr or less for drainage infiltration facilities located in the C1 horizon soils at 30" o r greater below the existing ground surface. Soils Strata Description Soil Log #10 Depth Color Texture %CL %ORG CF STR MOT IND CEM ROO <X> FSP 0"- 18" 10YR2(1 VGrFiSaLm <20 <5 <40 1 S8K - - - ff 2-6 2 18~=30" 5YR3/3 ExGrCSaLm <20 - <65 1SBK - - - ff 6-20 4 "r a ' 30"-144" t0YR5/1 ExGr&Cob <2 - <85 SG - - - - >20 20 CSa, some stones 144"-148" 10YR2/1 Gravel <2 - >95 Mas M3P Str Str - - - f~? 4 L/~'''~ '. U U r`-i ~, .,1 s~ i~ r'-~ t~ r~ ~~ ~~ ~, Horz A ~~ Bw ~~ C1 ~ C2 C2 ti '~J f"'1 f 1 l~ ~', ,;y SOIL EVALUATION REPORT FORM 2: SOIL LOG INFORMATION PROJECT TITLE. Tahoma Terra SHEET: 11 OF 13 PROJECT N0.:05100 DATE: 1/6/05 PREPARED BY: William Parnell, P.E. SOIL LOG: #11 LOCATION: 1300 ft. west and 250 ft. south of the N.E. property corner. 1. TYPES OF TEST DONE: 2. SCS SOILS SERIES: 3. LAND FORM: Falling Head Percolation Spanaway Gravelly Sandy Terrace Loam (110) 4. DEPOSITION HISTORY: 5. HYDROLOGIC SOiL 6. DEPTH OF SEASONAL HW: Glacial outwash & volcanic ash GROUP: Unknown B 7. CURRENT WATER 8. DEPTH TO IMPERVIOUS 9. MISCELLANEOUS: DEPTH: LAYER: Level Greater than bottom of hole Greater than bottom of hole 10. POTENTIAL FOR: EROSION RUNOFF PONDING Slight Slow Minimal 11. SOIL STRATA DESCRIPTION: See Following chart 12. SITE PERCOLATION RATE: See FSP 13. FINDINGS & RECOMMENDATIONS: A falling head percolation test completed at 66" below the existing grade yielded an infiltration rate of 360 in/hr. Test was completed utilizing a 6" PVC pipe to ' Ities prevent sidewall collapse. Use a design infiltration rate of 20 in/hr or Tess for drainage infiltration facil located in the C horizon soils at 38" or greater below the existing ground surface. Soils Strata Description Soi{ Log #11 Depth Color Texture %CL %ORG CF STR MOT IND CEM ROO <X> FSP 0"- 32" t0YR2/1 GrFiSaLm <20 <$ <5 1SBK - - - ff 2-6 2 3~"' 38" 10YR3l2 GrFiSaLm <20 - <20 1SBK - - - ff 6-20 6 "r+ 38"- 60" 10YR4/4 VGrC-MSa <5 - <45 SG - - - ff >20 20 60"-132" 10YR5l1 ExGr&Cob <5 - <70 SG - - - - >20 20 C-MSa 132"-144" 10YR5l1 Gravel & <2 - <95 SG - - - - >20 20 Cobbles with CSa border U ,~ r-~ i {~ ~1 ~U ~' {„J i I~ ~~~ ~1 . ~~--~ l~ U Horz r A Bw C1 1~1 C2 r~1 C2 f'~ I~ ~. L~ SOIL EVALUATION REPORT FORM 2: SOIL LOG INFORMATION PROJECT TITLE: Tahoma Terra SHEET: 12 OF 13 PROJECT N0.:05100 DATE: 1/6/OS PREPARED BY: William Parnell, P.E. SOIL LOG: #12 LOCATION: 1050 ft. west and 460 ft. south of the N.E. property comer. 1. TYPES OF TEST DONE: 2. SCS SOILS SERIES: 3. LAND FORM: None Spanaway Gravelly Sandy Terrace Loam (110) 4. DEPOSITION HISTORY: 5. HYDROLOGIC SOIL 6. DEPTH OF SEASONAL HW: Glacial outwash & volcanic ash GROUP: Unknown B 7. CURRENT WATER 8. DEPTH TO IMPERVIOUS 9. MISCELLANEOUS: DEPTH: LAYER: Level Greater than bottom of hole Greater than bottom of hole 10. POTENTIAL FOR: EROSION RUNOFF PONDING Slight Slow Minimal 11. SOIL STRATA DESCRIPTION: See Following chart 12. SITE PERCOLATION RATE: See FSP 13. FINDINGS & RECOMMENDATIONS. Use a design infiltration rate of 20 in/hr or less for drainage infi{tration facdit~es located in the C horizon soils at 39" or greater below the existing ground surface. Soils Strata Description Depth Color Texture 0"- 33" t0YR2/1 GrFiSaLm 33"- 39" 10YR3/4 VGrI.mM-FSa 3>~~7.A" 10YR3/6 C-MSa n4 - ' 74"-113" 10YR3/6 ExGr&Cob C-MSa 113"-180" 1 OYRS/1 Gravel & Cobbles wdh CSa border Soil Log #12 %CL %ORG CF STR MOT IND CEM ROO <X> FSP <20 <5 <5 1SBK - - - ff 2-6 2 <15 - <60 1 SBK - - - ff 6-20 6 <2 - <55 SG - - - ff >20 20 <2 - <85 SG - - - - >20 20 <2 - <95 SG - - - - >20 20 ~~ V (~! 4 U r~ i {~ ~4 {I'~ U ~~~' U i ~~ i lJ i~ ~~ ~~ i ~ ~~ ~' r'~ Horz A /"~l ~~ Bw + C1 n C2 CZ f'? ~U I ~ i ~, ~~ it 7 i~ i L) SOIL EVALUATION REPORT FORM 2: SOIL LOG INFORMATION PROJECT TITLE: Tahoma Terra SHEET: 13 OF 13 PROJECT N0.:05100 DATE: 1/6/05 PREPARED BY: William Parnell, P.E. SOIL LOG: #13 LOCATION: 1050 ft. west and 720 ft. south of the N.E. property corner. 1. TYPES OF TEST DONE: 2. SCS SOILS SERIES: 3. LAND FORM: Falling Head Percolation Spanaway Gravelly Sandy Terrace Loam (110) 4. DEPOSITION H{STORY: 5. HYDROLOGIC SOIL 6. DEPTH OF SEASONAL HW: Glacial outwash & volcarnc ash GROUP: Unknown B 7. CURRENT WATER 8. DEPTH TO IMPERVIOUS 9. MISCELLANEOUS: DEPTH: LAYER: Level Greater than bottom of hole Greater than bottom of hole 10. POTENTIAL FOR: EROSION RUNOFF PONDING Slight Slow Minimal 11. SOIL STRATA DESCRIPTION: See Following chart 12. SITE PERCOLATION RATE: See FSP 13. FINDINGS & RECOMMENDATIONS: A falling head percolation test completed at 60"below the existing grade yielded an infiltration rate of 68.5 in/hr. Test was completed utilizing a 6" PVC pipe to prevent sidewall collapse. Use a design infiltration rate of 20 in/hr or Tess for drainage infiltration facilities located in the C horizon soils at 36" or greater below the existing ground surface. Soils Strata Description Depth Color Texture 0"- 32" 10YR2/1 GrFiSat_m 3~~35" 10YR3l2 VGrLmMSa nsi a 36"- 70" 10YR3/6 M-FSa 70"-120" 10YR5l6 ExGr&Cob C-MSa 120"-144" 10YR511 Gravel & Cobbles with CSa border Soil Log #13 %CL %ORG CF STR MOT <20 <5 <5 1 SBK - <20 - <45 1 SBK - <5 - <20 SG - <5 - <80 SG - <2 - <95 SG - IND CEM ROO <X> FSP - - ff 2-6 2 - - ff 6-20 20 - - ff >20 20 - - - >20 20 - - - >20 20 (~' r'~ ~'-, r`~ ,~ u ~~--, ~~ ,''--, ~~ U ~'~ i' ~~ ~~ {'~ ~~~ .. r ~.J T~ ~~, U ~~ U Abbreviations Textural Class (Texture) Structure (STR) Grades of Structure Cobble -Cob Granular - Gr Stron - 3 Stoney - St Blocky - Blky Moderate - 2 Gravelly - Gr Platy - PI Weak - 1 Sand - Sa Massive - Mas Loamy - Lm Sin le Grained - SG Silt - Si Sub-An ular Block - SBK Clayey - CI Coarse - C Ve - V Extremely - Ex Fine - F Medium - M Induration 8~ Cementation (IND) (CEM) Weak - Wk Moderate -Mod Strong - Str Mottles (MOT) 1 Letter Abundance 1st Number Size 2nd Letter Contrast Few - F Fine - 1 Faint - F Common - C Medium - 2 Distinct - D Many - M Coarse - 3 Prominent - P Roots (ROO) 1st Letter Abundance 2nd Letter Size Few - f Fine - f Common - c ~ Medium - m Many - m Coarse - c <X> - Veneralized range of infiltration rates from SCS soil survey (<X>) FSP -Estimated Field Saturated Percolation rate based on horizon specific factors. !~? u ~-, ` TAHOMA TERRA u FALLING HEAD PERCOLATION TEST ~', Test Date : 1 /11 /2005 ~ Note: Tests completed with 6" diameter PVC pipe pF _~~h ~ ~n5~nn f~ i r~ U ~~ U f ~, r'~ t~ ~~ 'U ~~~ U FALLING HEAD PERCOLATION TEST RESULTS Test Hole # 2 (test run @ 60" below existing ground surface } Start Sto Ela sed Time Total Dro {nfi{tration Rate ( Min) (Min) (Min) (Inches) (InlHr ) 0 10" 10" 6 10" 20" 10" 6 20" 30" 10" 6 30" 40" 10" 6 40" 50" 10" 6 50" 1' 00" 10" 6 1' 00" 1' 10" 10" 6 1' 10" 1' 20" 10" 6 1' 20" 1' 30" 10" 6 1' 30" 1' 40" 10" 6 1' 40" 1' 50" 10" 6 1' S0" 2' 00" 10" 6 2160 ~~' TAHOMA TERRA FALLING HEAD PERCOLATION TEST Test Date : 1/11/2005 h` Note: fists completed with 6" diameter PVC pipe {AF Inh""~•~ ttn5lnn ~~ n FALLING HEAD PERCOLATION TEST RESULTS Test Hole # 5 (test run @ 60" below existing ground surface ) Start Sto Ela sed Time Total Dro Infiltration Rate ( Min) (Min) (Min) (Inches) (In/Hr ) 0 2' 00" 2' 00" 6 2' 00" 4' 20" 2' 20" 6 4' 20" 6' 50" 2' 30" 6 6' S0" 9' 20" 2' 30" 6 9' 20" 11' 50" 2' 30" 6 11' S0" 14' 20" 2' 30" 6 14' 20" 16' 50" 2' 30" 6 16' 50" 19' 50" 2' 30" 6 144 I~t U I i f , - ~- ~ AHOMA TERRA BLVD T ~ ~p ~ - " - ~ 7ERRADiEWST -SE - - ~ J - - ~ - - -' - _- % f ~ ; (PP) I j 1 ~ ~ I~ i ~ i 1 ~ =--~-__-_~ ''-----~--~- i- ~~ I ~ ~ ~--~-~ -~- i BFI-'r;St=~' I I j ' --+ i -1 ~ f-"f~S ti Z I ~ ~ ~ ~ i ! i L -,~.~.-- ----- --Q~-------- . Nr ~ r V ' ~ 3 i ~ ~ ~ i ~ ---' - - -------- ------ I ---- } ~ -' m ~_------------~-----~--- _- - - u f 1 -I ~ - - __ - - --- -- ----- - ~ I {'• ~1-3- ¢ - ~ 49TH WAYSE - ~ -- -- -c --------------------- 4 ' --------'--------- -- --- - a , ~ ~ ~ I a - -I _ ~ ~ , --- --- i , ~ r ~ f--'-. A ~ ~ i 1 , ~ ~ , I ~ t ,_ ~ ~ - ~ - -J - -- -t00TFtAVESE - -- ~-- _ -----, --- -- - ~ ..~ ,I ~ ~ ~ !~ - - - - , i i ---- I I --- -------- ~ ! --- - - % - --- 7 r - -- --- -- --~ `- i r - ----- ~ t--- - ~ ~ --- - _ _--. -- r i //~' -mac ®g ~~ Q°o _ -" ~i'9_ _ -,~ - ~ ^ _ ~ . ~ ~ _Cba~Tvtii~E81'F2EETS~ _ ;~ _~ _`_ ~~ ~ COMMUNITY PARK I , a { i i a 9 ~ - ~;~~ a~ ~'~?~~~ Consulting Group TAHOMA-TERRA SOIL TEST PIT LOCATIONS EXHIBIT SOIL EVALUATION REPORT FORM 2: SOIL LOG INFORMATION PROJECT TITLE: Longmire Street SHEET: 6 OF 13 PROJECT NO.: PE #05126 DATE: 6/23/05 PREPARED BY; William Parnell, P.E. SOIL LOG: #6 LOCATION: 130' south of centerline station 4+50 1. TYPES OF TEST DONE: 2. SCS SOILS SERIES: 3. LAND FORM: Double Ring Infiltration Spanaway Gravelly Sandy Terrace Loam (110} 4. DEPOSITION HISTORY: 5. HYDROLOGIC SOIL 6. DEPTH OF SEASONAL HW: Glacial outwash & volcanic ash GROUP: Unknown B 7. CURRENT WATER 8. DEPTH TO IMPERVIOUS 9. MISCELLANEOUS: DEPTH: LAYER: Gently Sloping 105" Greater than bottom of hole 10. POTENTIAL FOR: EROStoN RtlNOFF PONDfNG Slight Slow Minimal 11. S01L STRATA DESCRIPTION: See Following chart 12. SITE PERCOLATION RATE: See FSP 13. FINDINGS & RECOMMENDATIONS; Mottles were present at 72" below the existing grade indicating probable winter water table level. A double rmg infiltration test completed at 36" below the existing grade yielded an infiltration rate of 80 in/hr. Use a design infld'ation rate of 20 in/hr or less for drainage infiltration facilities located in the C1 horizon soils at 36" below the existing ground surface. Soils Strata Description Depth Color Texture 0"- 28" 10YR3/1 CobVFSaLm 2Fi"~36" 10YR3l4 VGobBGrVF ~r+ • SaLm 36"- 92" 10YR4/6 ExCobBGr C-MSa 92"-120" 10YR5/6 ExCobBGr FSa with thick sdt jackets Soil Log #6 %CL %ORG CF 5TR MOT IND GEM ROO <X> FSP <2p <5 <15 1SBK - - - ff 2-6 2 <20 _ <qs SG - - - ff 6-20 4 <10 - <70 SG - - - ff >20 40 <15 - <70 SG - - - - >20 10 r~ 4 U {`~' SOIL EVALUATION REPORT U FORM 2: SOIL LOG INFORMATION U r~ ~! U n U r`1 U ~, U ~-'~ U y-~ PROJECT TITLE: Longmire Street SHEET: 7 OF 13 PROJECT NO.: PE #05126 DATE: 6/23/05 PREPARED BY: William Parnell, P.E. SOIL LOG. #7 LOCATION: 230' south of centerline station 4+50 1. TYPES OF TEST DONE: 2. SCS SOILS SERIES. 3. LAND FORM: None Spanaway Gravelly Sandy Terrace Loam (110) 4. DEPOSITION HISTORY: 5. HYDROLOGIC SOIL 6. DEPTH OF SEASONAL HW: Glacial outwash & volcanic ash GROUP: Unknown B 7. CURRENT WATER 8. DEPTH TO IMPERVIOUS 9. MISCELLANEOUS: DEPTH: LAYER: Gently Sloping 72" Greater than bottom of hole 10. POTENTIAL FOR: EROSION RUNOFF PONDING Slight Slow Minimal 11. SOIL STRATA DESCRIPTION: See Following chart 12. SITE PERCOLATION RATE: See FSP 13. FINDINGS & RECOMMENDATIONS: Mottles were present at 54" below the existing grade indicating probable w+nter water table level. The CZ horizon was very dense, weakly indurated. U r'~ U Horn Depth Color Texture r, A 0"- 30" 10YR3/1 VCobVF SaLm Bw 30"- 40" t0YR3/4 VCob&GrVF ~ SaLm s.MF~ U C1 - 4d*-'60" 10YR4/6 ExCob~Gr C-MSa r7 C2 60"- 76" t OYR2/1 Gravel U ~~ i U r=~ S f`1 U Soils Strata Description Soil Log #T %CL %ORG CF STR MOT IND CEM ROO <X> FSP <2p <5 <qp 15BK - - - ff 2-6 2 <20 - <qp SG - - - N 6-20 3 <10 - <76 SG - - - ff >20 40 <2 - <98 SG - Wk - - - - i-~ i U U ~J 1~ ~J i~ j°~ r~ t t ~, V` t~ r'~ ~' I~~ U ~~, ~U ~~ J (~ U t 11 U i~ I~' SOIL EVALUATION REPORT FORM 2: SOIL LOG INFORMATION PROJECT TITLE: Longmire Street SHEET: 9 OF 13 PROJECT NO.: PE #05126 DATE: 6/29/05 PREPARED BY: William Parnell, P.E. SOIL LOG: #9 LOCATION: 120' south of centerline station 2+45 1. TYPES OF TEST DONE: 2. SCS SOILS SERIES: 3. LAND FORM: None Spanaway Gravelly Sandy Terrace Loam (110) 4. DEPOSITION HISTORY: 5. HYDROLOGIC SOIL 6. DEPTH OF SEASONAL HW: Glacial outwash & volcanic ash GROUP: Unknown B 7. CURRENT WATER 8. DEPTH TO IMPERVIOUS 9. MISCELLANEOUS: DEPTH: LAYER: Gently Sloping 76" Greater than bottom of hole 10. POTENTIAL FOR: EROSION RUNOFF PONDING Slight Slow Minimal 11. SOIL STRATA DESCRIPTION: See Following chart 12. SITE PERCOLATION RATE. See FSP 13. FINDINGS & RECOMMENDATIONS: Soils were heavily mottled at 60"+ below the existing grade indicating probable winter water table level. Soils Strata Description Soil Log #9 Harz Depth Color Texture %CL %ORG CF STR MOT IND CEM ROO <X> FSP A 0"- 22" 10YR2/1 GrVFSaLm <20 <5 <10 1SBK - - - ff 2-6 2 Bw 22"- 31" 10YR3l2 VGrSaLm <20 - <45 1SBK - - - ff 2-6 3 C1 31:..42" 10YR3l6 VGrC-MSa <10 - <55 SG - - - ff >20 40 . ,~ j . C2 42"- 54" 10YR5/2 CobFSa <10 - <25 SG - - - - 6-20 15 C3 54"- 60" 10YR6/2 S~ <10 - <1 Mas - - - - 6-2 0 5 C4 60"- 72" 10YR5i2 SaLm <20 - <1 Mas M3P - - - 2-6 2 CS 72"- 94" 10YR4/1 FSa <10 - <1 SG F1 F - - - ff 6-20 10 LJ r~ U !~ I' U n ~1 (~ ~J ~`~ ~` r~ s U ~~ ~~ r~ LJ ~'~ U ~. l~ SOIL EVALUATION REPORT FORM 2: SOIL LOG INFORMATION PROJECT TITLE: Longmire Street SHEET: 10 OF 13 PROJECT NO.: PE #05126 DATE: 6/29/05 PREPARED BY: William Parnell, P.E. SOIL LOG: #10 LOCATION: 280' south of centerline station 2+45 1. TYPES OF TEST DONE: 2. SCS SOILS SERIES: 3. LAND FORM: None Spanaway Gravelly Sandy Terrace Loam (110) 4. DEPOSITION HISTORY. 5. HYDROLOGIC SOIL 6. DEPTH OF SEASONAL HW: Glacial outwash ~ volcanic ash GROUP: Unknown 13 7. CURRENT WATER 8. DEPTH TO IMPERVIOUS 9. MISCELLANEOUS: DEPTH: LAYER: Gently Sloping 100" Greater than bottom of hole 10. POTENTIAL FOR: EROSION RUNOFF PONDING Slight Slow Minimal 11. SOIL STRATA DESCRIPTION: See Following chart 12. SITE PERCOLATION RATE: See FSP 13. FINDINGS & RECOMMENDATIONS: Soils were wet at 66"+ below the existing grade with some slight seepage at 100". Soils Strata Description Hoe Depth Color Texture A 0"- 24" 10YR2/1 FSaLm Bw 24"- 34" 10YR3/2 GrSalm C1 3~;66" t0YR5/2 ExGr&Cob ~, , FSa C2 66"-180" 2.5Y5/2 Si C3 180"-216" 2.SY4/1 FSa Soil Log #10 %CL %ORG CF STR MOT <20 <5 <10 1SBK - <20 - <40 1 SBK - <10 - <65 SG - <10 - <7 Mas - <10 - <1 Mas - IND CEM ROO <X> FSP - - ff 2-6 2 - - ff 2-6 3 - - ff >20 15 - - - 6-2.0 5 - - - 6-20 6 n u ;~ Li ~'~ I'~ V' f~ i l~ ~. ~J ~'~ (~ ,~ ~~ ~~ 1~ LJ i LJ I~ U LJ SOIL EVALUATION REPORT FORM 2: SOIL LOG INFORMATION PROJECT TITLE: Longmire Street SHEET: 11 OF 13 PROJECT NO.: PE #05126 DATE: 6/29/05 PREPARED BY: William Parnell, P.E. SOIL LOG: #11 LOCATION: 130' south of centerline station 3+50 1. TYPES OF TEST DONE: 2. SCS SOILS SERIES: 3. LAND FORM: None Spanaway Gravelly Sandy Terrace Loam (110) 4. DEPOSITION HISTORY: 5. HYDROLOGIC SOIL 6. DEPTH OF SEASONAL HW: Glacial outwash & volcanic ash GROUP: Unknown B 7. CURRENT WATER 8. DEPTH TO IMPERVIOUS 9. MISCELLANEOUS: DEPTH: LAYER: Gentty Sloping 101" Greater than bottom of hole 10. POTENTIAL FOR: EROSION RUNOFF PONDING Slight Slow Minimal 11. SOIL STRATA DESCRIPTION: See Following chart 12. SITE PERCOLATION RATE: See FSP 13 FINDINGS & RECOMMENDATIONS: Soils were Moderately mottled at 72"+ below the existing grade indicating probable winter water table level. Soils Strata Description Horz Depth Color Texture A 0"- 18" 10YR2/1 CobVFSaLm 8w 18"- 21" 10YR3/2 CobBGrSatm C1 21;u 66" 10YR3/6 ExGrC-MSa CZ ~ 66'x'-'101" 10YR5l2 GrCSa C3 101"-160" 10YR2/1 Gr C4 150"-198" 2.5Y5/2 Si C5 198"-210" 58511 VFSa Soil Log #11 %CL %ORG CF STR MOT 1ND CEM ROO <X> FSP <20 <5 <20 1 SBK - - - ff 2-6 2 <20 - <25 1 SBK - - - tt 2-6 3 <10 - <75 SG - - - - >20 40 <1 - <65 SG C2D - - - >20 40 <1 _ <100 Mas - Mod- - - >20 10 Str <10 - <1 Mas - - - - 6-2.0 5 <10 - <1 SG - - - - 2-6 4 U r`1 ~~ V r, ~U r-~ ~. L~ f~ U f~ U ~~ V ~i~~ U r-r ~~ ~~ ~~ ~.i ~' ~J Abbreviations Textural Class (Texture} Structure (STR) Grades of Structure Cobble -Cob Granular - Gr Stron - 3 Stoney - St Blocky - Blky Moderate - 2 Gravelly - Gr Platy - PI Weak - 1 Sand - Sa Massive - Mas Loamy - Lm Single Grained - SG Silt - Si Sub-An ular Block - SBK Clayey - CI Coarse - C Ve - V Extremely - Ex Fine - F Medium - M Induration 8~ Cementation (IND) (CEM) Weak - Wk Moderate -Mod Strong - Str Mottles (MOT) 1 Letter Abundance 1st Number Size 2nd Letter Contrast Few - F Fine - 1 Faint - F R ~ommon - C Medium - 2 Distinct - D Many - M Coarse - 3 Prominent - P Roots (ROO) 1st Letter Abundance 2nd Letter Size Few - f Fine - f Common - c Medium - m Many - m Coarse - c ~~~ - ~enerauzea range of mtiltration rates trom 5GS soil survey (<X>) FSP -Estimated Field Saturated Percolation rate based on horizon specific factors. V LONGIUIIRE STREET DOUBLE RING INFILTRATION TEST ~~ Test Date : 6/22/2005 PE Job #05126 L.i ~`, V~ C (~ U r~ r~ DOUBLE RING INFILTRATION TEST RESULTS Test Hole # 6 (test run @ 36" below existing ground surface ) Start Sto Ela sed Time Total Dro Infiltration Rate ( Min) (Min) (Min) (Inches) (In/Hr ) 0 4' 30" 4' 30" 6 4' 30" 9' 15" 4' 45" 6 9' 15" 13' 45" 4' 30" 6 13' 45" 18' 15" 4' 30" 6 18' 15" 22' 45" 4' 30" 6 22' 45" 27' 15" 4' 30" 6 27' 15" 31' 45" 4' 30" 6 31' 45" 36' 15" 4' 30" 6 36' 15" 40' 45" 4' 30" 6 40' 45" 45' 15" 4' 30" 6 80 ~.,..: u ~,• ~~ V n r-'-, r~ V ~~ Ll (~ ~, LJ I~ l___1 (~ 1__1 n i~ ~~ U ~~ U ~r~ U I((~ U 1( -'1 (U `U ~J U Ii '' U II ' U u ~. ~ ~• ~. a ~ ~ ~ '~ x ~xy ' y ~ d J O N N O~ oo ~ N ~ ~ A O m ~,,, R ~ ~ ~+ ~ d ~ 't7 O ry co ~ ~ Ul ~ ~', W ~ .» rb N P. J oo ~ b W O oo ~p Cy 000000000000 ~r' ~ ~ ~, o to .A. W N W '-- ~-- ~-- O O O O O O O O J cn N O J Cn N O n ~ `~' 'ti n '7 ~ . w y _ _ O 'f O A S w J~ A N ~ ~ m y ~p V i V~ ~ O + ~ ~ ~ m x d C ~ . . ~ ~ A A A A A ~ ~ b w ^ ~ C J e ~ ~ ~ ~ ~ M ~ ~ ~ ~ ,~ ~ ~ ~ ~ ~ o "' ° ~ Q3. ~, o ~ ~ ~ C m d ~~ w d o d O .oy Q p ~ ~? m O rpry G F+ n ~ m P~ n p ` N < CL Q. . ' y N ~ fA ~yy VI ~ t1 H Q A .'Fy' C ~'1 1~1 ~ eo o 5 5 . 71 ~ ~ ~ .~ o 0 o 1~ `e C ~ a G ~ _ ~ ~ e ~ N a .. .. ~ ~ t" ~ 1~ W N N N N .-. ~ O~ 00 Q\ ? N ~O O~ W J O ~ ~ ~ ~ N O b w U oo w N ~ C Cn ~ `~ W~ N O N J 0o J A 00 ~l O R, N ~ ~ ~ ~O J ~ o w ~ o O ~ O 'p O U? o N W o U O~ o b O ~p o ~ 0 0 0 O O O O W (p ~ N a. O 0 0 0 0 0 0 0 0 0 0 0 0 b W U ~p ~ C7 O O O O J l.n N O~~ N O A `~` ~ ~ O O O U J A U O < O O O O Vi O cn O to O cn O y ~ ~~ w w [a ~ o~ ~ O~ ~ 01 0 ~ W o f-~ c N O O O "~, _ O D ~ W N ' ~ O O O t+ W U ~O ~ i ~ \ ~ N ~ 01 H J A J ° .. ~ O J O n .- U W 00 ~O `~ ~?~ O N o w J o fW O V c w O O O O O O Q' 6' ~p pp ~p H ~ H T O~ O~ O~ ~1 '~ ~ ~ \ '''~'. (n ."~'. ~ ~ ~ d ~. I~ O OOO ~ .~- N A ? D\ ~ ~ O~~ W O O O O O O O O O O O O~ !'1 n e5 0 0 0 0) cn N O~~ N O 0 0 0 0 cn O Vi O Vi O c.n O ..-.. .--. .-~ .--. ~ ~ ~ O W to W~ ~p J ~l O O w 00 00 ~O ~D ~p ~ (~ A ~ v 1"F 7i/ N ,^~^ ~.f ^r, ^^W i.f~ N O O C ti C C C lam: C C b ~ A "~ "! LU N O O ~ O _ O ~ n W ~' y \~ O O O O c.n O O O O~ O O ~~.{ N ~~ l 1 C "O (D (D flI O 7 n C N Load, psi ~ O ~ N N O O n ~ cn --- °~~ CBR Value ~ J ~ ~ W O O O O ~ r N O ~ O O O O , ~ O N ~ c , J J ~p ._- --------- - ------ o ----. _. ---- - - k~' V ---- -- 1~ ~ ....... --- - - ..._ ----- -.... -- --- n `~~ ~ ~ ~ ~ o ~ - ---------- ~.~ - o ~ 1 n .._..._ ---- a ~ ~. ~ V ~ ~ o ~ n n ,~ '~, ~, c ~ , G E ~ ~-' o ', ~; ~ ~ ~ ---- m co 1 ~ cp ' ~ n b ~, ', ~ ! ', _ ------ ', - -- __ _ _ _ .... .__ ___-_____' ~ - - V ~ ~ ___ _ __________ __ _._._ ______ ~ i U I~ i ~ __.. ~ ~ ~ _ ....~________ _ ______ __________ ~ ... .._ - - - - - ~~_ _______ _ 4 V •~ ` I i __ IC O I` I V ' ~ Il' JI ~ ~ ~ ~ ____ O (( 1~ ________-- { O ________ _______________ _ _ _ _ _ _ _ ___ r'~ l O _ .~._ - - O U ~l 1 V n L~ n ,, L~ ~'~ I.vl r~~ ~~ r~ ~.S U r'-~ r`~ ~~ r~-, ~' LU r~ U L~ ~' U n u r~ ~~ u Appendix 7 Maintenance Agreement U r-~ V {`-~ Lc~ ~, L.U n ~J r'~ ~~ U U r~ V ~~ n LJ In u ~~ ~r RESIDENTIAL AGREEMENT TO MAINTAIN STORM WATER FACILITIES AND IlVIPLEMENT A POLUTION SOURCE PLAN BY AND BETWEEN TAHOMA TERRA LLC THEIR HEIRS, SUCCESSORS, OR ASSIGNS (HEREINAFTER "DEVELOPER") AND CITY OF YELM (HEREINAFTER "CITY") The upkeep and maintenance of stormwater facilities and the implementation of pollution source control best management practices (BMPs) is essential to the protection of water resources. The DEVELOPER is expected to conduct business in a manner that promotes environmental protection. This Agreement contains specific provisions with respect to maintenance of stormwater facilities and use of pollution source control BMPs. LEGAL DESCRIPTION: Parcels in the City of Yelm No. 21734310100, 21724340100 In Thurston County Washington Whereas, the DEVELOPER has constructed improvements, including but not limited to, buildings, pavement, and stormwater facilities on the property described above. In order to further the goals of the CITY to ensure the protection and enhancement of water resources, the CITY and the DEVELOPER hereby enters into this Agreement. The responsibilities of each party to this Agreement are identified below. The DEVELOPER shall: (1) Implement the stormwater facility maintenance program included herein as Attachment ,.A.. (2) Implement the pollution source control program included herein as Attachment "B". (3) Maintain a record (in the form of a logbook) of steps taken to implement the programs referenced in (1) above. The logbook shall be available for inspection by appointment with DEVELOPER. The logbook shall catalog the action taken, who took it, when it was done, how it was done, and any problems encountered or follow-on actions recommended. Maintenance items ("problems") listed in Attachment "A" shall be inspected as specified in the attached instructions or more often if necessary. The DEVELOPER is encouraged to photocopy the individual checklists in Attachment "A" and use them to complete its inspections. These completed checklists would then, in combination, comprise the log book. ~~ (4) Submit an annual report to the CITY regarding implementation of the programs I~ ~1 n U n ~, referenced in (1)) above. The report must be submitted on or before May 15 of each calendar year and shall contain, at a minimum, the following: h ~u (a) Name, address, and telephone number of the businesses, the persons, or the firms responsible for plan implementation, and the person completing the report. (b) Time period covered by the report. (c} A chronological summary of activities conducted to implement the programs referenced in (1) above. A photocopy of the applicable sections of the log book, lJ with any additional explanation needed, shall normally suffice. For any activities conducted by paid parties, include a copy of the invoice for services. !__J (d) An outline of planned activities for the next year. r~ (5) I execute the following periodic major maintance on the subdivision's stormwater facilities: Sediment removal from the bio-infiltration swales, and the infiltration galleries. r~ U The CITY shall: (1) Provide technical assistance to the DEVELOPER in support of its operation and maintenance activities conducted pursuant to its maintenance and source control ~ programs. Said assistance shall be provided upon request and as CITY time and resources permit. Ire l~ (2) Review the annual report and conduct a minimum of one (1) site visit per year to discuss performance and problems with the DEVELOPER. REMEDIES: (1) If the CITY determines that maintenance or repair work is required to be done to the storm water facilities located on the owner/homeowners association property, the CITY shall give owner/association of the property notice of the specific maintenance and/or repair required. The CITY shall set a reasonable time in which such work is to be ~i completed by persons who were given notice. If the above required maintenance and/or repair is not completed within the time set by the CITY, written notice will be sent to persons who were given notice stating the CITY's intention to perform such maintenance r' and bill owner/homeowners association for all incurred expenses. The CITY may also revoke stormwater utility rate credits if required maintenance is not performed. (2) If at any time the CITY determines that the existing system creates any imminent threat U to public health or welfare, the CITY may take immediate measures to remedy said threat. However the City shall also take reasonable steps to immediately notify either ~'~ the property owner or the person in control of said property of such imminent threat in order to enable such owner or person in control to take such immediate measures either independently or in cooperation with the City. (3) The DEVELOPER grant limited authority to the CITY for access to any and all stormwater system features for the purpose of performing maintenance or repair or inspection pursuant to the terms of this agreement. L~~ n U ~l I f~-? ~~ LJ f`~ In U L~ t li (~ Ir'~ L~ rr L~ r'y (4) The DEVELOPER shall assume responsibility for the cost of maintenance and repairs to the stormwater facility. Such responsibility shall includes reimbursement to the CITY within 30 days of receipt of an invoice for work performed by the City in maintenance or repairing such facility pursuant to the terms of this agreement. Overdue payments will require payment of interest at the current legal rate for liquidated judgments. The City shall have a lien for all unpaid charges together with interest. However, notice of such lien shall not be filed by the CITY for a period of 60 days following mailing the invoice for the charges due. During such 60 days, the property owner or other person or agent in control of the property shall have a right to appeal such charges to the CITY's Land Use Hearings Examiner for a final decision. Such appeal may challenge either the charges rendered for maintenance or repairs performed by the CITY or the amount of the charges rendered for such maintenance or repair. Notice of such lien shall not be filled during the pendency of such appeal until final decision is rendered by the Land Use Hearings Examiner. The lien shall be foreclosed in the same manner specified by state statute for closure of a mechanic's or materialman's lien. In any legal action to foreclose such lien or otherwise collect such charges, the prevailing party shall be entitled to an award for its attorney fees and cost incurred. This Agreement is intended to protect the value and desirability of the real property described above and to benefit all the citizens of the CITY. It shall run with the land and be binding on all parties having or acquiring any right, title, or interest, or any part thereof, of real property. They shall insure to the benefit of each present or future successor in interest of said property or any part thereof, or interest therein, and to the benefit of all citizens of the CITY. IN WHITNESS WHEREOF, this instrument has been executed Grantor Grantor r'~ U ~`~, STATE OF WASHINGTON ) ss i`~ COUN'i'Y OF THiJRSTON ) I certify that I know or have satisfactory evidence that ~`-~ (is/are) the person(s) who appeared before me ~ and said person(s) acknowledged that (he/she/they) signed this agreement and acknowledged it to be ~~ (his/her/their) free and voluntary act for the uses and purposes mentioned in the instrument. U Given under my hand and official seal this day of , 200_. r~ U Notary Public in and for the State of Washington, residing in I~'-~ My commission expires: U U STATE OF WASHINGTON ) ss COUNTY OF THURSTON ) O h d n t is ay and year above personally appeared before me, to be known to be the Public Works ~r, Director of the City of Lacey. A Municipal Corporation, who executed the foregoing U instrument and acknowledge the said instrument to be the free and voluntary act and deed of said Municipal Corporation for the uses and purposes therein mentioned and `n on oath states he is authorized to execute the said instrument. Given under my hand and official seal this day of , 200_. I~ ~ Notary Public in and for the ,,-~-, State of Washington, residing in My commission expires APPROVED AS TO FORM: ~, ~J n i~ I, U ~' I lJ {--1 ,- s~ i ~J r s-~ ~~~ ~~ r I' V i'-r i ~1 r-, r~ L~ (. u U 1~ ATTACHMENT "A": MAINTENANCE PROGRAM COVER SHEET Inspection Period: Number of Sheets Attached: Date Inspected: Name of Inspector: Inspector's Signature: ~, ~' ih U i~1 ATTACHMENT "A" ~J i~ ', t-~ i I~ ~J Ij`1 u J~ ~~ ~~ Maintenance Checklist for Bioretention Facilities Frequency Drainage System Req' Problem Conditions to Check For Conditions That Should Feature d Exist A. Evapotranspiratio ~ Vegetation Vegetation is replaced. n in Bioretention dies (first 2 Replace trees with 1-gallon Facility years only) seedlings (or better) of the same s cies. As Needed Evapotranspiratio Vegetation is Unauthorized tree /vegetation Vegetation is replaced. n in Bioretention damaged (eg, removal. Replace trees with 2@1- Facility by illegal gallon seedlings (or cuttin ), better) of the same s cies. A Infiltration / Soil has been Tire tracks, compacted soil. Till compacted area. Add Storage compacted mulch at rate of 2 parts (eg, motor soil to 1 part mulch. vehicle Lightly compact. Replace traverses evergreen vegetation. facilit ) A Infiltration / ~ Sediment Water ponding for extended Sediment is removed Storage buildup in periods in the facility and/or facility is cleaned so system that infiltration system works acc~rdin to desi If you are unsure whether a problem exists, please contact the CITY and ask for technical assistance. Comments: ,rte Key: A =Annual (March or April preferred) M =Monthly (see schedule) U Q =Quarterly S =After major storms i~ r'-, I ~ ~J (`1 U I(~ 1__I I~ l~ (~ h U (~ Maintenance Checklist for Conveyance Systems (Pipes and Swales) ~..~~ r~`-1 U f~ ~~l I l~ U r n ~I ~~~ ~ ~ 1J `(~-1 L_.J ~? U Frequency Drainage System Req' Problem Conditions to Check For Conditions That Should Feature d Exist M.S. Pipes ~ Sediment & Accumulated sediment that Pipe cleaned of all debris exceeds 20% of the diameter of sediment and debris. the i M Vegetation Vegetation that reduces free All vegetation removed so movement of water through water flows freely. i s. A Damaged Protective coating is damaged, Pipe repaired or replaced. (rusted, bent rust is causing more than 50% or crushed) deterioration to any part of i . M ~ Any dent that significantly Pipe repaired or replaced. impedes flow (i.e., decreases the cross section area of pipe b more then 20%). M ~ Pipe has major cracks or tears Pipe repaired or replaced. allowing groundwater leakage. M.S. Swales ~ Trash & Dumping of yard wastes such Remove trash and debris debris as grass clippings and and dispose as prescribed branches into swale. by County Waste Unsightly accumulation of Management Section. non-degradable materials such as glass, plastic, metal, foam and coated a er. M Sediment Accumulated sediment that Swale cleaned of all buildup exceeds 20% of the design sediment and debris so depth. that it matches design. M ~l Vegetation Grass cover is sparse and Aerate soils and reseed not growing weedy or areas are overgrown and mulch bare areas. or overgrown with woody vegetation. Maintain grass height at a minimum of 6" for best stormwater treatment. Remove woody growth, rec~ntour and reseed as necess M,S Erosion See ponds checklist See ponds checklist damage to slo s M Conversion Swale has been filled in or If possible, speak with by blocked by shed, woodpile, homeDEVELOPER and homeDEVEL shrubbery, etc. request that swale area be OPER to restored. Contact City to incompatible report problem if not use rectified voluntaril . A ~ Swale does Water stands in swale or flow A survey may be needed to not drain velocity is very slow. check grades. Grades need Stagnation occurs. to be in 1% range if possible. If grade is less than 1%, underdrains may needto beinstalled. If you are unsure whether a problem exists, please contact the CITY and ask for technical assistance. ~~ Comments: xey: A =Annual (March or April preferred) M =Monthly (see schedule) t Q =Quarterly j S =After major storms !~ Li L1 i~ U r`-~ ~'~~ l ~? i V f~ L__s ~1 ~~ t ~~ f`1 i ~~ U r~ 1'' r ~( IU ATTACHMENT "A" Maintenance Checklist for Catch Basins and Inlets Feature Drainage System Iteq'd Problem Conditions to Check For Conditions That Should Feature Exist M.S. General ~ Trash, debris Trash or debris in front of the No trash or debris located and sediment in catch basin opening is immediately in front of or on basin blocking capacity by more catch basin opening. Grate than 10;6. is kept clean and allows water to enter. M ~ Sediment or debris (in the No sediment or debris in basin) that exceeds U3 the the catch basin. Catch depth from the bottom of basin is dug out and clean. basin to invert of the lowest i e into or out of the basin. M.S. ~ Trash or debris in any inlet or Inlet and outlet pipes free pipe blocking more than 1/3 of trash or debris. of it's height. M ~ Structural Comer of frame extends more Frame is even with curb. damage to frame than 3/4" past curb face into and/or top slab the street (if applicable). M ~ Top slab has holes larger Top slab is free of holes than 2 inches or cracks wider and cracks. than U4" (intent is to make Sure all material is rLnn;ng into the basin). M `l Frame not sitting flush on top Frame is sitting flush on slab, i.e., separation of more tap slab. than 3/4" of the frame from the top slab. A ~ Cracks in basin Cracks wider than 1/2" and Basin replaced or repaired walls/bottom longer than 3', any evidence to design standards. of soil particles entering catch Contact a professional basin through cracks or engineer for evaluation. maintenance person judges that structure is unsound. A ~ Cracks wider than 112" and No cracks more than U4" longer than 1' at the joint of wide at the joint of any inlet/outlet pipe or any inletloutlet pipe. evidence of soil particles entering catch basin through cracks. A ~ Settlement/mis- Basin has settled more than Basin replaced or repaired alignment 1" or has rotated more than to design standards. 2" out of alignment. Contact a professional engineer for evaluation. r`~ fry L__l r~ i U r~ U n `~ U I r~ U i 1, LJ ~~ L.1 ~~ i r~ ~~ U i ~~ U; Maintenance Checklist for Catch Basins and Inlets (Continued) M.S. ~ Fire hazazd or Presence of chemicals such as No color, odor or sludge. other pollution natural gas, oil and gasoline. Basin is dug out and clean. Obnoxious color, odor or sludge noted. M.S. ~ Outlet pipe is Vegetation or roots growing No vegetation or root clogged with in inletloutlet pipe joints that growth present. vegetation is more than 6" tall and less than 6" apart. ff you are unsure whether a problem exists, please contact the CITY and ask for technical assistance. Comments: Key: A =Annual (Mazch or April preferred) M =Monthly (see schedule) Q =Quarterly S =After major storms 1 U 1~' ATTACHMENT "A" Maintenance Checklist for Grounds (Landscaping) ~~~ LJ~ I- ~~ 1~ 5~ ~1 ~~`-~ i , U t In ~J l ~, U t ~C I~ ~~ lJ ~l r~~ I U i (`1= U Frequency Drainage Req' Problem Conditions to Check For Conditions That Should System d Exist Feature M General ~1 Weeds Weeds growing in more Weeds present in less than (nonpoisonous) than 20% of the landscaped 5% of the landscaped area. azea (trees and shrubs onl ). M ~I Safety hazazd Any presence of poison ivy No poisonous vegetation or or other poisonous insect nests present in vegetation or insect nests. landscaped area. M.S. ~1 Trash & debris Dumping of yard wastes Remove trash and debris buildup in open such as grass clippings and and dispose as prescribed space branches. Unsightly by City Waste Management accumulation of non- Section. degradable materials such as glass, plastic, metal, foam and coated pa r. M ~1 Missing or Any defect in the fence or Fence is mended or shrubs broken screen that permits easy replaced to form a solid parts/dead entry to a facility. barrier to entry. shrubbery M.S. ~ Erosion Erosion has resulted in an Replace soil under fence so opening under a fence that that no opening exceeds 4" allows entry by people or in height. Causes of erosion pets. identified and steps taken to slow down and/or spread out the water. Eroded areas aze filled, contoured, and seeded. M ~l Unruly Shrubbery is growing out of Shrubbery is trimmed and vegetation control or is infested with weeded to provide weeds. appealing aesthetics. Do not use chemicals to control weeds. A Trees and ~ Damage Limbs or parts of trees or Trim treeslshrubs to restore shrubs shrubs that are split or shape. Replace broken which affect more trees/shrubs with severe than 25% of the total foliage damage. of the tree or shrub. M d Trees or shrubs that have Replant tree, inspecting for been blown down or injury to stem or roots. knocked over. Replace if severely damaged. A ~ Trees or shrubs which are Place stakes and rubber- not adequately supported or coated ties around young are leaning over, causing trees/shrubs for support. exposure of the roots. If you are unsure whether a problem exists, please contact the CITY and ask for technical assistance. Comments: Key: A =Annual (March or April preferred) M =Monthly (see schedule) Q =Quarterly S =After major storms S~ U ;r-r U ~,--, ,u IIli UI i `~ I C i ~~ l-1 ATTACHMENT "A" Maintenance Checklist for Pervious Concrete Frequency Drainage 1Zeq'd Problem Conditions to Check For and Conditions That Should System Feature Action to Take Exist M, S Pervious ~ Sediment Ensure that the pervious concrete Sediment is removed Concrete buildup on surface is free of sediment and/or pavement is surface cleaned so that infiltration works according to design M, S Pervious ~ Sediment Ensure that the contributing and Sediment is removed Concrete buildup on adjacent landscape areas are and/or pavement is surface stabilized and mowed, with cleaned so that clippings removed infiltration works according to design 4 Times/Year Pervious ~ Sediment Vacuum sweep porous concrete Sediment is removed Min. Concrete buildup on surface followed by high pressure and/or pavement is surface hosing to keep pores free of cleaned so that sediment infiltration works according to design Upon Failure Pernous ~ Spot clogging Prolonged spot puddling on No to minor temp. Concrete pavement surface Drill half-inch ponding. Infiltration holes through the pavement every works according to few feet. design If you are unsure whether a problem exists, please contact the CITY and ask for technical assistance. Comments: Key: A =Annual (March or April preferred) M =Monthly (see schedule) Q =Quarterly S =After major storms f~~' L.~`+ C ~, r'~ U r, V ~i r r'~ Li ~'-, U n V 1~ U i Ifs V y~ L~J r~~ U i~ ~~ (t"l ~ ,1 U `~~ L~ r~ IJ~ ~' ~~ U ~ Appendix 8 ~`~' Erosion Control Plan n ~~ - {~-ry` _».~'^~ " 1 -~ r o ~ _-- }~ati ~ , ~ z ~dd~N~ao- r- ~ J r J. ~ ~r -~, ~, ~ a ~ - - ~- ~ ~~~ ~ ;L} 77 /"" .'- ~ ACE 6UFFER rn z' c;, my C1 _ ~- f' , _ _ _ - "pPENSP CF ~ jg ~ '~~ {fit ~ N SdWON / !~ A Z I - N ~ ~ ~ ~ ~ ~,~a i ~ ~ I . .~ w ~- i / FUTURE 3 5' HIGH ROCKERY ` b b I N I ~ m 1 ,~i n mN 'r ~c~~ ti ,.. .,y b ~ ~ / ~s I o ~ .. 4 '~~ ;,~„ T ~~ a„~N _ ,~ ~;; I 1/ ~~ 4r ~cFk 4'~ . f `` / \ - - ~ TAHOMA 8 ~,_ _ tea, ~"~`; / I n i 000 p g ~mN ~> "~-~ "' ~ Tm ~ O m 12 Z g m C (A m Z w z~ D m~ "d m i ' p~~$ vp r F f m C o O D=.F 2y O A=Q N j 1 N~ ~rczA m~ ~ ~ ~my,=~O I~T 0 m~~m m -~ 3cr ~ ~ n O ~ r [> c O~NZ~ p. > mrz csi 3 A Z g 0 ~ r NgiN H y °~-F~?,~i ~ ~ ° N ~ ~zo (~ mc` -`" ~ F N ~ aCF ~ 1 R ~ 4 ~ m m c o ~N N A °m~ y Fy~PA c .,~ m O ~ c m ~ N ~ 9 y m ~ r ~ W Z ~ m ~ O 0 4 +' N ~ ~. n 3 m~ to - }I ~e :*~-- C a ~~~ O p 0 ~ O ~vp? W w N' - _ `~' tp~ Ag~n~ ~g~ ~ N j G A OC Ra' ~n ~~r0 00 ~o 9 ~rn N ~~ :~ z f'~1 Q O ~ Z m -~---~ C-~_, ~_ ~- O O 11~y - I d ~m~ ~~.=' r z~ o~ o G~ ~~ Z~ i .,i MAI~~~ v ~ ~~ o 9 z 1 I 8 n O ~ 0 ~ ~ ~ m o ~ m m A m a ~I ~° ~- ~~. 6 0 L b ~ ~ ~ z ~~ N ~$ n ~ T m g 5~ d Z ~{ 'LS Z O~ ~~N ~> O '~ ~ ~ ~'4 mg F ~ ~, o ~oo~ D Q Td m ~< ~~ 3~ ~~ J~ ~ '~ m~ 'n v~~ ,Q ~ r b~ / P1 ~~ `j ~ ~ ~ i ~N < ~ e A m I r Ar Z Z 0 ~m p~~ °~, N O ~m~ ~ Q ~'mn cm v_~ Q ~ d I rn I~ ~ ~ O '~ Z O.~N 016 66 Z y.O~Nt6f~~~y Z ~~ ~ 'I~Q J Y Y ~~ ~ 1 N W ` m ),~.. 9 AyZ 1 ~ L O ~1 ' +• ~ A ~ _~ \ I ,-- i ~~=m M ~~ i [ v X Z m u p oz V N ~ Q o a~ o "°-~ ~ ~ 0 1 (~ ~ ZO a ~, N O mom I i; I ~~QQ A N d^'O ~ umiv_ o '~'o~ v , ~" ~ ~" ~ woo ~~ ~ „ ~ NvA . 0 1~ ' m°~i ° ro o a~_/ vI ~z°v ~ ~o ~ ~ ~D p~ ~~ ~~tn ~ ~ a '~` ~ N'/`\ vI ~~ =O ~ ~ \ NI A $~ ~`~s m x ~~ r~ < ~ ~ 00 ~ Q m °' A A ~ \\~ It i ~+ OTC 9~R N r ~ Or ~m~ ° F ` ~ y ~ -a~~ u~,r ~./ 0 ~ ~ { { I /. ~ rn 0000 ~ ~~~ zOrn~O oa~-~~ ~~DOo ~ZZNO ~~o~ N c-"AOZO ~~,oN~ Omrn~ ~N~c'~o ~_~-~-~ a~ rn~ ~'wz z rn ..irnOw O u5 -t =. ~ Og rnOQpO rTT q~ Fg yzr tP F-C+mN oz~ ~Agrn 8 0 c -~ c 6 ~Q ~~ ~~ nr'i ~ ~~ D ~ ,~ I r~ ~ f n z~ N ---I C ~1 Z ~~ R Z I Z J w Y ~ ~ ~~ ~~ ~ ~j~~~~ ~ ~~~~~~~ o~~~'~~4 ~~~ ~ $~ ~~ ~~~ ba ~ ~ a g ~$~~~,~ g°s ~ '~~%~~~~~ e~ ~ ~ ~ ~ a ~ ~ a '~~~~~ I ; 0 `~ _r A W ~~ S 2 ~ Y k O~Q T N~~'rr+~` N V4 3-naow~za z~z-n~ ~ mmJ ~T S C ~Z -i~rn~ C1~3-a -t~ CA StT' ~Il Z ~ ~~.o~t-, SLc cn m ~- Or.~30nq O~°vr ~o nZ n0~~`~~~rn ~p~Q==~FAZn ~N ~~Oy~ Q aww0°~O G~ O O --^t-v ''n^NC'f~nZ ,~„~z"" ~c -N~S'.p~~s z~3L°rn !~ N"'-~ C~r3n y1N AAZO?~n~Z~yc~~=~Z~°900rn '4 ~~T~~o ~rv~"~°N O~T S~r"4,m~3=Zr3=rnd l~D~ Q a '"w ~'~ OHO ~ -a=c S~~t- rn Qi ytn--t t~~ g~, --cv -~' o--~rn rn ^'-ocvob-z rn I -oro----~ 7p0 ~$3. zny S?°~"'r-n czl' °t3-nz $-t'~m°O~ c;p~p `"u+c~.v~ ~`t+o~om~~ ,~.,,-~~~~'o-os~~oz. ~°v o~ia'T~y,o ~F z.nrnco~gp O j _ ~a rn~~w rn~~p lN~ AO ~rnrnT ~oO r~'n ~T'IP FppA ~ ~ - ~ W 3~ n0 ~$7<~ rn~~r°n ZN~^Vrnh [m~ ~O .T~-n-OC ~~~ S ~w Z D i-u -+.p~ --~ l~J~rn P^ v,a-. wci~N SU, "L Z~prn ZOrnyO~IS~ GC'~z~~5+3rnO~cAivv('~~~~ -pr~Na =~ ~~- Sy gT, ~rn FO <^'~r~`1 ~~ZNC~~<F DG~~~u+z~Ornrnf~i~rn Se"~~v~0.9 lP --S? ~~ ZC m~ N~ rn Oryr-rnQ ~ Z A'i 4'Zi~r<n O SOS-~-oO~ r FTC lP C Z ZZ Z 'o~r''+~ - A Vi cP W CA- Z~m ~O ~--~rnrn 7p -1 Cl Z O ~Z -t tPO Z O~~'~ -fl PC z~~,0 -~anw cmrnNA °~ z<c~~3Vrn o~-°- ~ rnm- - -° -a S rn-ten N N s rnrzarnr0 N-cnz$-~3 om ~n3vN~. u+< -zrn<A 0 dOrn~~rn~3o~Q°~ozp`nrn3.0 rn0 ~~~°N°~*r .->~ v"^rNtnmo -~' -n~~3 z m= ~ ~00 yOONAaZ zN@NO rn-n~ ST rn~crni ~a~~pO s --qq RQ' yy c q1 ~n U~ " ~n q 3 ~ -~ F "' ~ ~ ~n ~o rn ~ < (~ • 3 " o T _ ~ '` rn y ?1 y O Z ~N~'n Arn~~N~O °O OQ CGI'n C1 "< pG~~ ZrC1n>~ CZrn1~Z~P~-~U ~rn- AO rt'SFiO R` N~~~ `" ~~A ~~r~OO~ 7~~°r Y°n A~~-A~~Ni~mZU ~O CG ~~O O ~C,~~ mz~ Agin rnrn~°nC} ~~ rnNy Cl ~4~ z°~, rncF rn~,A~ rn~ iz°rnz 0co zv~°";>~38rn<= <7oc h ~n3 u~Oc prncav ~°o az cnaF 7c rn ino = ~F~ z z~~.ao Arne $ ~~rn _~°-_~ orn orb<m -rn 3~.-rnoz Z No~-+=° rn°~o~ FN-i_Z ~~ 3rno or~-a nsY y ~ o-J{ ~o_mrn ~~i`" rn Sc~° N zmz~ zz j~ ~~~~ro~-z~-~orno<A~`- --{ 3 ~03 Zq~~~P"AO zsZ3 ~ ZC ~N ~SU,r ypp ~O r F~-i T,D ~.~~rnF O''"NA ~ A N Z O..t~N Om ~c0@C11f+4~y~r^z3 mn0 ~N m3 OZ00 S rn ~ b F 4~ N rn -t f~1 F a O N O oOn,DrNrnz rom OS^` -Qv ztrn -~CP F°rnfl m m3 Q~ °~czi~rn rn3o~ = nO reO =azcv rn ti rn ,-f_PL-`Z.FtPD~Oc-~qi m~~~?, Q cm~ m y qm ~o u+ ° ~ o"'sy a vo -rn "om~'n ~oz ~-.~ ~zoQ~o ~~ p z~^'3 -c'~z~cA< "-~rn?~ z ornOrnrn ny ~ N~rnC 3G~ Otero y~m ~S~ o a' ~ AI.P F'4i u+_~5 ~3 ~ O -g~ooo ~j~ nu, t'=Z zo < qr Ornrn FZ car ~Or O ~c Z m rnr~QF ~~ z~ ~`~~~. -~ An° ZZ° =trn0~ ~ ~mN ~ mo0~~ rnivrnN 1 -7'~ ~V+zN~m ~3. ° ~OOO-~@~0 rnr~d~~ y~~c zO Q ~o ~ ~d zz <~n~ ~N U<~z~o~ ooo~ ~^ z~~ ~ o$-orn ~,' zO ~ mmv z~ z3=~ -o ~ u~+_~k_'~'zu+~A~~n-rn= -~g~QO ~ z- ~`5 rnrn u- rnz~o 00 A~rn t*3 q ~ GY33 ~ UHF rv3 Anr= O rrnzr O-z m-rnN zv O z'ON~~y n 0`5 °~^' pz~ $~ fs ° -c ~Og-a <z wag i~~-v Nca o u+z i c~"^ 0°oFDO "~-+ ~„' ~cOZ-t~F~crn O~n~~ =AZr D - ~iu+ Uy' c~rno f-+ o~r~ rn--fTg ~ ~m~ z Nazi u,ow~, o ~~m ~NNSrnN ~'~" Sn~'c~=za~ino-~+ oz-av'c OAO ~'^ ~, CP.~ Z, pr 41~~ ~ rn OAT N~_ 1_ HMO ~ - ~Z 3 O ~Otrnf~'n pT' -V~F r3a -i ~N R, Z~Ci r'n Z fl_D 3 -Z'v~rn OON A-i mp~ FOO z A An n° ~@orn Z- ~`$O O-h zn~~ ~ "~rv~' v rnrn ~~ nz a`~ ^' U'~~ A~w+'^°-~°n ran c O['i Ci ~'rn'L=JO P^°Orn= z i-t~~0 ~G~C~pp ~ °rn rnR rtiF d 2 ~ rnrn C1Z Ct -iOSC O U'~- < OZ ~ LAC [D S Z --f1 ySU'N O A t'~i S ZNGi rn5i-N41 ~pN O ~O `5 ~'^ ~. rT A N=1 ~w-C Gl ~ O z z 9`OD !`nO ~nNZ 0~ '~' z3 .nN ~-n ~rn lP (1~ z rn~Gl ~-V ~'nrn3' ANC - ~ rn p0 ~c -o F yz .pyci0 ~~rn ~rn<-+~ ~ N-o rn o0 ~_~ 6 ~no ~c5~zrn~~F' ~~ O ~. U, rn° Fz~-SS~ N ~~7~, ~N Orn NZ App N-cn Fn O AOA -vv~ m~MA Z Oz. .-w ~ -fS ~"c~ SO.~ N° rn r~ G~Z-~ G~ V -t-~ <cv rn~1' NQ ~~ OVA ~ OZ 1~9 i~z Zy03O ~ °p ~ rntn A~Nrn ~ arnG+~rn,p ~3 mN (10 zNCF n ~°n ,v,vc rn -pOC 3G~ ~ ~ ~R,O ~ N~ Or^zpp N~~, z-~ OCO (y~~ rn ~3~ ~.-tzJ' m -~ -A 'z Ow Ct-YZ 0=+ ~ OSFna Z -4~-n ° D - Stn lP n3 O~'Z U~z ~ T~ Z"t i'n mG'~ N ~i ~' OzM Fu+~ ~~ ~A yA O o~~ ~'w0 -c~~< p z~~ ~ o ~N ~~~- sL' =rnr" u"° 3~ -F~ ~'n '° 03 ~rn ~.~ O ~>r ~o~~ ~ N o m ~ <i~,, n3, ~ o 0 3 - a ~ rn ~ no ~A rn~ c o~z rn u~~n- A ty, z o ~ m~ ~0 0 pOZ„ Np rrn-~ Zfl ~ ~~ O O~i~ ~ N ~OS-~ y~0 ~i ~ ~m Frn~ ~° A~ ~~ OfT ~~ ° r F~ ~ ° ~O a ~N ~ n0 ~" ~N tP ~s~ ° 9 p m~~ Zm Dy, m ~ (/~ Qi r`l z~ im Z ~ >m m° p~ ~ y -' m ~ y t ~~ ~ ~' ~, AzU ~n m F+ . o ~n C~ ~n O ~~~ ~~ ~~ A Z M m ~ ~, ~ ~ ~ 4 Q m ~ ~ ~ z z 1T r pA~ PY p p ~ > ~~' G Q 4 o ~ -j 2g >~ A ~ ~nz> ~"` m~ z c C SI> > ° ~ 7 A p S ZOO ~ ~G~ °9 2~ ~ Z <~ ~ .\ NZq ~ ~~ ZS ~ ~f, n m ~ p ~ Z =m..{ ~~' p G~m ppm D ° n m 1 11I~ ~ ~ "+ z q ~ SNi p m~i Z Z ~ >yz~ °zm ~°m m om z 8 Z ,~r.0 IIl1ICllJ1f °Am~ s 'n ~ $ m iQio gGo ~y Z ~Nf A °mA ~~v aZ fT1 m~ ~ SAY o~-< nt>i } y m A p ; x ~ Z~ ~ r Zino ~.(m ~ -~~~ Z D Y~ ~Z p-J A ~ . ~~ mm F _. `- ~ --'I ~~--f- ~ ~~ ~ ~~ ~$ y 4 gQ $4 ^~E ~ ~ gg ~~ 4ii = O a _ g . ~ A~ ~~ r1 $ w ~ ~ ~ ~ A ~ }' afi g ~ p~k~ f: s ~ ~ ~ ~~ ~ ~~ ~ c r~ ~„ 1 ,4 I ''~ g a ~,§.~ - C~ ~ o o o'o ~"~ Y `y~ ~c ~: o m TI > o ., i, _ ' ~ ~ , ~4 rn Q --~ r 4 a 0 I~ d z z r (~ 1 i r+ € ~~ P ~~ I~ U r`-1 ,~ i-~ t~ r-~ i~ ,~ 1~ 1~ i, U ~, ~1 ~-~ U ~~~ ~~ U I~ f I~~ U I~ U {`-1 U SECTION 4.2 PIPES, OUT'FALLS, AND PUMPS FIGURE 4.2.2.E PIPE/CULVERT DISCHARGE PROTECTION place rock 1' above crown both sides of channel for °A"< 8 ,one side of channel for "A" > 8' I' min filter fabric liner under rock t 1' or 2' rock thickness see table 4.4.1.A SECTION A-A N7S quired Dimensions n 8' for rock lining ~' B 12' for rip rap gee Table 4.2.2.A. ~~ e 911198 1998 Surface Water Design Manual 4-30 PLAN NTS ~~ ~_ {`~ ~J y€ ~!~ ~~J f ~~ ~~ H ~~ 1~ f ~,, II ~.J n !-1 U n LJ n U n U i(-? L f t-i LJ ~~ U -, ,~-, ~~ u Appendix 9 Storm Drainage Plan 4~ L~ ~' ~~ n, u r~ U ~' u~ ~~ Appendix 10 ~ Construction Plans, Notes, And Details V ~-W -- w o O r~ zor Z jO r ~ it U~ ~ O4 D S zzL p~ O° w N~ ~~~mo°d ~ gaz 4 0 Oou z V ~p up zd tl "' 0.p ~+F-- oW 7~7 ~ 3 Kw 9- Z4 ~ ~G~~ ~ zaox ~o a `~='yp 3zao~-va s mod m = t?O Z V s 4 V' °rL>i 4 ~Z 'Jl uo `oow ~ ~~~ ~~~~~ '~w,~ z+~N~~w ~o aouz ~ a ?orb ° ~~q ~o~ao ~wzE ~~`wL~ ~~ QUO s c. O ~ Z ~~r °t 0~9 of °LQIr~ Ou- Ou. V. ,~~ ~~~u'i ~ O zu~ o~mQsz Si~W Y~ 2K 7dU ~?a u z ~ 0. ~' w~ F r O ~ O U ~i~....11~/ d o.w L `L s r~ 7~ 1 m w Jim w~ Q V Z w w L g 4 ~ s j 6 ~aVO,wj C~ ~ ~°w m szU 9r zousww u~ m~~ Q~ ~ z ;n rs~z0 7•, ~ LL~z zUm7~~}} o`IVpo[ s~~~~~ ~a ~ O p '~ ~ OW~ s .a s sr~O O~~Q3 r3~ ~uQa a p° y=i0 p~ ~ G s+ "' ~ r n ni ~' w s z7s=o `~ Q ~~a° ~x ~o ~~o zd, j~.gr '~`" ~`~~ °~ au w z ~ _~~°- a u vsra--~ wrO K~ inpV q_, ~~:. ~s Quw.~ V Oz o °- m z z"O o ~ a°sz m5zQ0. d°a~` '`-wQ~ s= wo3 z`~ c~~ 2 'y ~ wai~dwo ~ ~ oo°`°' =vo~°d ~w,~ ~z,n~°-a or ~r+ z o c7s s zd~ zd z "' s °'',s,~9a'' oG ' ``~~ ~~~~u~ ~~~~ "~o~N°~" aw w~zy uo~ ow rj w w a'~~ds,,,. ,~ n. J'i t.U OQ~Y~ oKu2i '.n Zr°w'Oz.Z 7 °o=-~- ~i0 VG q °- n 6000 zL Sl Lg`~z rju ~ zdwz w'~-r0 `~a hum ~~ Fed ~ T A 0. w s W ul1 7 O7 7at~ Z V ZQN 0. Zw Zp Z d.w0~ ~~ Q 2~'~~ ~ZUpw KuK.+mZ °a'.m~u-~wrF- 00 ~s~d VU Nn. ' z `~a o °~'L'zd ~O Z ~Qp~ o ~Gw u~pWx~uo., ~~~ww;p~j uv ,9rU t- ~ ~z ~ W ~ ~ LOZW Qz ~pJIL, Q31:4 xi w~ ~`G ~ ~°Y `i o' ~N,~jNO Vj6 °zd U~ Una O °~~ow.w ~u u.~ u`n ~j `F'"z ~~° `^~;n~ ,s ao u? ,n ~$~o~ a}c'' u.~ ~~hm N~ su ~ j j ~ J ? ~ Q y ~ = F ~ ~ ~ - O 4 w ~q h ~0 Z r s J ~ ~ N O~ ~~L~~o~ Q s `~ K O ~ 'n t a~ 1r-~, s z O~ u' ~zz~ mod' e p U ~w o o- ~ ? N ° `z'a oozza~ °ooz z~ ~' z p° U ~ ° ~ s _ o a, ` " ~ u wL~ ~Z ~ ~ 2~ 2 w `hi-O a 7 z s d L ~ n O -~ ~ ~ o Q Wd FO~Kr - U, ~' U'f ~ ° i~wU' ~ J jOinU O ~ `~~ O , d Z~ wow O a'w~s w°uo m°za owu~~x ~~od p~ ~ f fir'' zs~u`~"GU~UZ~d4'°oc ,n V' ~-~ Z `nU~O`~ri ~~ r m? ~ Opw~ d?p Qr~pot~riQZO. ~zo pu'20z a u.l "~' Z V ra sv wG m7 Q ' ~ 0 p ~ °n~' p w ~~r-p ~ O~O 4NZ ~w °jOg`~/yOK ZL z m° ~ - d n a yz 'j,` F~LN aawu4 ~q pan.~t~3°c~t ~ s .., 6swy~Wo p0 ~ os y°~Q ~ 3 O°'O~ ~°-a~~~ ~~~~rs~: 4 mrU zQZO 3Qm r~a OZ ~°~~ r LL,- a O i~~O ~~4 ~~°~~yppz~~ a,O ` O Q`fJ ~ S'~0.~~w V~ aVO[OU r0 ~o O " ` ~ ~nm zOr 1S aOZ~ OQ ~~ ~ U ~ C ~ rZ i "' ~ ass i--0¢`=a zOww .t / a[[[K]]] Q0. U t?- ~yt~7-~ wZ 6 y2~ w u' s ~ ~ w ? ~~ ~ ~ ~ r0 ~ ) ms -•O~%~GO U Z Q t ss~~ uU~' w Z j~ ~ Q 1 LK , ~~ i1O w 0.Z a -, ,, J K'+ O . u ~? y j ia lY- u ~2 GZON ~~~wp m~Sn~~~U ', [ p ~~ p u m~ ~Q. z 7 j C 0 ~=gin, ~~~'yy"~dr~~ ~~5 4 Z ~ ~~ o o ~ 6-c .i ~ OG ~fl oCnmo~w~v;~q~ sw3d"y;',`~o zr zNg7~NR°pz~na`La~ou s o G ` ~ ~ ~ 0.~O VuZiOSZ~~. ~.~~~''ZwF~wz LL~ ,.oL~Qy°~~~~~z vu wo~ 3 W ~ i i7 tr' K ran Fri` ° U1~2`D V _ w..~ sspr °~. MUin00~- VZ QoG ° a ~ w o ~s`5~o cor„y,ooz°O~o~d O ~g~z ~ ~ a ~°~m_~,a ~~zdj ~ uz~~'~ ~<p~t-4'a_ ~ Yr ~mr~o=wO ~ QO~oo''~oinW~Or ~~"~ J ~~3 ~ w a4 w~Q ~ O ~'~ 7 u ~~u , w ~~aZ n _°`~' 0 z 2 Q JZ ~ ~ n ° ~ i O ~ 4~) ') Z use„oZ Q O? p~} pG oZ ~U z 0~8 Y~ _~ 3 ON ~y~ 0 o~z 47 r O Kz w~ v "' ~- '~ 1 0 ~~ W U1 to 1~ o ~ ~, ~' z 4Q> O ~O/ {/Q 4 ~Y ~/ O -~ ~,8 ~Q,~, 8 xG0 `~ti ~ ~~~ ~ I ~~~ °~ ~ 75 1S NN717_YYYa1 -._ Q •~ '. .- lJ f ~ > , o y ~ ~ VNYdl ~ ~ Nl , ~; M<710~ '•~ 4 F W 8 Y, I~ 1 ~y 9~ MYL L ~ ' 3 . ~ p {? K '~' 16 mAA VsraI 74 ~ ~ OAl6 YWOt1V1 ¢ .1 ` G o`~~ N }} W ~ w o \ `.C= a O w N fl O N a r+ N d .- U ~ ~ v p 07d °+p~nz o - O g s~~0.Q. p N go~~ r j o~~ a ZZ~ ~mm~ ~ N N ~ N N N (V ~. r ~ h ~ I~ m ~ ~ ~ z z Z N ~ N - y ~ N ~ ~ M ~ h ~ mM1 M N y.l ~ M o~ p ~ w ~ _ ~ w ~ u~ xz-. w w ip '~ ~ pmt ~ V Q Z l_ ~ T'1 ~ ~ ~ ~ 0 m C W d ~ M ~ O z ~ ~ J ~ J p[ J Ql ~ i~ ~ Y t 1C(i~ iJ N Z Y N ~ N N N m M M N _ N O ^"1 M tt 1 ~ 4 4 g ° Q o~~ O U ~ 888 O + + 4 °' ~ + r Z N O O z ~°m p D O _ r Q ~ ~ ~ O O ~ ~ ~ ~ O Z a N ~ r m M d N 2 w i ~ w _ U z ssm iv a z z - 0 d1' N ~ ~ ic u~i p V ;nm ~N ~ ~ l9 1- m---'I ~ ~ N NN ' 0 ~ n') N z. ~p~M ,u o N ~XN Q1J1 Ow z ' TS__ N ~ N n ~~ ~ .-- ----"'.3 a z ~~ X O ~ t=fl O N p Z Z u• ~ X O w U ? O x ~ ~ Z 151 44 ~ pl `L N ~N u ~ 8 ~ 4 _ N (lM p c~ ~ N L J ~ W _~ ^1-- N V `~ ~N Q~ O N O m M M M ~ a W~ ul Lj t...~--~_ 3 ~ z b x _- 02 ~ p ®~_ ~ ___--_. Z ~ N N ~ N ~ ~O a ' p m Wx N~~N ~ ,n ~~ "1 z~3 ~ot~ m W ~ ~ ~ Z (V M.11~ V ~ ~ Z~ j 't ~ ,nL.--- `n I '~~„_~~ N v ~ ~ ~ m ~ ~ ~ ~ V ~ U ~~~ € o ~ _ ~ ~ ~yK ~ ~ ~ p `~ 2 '~ rp ~ ~ U o - ~ ~~ K W ri-W 3 z o a' ~ za u0 W 1 o r -,~ o d ~ `~ ~ 3 w 'Q s _ °i<• ~ 0 0 " u3 z~ J~ V O N ~ z p o ~ ~ ~ i ~ U ~ O O O V~ i z~ - < o ~j ~ ~ ~ w a°' i ~ ~ ~ T a' ,~ '~ ~o u, t` N ~ .Y f I; . 1 ' I N I•,• ~ I ~ I 1 ~ 1 1 ( i •. 1 1 I ~ I 1' ~ '.I I 1 ~ ~ ' I~~ I I I (9Z I b£) 111 ~ i F'. O • ~~ I I B5 Ob£ '4' z ~ . } .{, 1 ~ ~ f ~ O I _--- g b 1 I© d ~ ~A ~ 52 ~ I N --h•~ d I 1••~ ~ I I ~ m t I (Z5 I b£1 lSl I I I' • I ~~'' I I I F :. TTt N I v .. I u S I I I I ~ i t O I d p l ,1 a`no I ~' ••7, m II ~ G y ~O a I oe oN ~~ 1rl 1. :`~ ` Zb 7b£n'131dn O ~ ~ n 1 w < ~ I b` 1 ..{ Q OS / 1+E = d1s lan (bZ 1 b£1 ill in ~ ~~ I I ,• { ~ bS I b£ m It ' ~ ~ Q tl ~I:. 1 ~ •' 80 n 11 ~ ~ F ~ u a v I rd ~ 1 t:. ~ _ .-- - x~ __.~ U~+a s n13 dV 1 (69 0b£) d a ~ ii ~ y ~ 'S ` _ o ~~' I t:, 1` - z ~ ~ U a 9650+£ ° V15 dV 41 M ' 95 1 b£ ~ 7 ~ ' 1 ~" 4 ® 00'+ l • ~ ~ '~~+ c`w ~ ~ LS 1 b£ = ni3 II WQ t +Z 1 _ _"'" in J s `~' ~ s i ~zg+£ ~ v_l~ ~ O 1°n GoMO aye! 8 ; ' 00 _ '" ~ w ' ~HLS doa N~ a7~v~ I Q JM 00 O I +Z ° ( i06 Ob£) 1S) U o„ ~ a 9 I. O _ .~ C1 ~ ly Zb I b£ = nl3 Odn 1 o B£ 14£ ~ ~ x ~~~ ~ 4 in 1 i.;' ( d. _ -__'- -~ -- OS Zb+b ° VL50d(1. I 2 ~ 1 Q 1 Q '~ 11•. . L o ~ L' ~ l r (Z 1 1 b£) ~ ~ 1 1•, 1 1 .o £I 146 ~ fi, • 1 . r ~ 1 'Q ~ i D t^ :~I o ~ 1..• 1 ~' I ~ O 1 4•:, ~ I Zt :} NO L"'1"'~ S9£Zb£) ~ Wy* ~ ~~ I ~~~ ~~ f90b£ l': "' t9 7 z 4 ., ,9 , • I w I l99 Zb£) in ~ Z N ~U ~ ~I I •,'f O 1 111 ~~ G Z Q f'. 1 '.`•I 1 o O i '• ~ • ( II O (90 Zb£) o Q W y E w a 1 Ob£ ~ 1 £ {`~ 4 ~- `~ ':I 1 1.. 1 \ I C, ko 1 1 1 ~ ~~ 1 t 1 1•, ~ ~~ 11 I £9 6££ ~ .•~ 1 1 ~~• 1 ~ 5 3 1:. •' ~.~~ v ~ ~ v ~ ~?z~ 6g~N \ \ fbZ 6£E) ~ p~ r -~ M M ONr«oz ~ \ \:• \ ti. ~ O ~ ~ .w~rn a = ° ~ ~ \ \''' °Jx ~ ~ cn ~U o ~ u Y °~ ~ ` .. ~~P ~2 ch ~ ~ \ `' C~ ~~ ~ \. J ~~ ~P~ r---- C~ °~ °j Kz KOU l~ ~ 4~ r•1 ~ ' ~-~~ W ~~Z~~~~ b`JMI~ T~ Z ~ N cU Z ~ N N N N -• aS 15 Nrv N _ .: -~ O N r vzy9) r s s a ~s ~ m s ~ ~ < ^ M ~ ~ M awe ~ c ~+ s ~ ., ~ ,~., , ,1 n ; r N m ;'~ ~ i~ m , ~ ~ o ~..+ m t~ S Z JW,1 N ~ iV N h ~ W .7<` 15 M)in Shb?S ~ ~ Y N N~~ v -~ ~ _ _ O W L J r \ a p rD _ ~9 ~'N ? m m ~~m~ v O a ai w ~, ~^ L _ z ~ ~,~ ~ V, W ,, o r M a m a w t` mM MMMm w M ~ ~ Kt Y O W J ~ J ~ ~ 1 N pp iV 11 y(~ N N ~y tv N N O (~=tt O d1 Z ,ri _ N N N~ ~ w M M M N M U a 4 u ` l.- W ~ N cn s N pm~^ L O ~ ~ z r o ~ o m~ ~ p p V ~ W Q O o N c~~+ U ~ Q p ~q ~9 + y+ t9 P U z N' ~ W = N ~~~ Z~ p OK ~~ ~~¢ ~~ ~s G- ~Z~ ~o~ ~ ~ 4 G- Z ~ O~ N M~ N Z~ _ Oyu ~U mo- O ~ ~ ~ ~ L ~ ~ OrVT~ DN ~Lz p a~z Z ~ ~ ~ ° '~ 7 0 o- + `9 N + K1 ~N ow a pp7 A~ o~ rd dl I ~~ 1, J, l ~ ~. ( ff~ ~ , ~r t. ~: ' t.: m ~ ~~~ ~l ~i e ~ m oz N o ~ ~ ~ ~, ~~~ ~ o~ ~~~ o~= ~ s r__._ ~n ,---- ~,~ w m ~ ~ u) ~ 8 ON LW =~ ~ O ~ gM m ~ z N - ~ o ~ aw l~v N O~ U'~ u "a ~ NN O ~ m ~ p n r ~ m O s ~ M M h w U r "~- ~ a a ° r ~ W ~ D ~p 4 4 M Nry 3 Z O 3 w ~o b p Qn~tx m W 'd ~~ ~ ~ ~ J.-Si JI o L p O dW ~ ~.. O `2x N`1X r6 U'O ~~~ ~ `~ 3 N ~`~ ~ to to j a, 9 6 b1S .035 ~~f7~''J-~b '/ t ~V '.\ d0 . -. ~O a5 ° • °o \~x ~~P ~=3 ,~.'P~G~~\~~~p~C' sn 1 G ,~ 1 1 °~ Q ~ uU ~ a N ...1 Q N K ~ m N ~ ~; a ~~ 4+~ ~ T ~ u U1 ~ Z ~d Q ~a ~3 ~ 3 m~ ~ Y I ~NZ s j.~ ~ ~w © ~ ~' ~ O Z W W Qo ~ O Q Q ~~z Z 4 z, a ~ ..• O O ~ ` ~ ~ I ee Q££ ~ a l59 L£E1 ~ £9 4E£ p W a O z ~ o (g£ 965 p C? O l09 L££1 } £ I e££ - O (ez e££1 + gB L££ O t6b B££ } £9 L££ N O Ul (Sg LL££ N ~ 11 ~ _ c ~.`' l66 9£61 } V £ I LC6 to r 7 - a m a> tOb 9££1 "~" G Q S8 9££ Cn ~ it 0 0~ 4 tzb s££1 + £9 9££ d r -x 0 >n c~ taL v£sl -F 1~1~ g69££ '~Y 2 Z ! my ~ 4_ Z ~ ~ ~ C j ~ z O h~ O W ~ ~ Via, 4 Z ~ ego ~ O~"~ ~ ~Wr 4 ~ sd Qd ~ }) ~ O Q 4 r J.y- ~, a o k L $ n e i '~ e~ as « u °, ~ ~ ti U _~~ -~ u 9 d O~$ ~~~ 8 W ~~ ~ ~~~aoa J z~ u,-.-" o ~' 1 ~ 11 o ~ £££ d lib 1 {' ~ 1 ~ £ 19££ lCl 1 O 11 ~ 1------.~ 4 (6Q £££7 ,~' 1 1 BB S££ ~ 1 1 O 11 (£O b££1 O 1 £9 S[£ ~ 1 8 i 1 a o ( ~ 8E S££ C9 ,~ 1 a I a N O b ~ (LQ b££1 -}- 1 c m £ 1 5££ I`.. ` I ~ r I (J { Q Q a~ £ (9£ s£ -H I N a6 b££ r. - 1 1 p 1 t3 dJ 1 ~ N - p N m 1n cn cn ,~ ~1 ..-~"~- ~_~- ~~ fw~~ ~~ ~r_ ~~~ M J°,r a~ ~ r y, N~ Z7 m 3 Ouj Z c b;~ ,yp O z r n ~ ~j z em x~ u~]Q o- V w s~ z ~ 4`LX x NjG ~ s^' ~ N~f N4 J o ~ pm j n d/ m N Z ~ N 3z6~ U bx Z o ®.a a r, z ~ ~ G)QZ Sy O 4~X Nj~ ~ ~ ~ cU @~ N til ~~ 9L+£ ~`V1S dpi 35 1 1 1 .. 1 1 1 1 t v t i 1 1 v I ~~~ ~~ ~~ _~~~~_ z ~ ~ cj ~~~ ~° '`a o ~ ~ ~"~' ~ o r Q yi ~ ~ ~ Y 5 r '~j ~ ,~~" 6 z t°' o o z i ~ x a i d}~ o o ;~ S ~ ~ W Y z ~ m ~` ~ ~o s+ ~ ~ m e s d (f~ N 1 .m i ~ ~~ 1 I V I n~3 i s v15 ~~~~9 1 ~ o o 1 O z pm o '-~~ K N6i °~ ~~g~ W.-= ~~Ma o~,~ y3 e' U ~ O ~ N~ `~ M ~~ I , ~~ ~-- _~ ``~_ a5 15 ^" ~ ~ yl ~ tlbE]1 N v7 ~ 4 { L~ 6 ~. )10~ x N wg ~ , J~ ,+. 3C y5 Malh~r~l J' Un1N vwOWl ~~ .~ n4~ t \\ o~ o~ ~x ~~P\ ~'2 (~ .. ~`~' ~`4 ~,! i ~~.c.G ~ `\ ~'~. ~~~' ~ Q~ ~M w.~ O,y '"`-~~ s3 Z v, O ~ ar ~ b~° u ~~%O II Q N O a' ¢ ~'`IW 4? N m -~~% 0 ~~-J ~ Z Z N m ~x m w O M ~~p `n N N NS N o~ pO ~ N~ N °j~ m'n ~ O~ '~ ~ f ~ m ~ ~9 o p p ~ 3~ x Np Out u ~- .n b- x Np O ' ®,.J ti s m m ~a? d ~ ~Zi 47% iJZn -~ n ~ ~ a w -~~ ~~ "' L ~i " p>L oa~ oz O ' ~' M ~ z Q~ u I z 0 UZ ~~ ~ r u~ °zg ~~ p~u s L ~" ~ ~~ ~ LS N Z a~ ~ ~o Kz wQVU w n O ~~ O . ~ 7 a w rQ ~ v ~ w ,~ ~ oo~~ LL ~, i W a = ~ N $ z ~ O > ~ (' Q s _ ~ ~ ~ ao~ ~ ~ ~ i , :, p , o ~ ~ LL ~ ~ '$~ ~ 1, ~ 2 a W a ~ 'v N, J ~ ~ ~w ~~ ~ ^~ ~ o ~ u p °_ ~~i+ ~g ~ ~ ~ ~;d u ~ a a ~: LL ^G., ~n ~~ 3z O W V/ a~i O O ~ N G ~ ~ P~ s O~ {.~ r N ~tt nii ~ •~}~ O •J- v o K ii ~~ y~ ~ ~ m V/ ' ~ o o ~ o z z ro ~ !~"~~ y S ~v ~ ~ 0 i i ~ ~ ~ ~ W ~, ~ wo ji V/ f~ 7 Q ~ ~~g ~° ~~ Q ~~ N M K '~`O ~~ ~ Q~ ~ ~_ ~~ a Q o°c~ o ~ z ~„ 4 ~N o~ °~ o ~ - ~- ~ N Y G K N q v X 'p ~ ~ c ~ °` m ~ ~ ~ ~~ r m w ,~" ~ o Do ~~~ ~ z 0 ~v }' - u.~ Y t =' ~ a~ ~ O ',' O rw ~~ a 4d ~ ~ 3 ~ a Q o= Q r ;~ =,~ ~ ~ -~ ~~~ _~ _~ d ~ ~~ ~ I ~ as is rrHn~ waai - - -- I I ~ av~ a-"'> ~ w ~ ~, vaau ~ a~ ~ > ~ 3 i~ ~ ' r < nog ' ~ 8 __1J m ~ rbaouvis ~ 3 a 1 ',I is Mien baH 3 ~ ~7 7 ~ome vwoirvi ~ !~ a' z ~ a °+ ~ 0L I of N V 1C z U1 O O it O N N O O ~ ~ _~ 2 z~~ ~~ O N'L QZ ~ z < " u z Oz z0 Oi~o4 Orn o=g ~~ L 3 V ~ YY K O O L p N ~ _ o~Z ~_ boo __ w U U > ~ N N N S w N Ul N N N N N ~ ~ Fj - m N V N t~ N O m m N ~ O M O y~ N N N N m _ m m m m m m m z z z ~ z z N N N N N ~ m ~T N I~ r N Z - - N ~ Ol ~0 o 0 0 N m N m m m m m m > H r0 W W ~ 0 0 O ~ m ~ 1D t7 m m m m n m r~ m m m r i m ~ V ~ In In (V (V fV ` D O f` n r r N N N ~ ~ m m v c v O a v ' ~ Q In + u1 + O N + 1I + < + ~ + ~ + N ~ O O N v v VI _Z m Q p Z O - N m v In N N N N N N N u Y n n z] Q Y J 2 l 5-21 JMQ 33S 00 00+9 d1S ~ 3NI1u01'dW I I I~ I o z ° ( ' I I II I F ~ I I 1"' 3 I { ~• 1 I I I I _ I ~• I ! I O ~ ~• ~ ~ I I 1 c~ R I I~ I ~ I ~h~ I I ~~~ o o I ` • I I ~ I a °- I I I • I 1 1 ~ I '~ w 3 r I I' 10 ~ I I• ~~ I ~ I f { ~ I(L ~ I ~ • I ~~ ~ 1 :.I _ I b _ f I ~ LI ~ I~ 1 r r ~ .~~ 1° I I t° •' I '' ~ y I I• " Ir, ~ ~ 1 ~ I ~ ~ 1 I R ( I - ~ _ m ~- Nj ,I'~~ Q I ~ • ' o - 1 f y O l> N ~._ _ ~ u O ~ r Q N I ' I~ O 1= ~ LY vi ~W o ~ - - •• 1 ••• r r Q : r r 'O / / • / I 2 NS S s r5r f ,o%. m O S r / ~ /~ I 9/ +o r Tx ro Mr- j~ ~ ~ wM W K ~N m m w O 3 L J m ~ ow a ~ W o _ ~ ~ ro 3z~nou>i - bxo J m u ~ O of o II m V ~ m _ Z m Np O M ~ ~ V O ~ ¢ N~ O l7" - m ~ O lDN ~~ 2 N p X~ V ~ ~ m ~O 2 D N O QN ~ N~ V W V g m N O ~ to ~~ uu ~ = _ j ~r o u __ I mm N N . V~ N N ~ z ' --l KV' N ~? V ~ m m O ) m N ~ X m ~ O N N m m W ~ O~ V ~ ~ m ~N x NO `n 3 ^r- O u0i m z ~ II ~W OW ~ ptn _ N L ~ ~~-W~ U _ ~ N O N~ N v O 3 z~ I m ~ O V rY e __~ o ~~ y. o ON <z rv O X 3 ~ o ~ ,~°o m rmi m ~ '"' 'n m N ~ ~- ~., =Z o~ }W m> w° Z~ o~ o- z~ O U~ ~~ K~ H _ Z ~ O~ U Z 00 Z LLJ w 2 U) W N N W Z A2 .yvyl r r l N / 9 ~ / ~~ Q i~ Ul W ~ N m > r z ~ ~i Of I N r \ O Q~ N p ~ ~~ -y `z `U K a•• •/ /~ li'li' .~ N c ~~ ~ ~ ~, i 0 = I r~ Q ~ ~ _ N ~ N 80 N ~ + 8N Sab 'f o< W F N / ~~ ~~ a~ N = ~ ~~ ~ ~ ~ u i V Q / ~~ O 0~0 ~ / m I ~ i ~ i i i i ,. / ' /. ~ // I~ S2 ~, ~ c / 1 ~ / m = N ~~ O N ~ ?a K r ~~~ Z ~~ ''- alp ~~ ~o~ w w V m H p ~ W In {- Q 2 Z ~ ~ Z p ~ ~ ~ L N a~-~ N ~o w H N Q O ~O wm m n~ O 3 Qm mM W ~ ~ lD D .~ O O w ~ L O a. ~ N ~ O tl m U °' o °"•1 z 00 ' ~ ~n K V X in ° ~~.~g N m W T OO O U Z n N 'n _ mN N Q V O 3 O ~ N M O M in M O in m rNj .'", ~ O yd ~ O > b V = ~ b ~ u s ~ o O KZ N ~ ~ ~ Uw o u ~ =z rt p U i ' ~ O 4F O u ~~ N ~ ~' W v i ~o ~ ~ a ~ U 't`~ o _ o o -' ;n c ~ ~~' -- o " u or 'i i, ~, ~ ~ G w V~ t) ~j L K K p Z~ KO O o 0 0 ~. v ,'~~ ~o Z .n n N N ~'O ~i +, o ,n 'n N - d < _ N n z ,n~ ion O ch ~ ch O m m m O m N cr) O m O 0 ~ £G L££ ~ N V I L££ = Ala 1dA - 00 OL+S = V1S 1dA ~ 8 ~ r£a 9£E ) "~ O OQ 9££ + > + "1 lf~ m g"II 8 ' n d SS 9£E ~ Ala dT ~ (Z 19E£) p _ > b I b6+b = VlS dl ° ©~N ZS 9£E + I Ul 19 9££ = M3 OdA I 00 OL+b = V1S OdA ~y I ~ I fEZ 9££) ~ o I . ~ I ~ ~ f ( f o OM (OL 9££) Q O 56 9££ + I ~ o V' O II I N O ~ W (S I L£E ~ ,^ VI OZ L££ + N m ° //^^ vI Q " ' ' zz a (ZS L££ 6b LEE = Al31dA ~~ W Sb L££ + OS Z6+Z = v1S ld~ ~~ N (y-) J L L O Oro £S LEE = Ala du I / ~ vOn OE LL+Z = V15 du I ~ '^ (OZ L££) ~ >+m m V Ob L££ + O~II Z N N H W O -~'- J O ~ 6Z 9EE = Ali (46 9EE) Q ZS 06+ I = V1S _ I SS 9££ + 00+0=V15 d09 M31~ b?Jb31 _ _ \ N \ SS S£E = Ala OdA OS L9+ I = V15 JdA \ (ZZ S£E Ln ~ Z6 bEE + ~~ - \ ~„ ~ O ~ (Z6 E££ O g L8 Z££ = /tl3 1dR ~ Z I £££ + m n 00 £6+0 = V1S 1dA I - um- ~ bb OOn ~ 81 Z££ = Ala dl (I I O ~~iu £b b5+o=vLS dl ° N ~© (ZI f££) 11~ s I 61 Z££ + d 6£ ZEE = Ala OdA p > 00 ££+O = V1S OdA ~ p (b6 Z££ 'Ala %3) I o p SO E££ = M3 d09 N (b6 Z££) Q _ 00 00+0_= d LS d09 ~ SO E££ + I I OZ+ I Z V1S OAlB VWOUVl 0 O N O to O O O O + ~ m N O m m m m m m m if> W n I,JIi L C O t~ Z IL ~ ~ O Z - H W N U O} 0 ~ ~ u Q 0 ~ u; O m Q ~ ~? 3 W ,~,^^ r Q - O V Z Z i~ 7 Y Q ~ ~ n U O Z ~ ~ H Q ~ ~ ~O ~aoog Q ~ N 2 Z a ~ ~ ~ " Q ~ i ~ N O N < k .n b L O Z N II ~ ~ V z~•` U j ~ 3 LL) ~ `U O C~ v ~H V O ~~ m O ro n ~~~~ ~ d`~ep~ T ~Q Z f~ ~ VI >~} ~ ~ F- O Q o W~ j ~ ~ ~ ~ ~ O _ ^O~ J N~~ ~~WF- ~ Y~ ~ N Z ~ W ~ w~Os Q ~ ~ l(1 W F- og Q ~ O 2 LQ r Z oZ on p Q ~ m O V V1 m0~ Nm ~ ANN °; 6~+N~ Nhs7 _Z > f ~N 2 r O ~mm >~ in3va V ~ O O ~ ~ ~ a O -.~~ ^~ C ~_~ ,^ ~ ® ~~c ~ ~U 7S 1S NNi r~_.._,_ ~: L7 W ~ ybb3f y ~i ~` Y ~ ~3 r'¢ 110] L H m ~ ~ vwn r>. ~' ~~ ~ ~ m 1 0. S 3C if M71(+~H73 a~,N .wsllv~ ~h F4 i 4 l ,1 Jl ~ tl~ ~ p N ~ Z 6 N ~ N ~ ~ ~ ~ ,A m -' a Cj N N ~ ~ t~ ~ m m Kt oL O N 1^ m ~^ m m m Ci m ~ 'i rt rn w~., r ~ U' i K r _ .- ~, Z w N ~ ~ w W Z N +~ ~ N ~ `= ~~ .a Q? N -- -- _ O ~ O ° II 1 V _ r N ~ N ~ ~ r ~ r ~ ~ ~ ~ ~ 7 _ ~ ~ m ~ ~ ~ M N cn ~ ~ ~ . w,~,~~ z ~ > ~ M ~ ~ ~ N y~j ~ ~4 ~ © ~ N y-~f' 1(t ~ ~ 0 ,= M m Kt `~ w a' m m m U m~ m ~ J N N tV f ~ zd O n ,n J~ K K K N~ iv N- r` ~ r '^ ~ iV (V ~ Ui V1 ~~N ~ ~ Z ~~ N a N N p p O '~ ~ $~ 8g ~~ ~ O U p O u1 m p ~ cr.+ +~ °1 r + j 2 ~--- 2 ~ iD ~ + N M Q O N O + O N ~ ~ 6 W U c k+ >`~ z ~~~ ip ~ 4 N Z a ~ `n '~ A V N w Q d. ~4( Q V N N w p, Q ~ V>- u} N N w^ ~ F r ~ r~ - 'p ~ U~ x ~ i u r w N N ~ x u~ ~ w-~'} ~PI N ~I ~l l N r N d'~tn I..~NI ,A- 1 L ~ J ~ w ~ h z r „1~ ro n I X p ~I1Q 2 -~"~L~ ~ N ~ s~'1 p p ~ N ~ ~, w= " S " ~QX Jp ~ r `^ a o rtl 1n ~ m N p ~ M a m M Rl r -, ~ _ ,~ ~ ~~ _> _ U ICI ~LJ~~x o m u. V' a ...-1 O N Q W2 ~ O ~ i o a ax p O _ m N.. m ~n l}'1 MINI _ .rte- c0 ~ ~~ pp z U ~ N$ a o p4 a N K u'10 i1-jl N L ~ ON 4 O N q ~ ,~ N ~ ~ w ~ o a' m ~ a ' ~ a m+ ~ ~~ ~ w 0 I ~ ~s 1 a/`,`i ~ 5 ~IwgNO~ `~N~ ~'IX~ ~~ Is I~+EI dls~ / m~ NZ O ~~ wv ~~ 1° ~ ~a U' ±~ \ r O N ~ ~ ` 2 %1~ ~ a _ _ ~NI .. ~hw ~ ® ~, OII a ~ I _--- ~~ ~, N° ..-. X-~~+ ~ x w ~ - -"' ~ 2g+Op 1 II ~ ~w .- 1 ~ ~~ ~ .. I m w ~` d K i 'QI .., 1 r 11 r ++_ 1 ~, ~~ . ~ ~~'" t, ~ t 1 1 ~ t_U j -k, "~; ~ ~ 1 u~ .;; ., 1 I~ I. ' O ~ ,r~1 1~ ~O 1 II V, v ~ 1 1 '~ 1 1 t1 may/ ~1 1 ~.9P + ~N Ig £9 w ~n `I0z' ~ 15 ' ±^ ~`^ ~ m 1 1' L. ~ V ~~ ~~ ,y to ,p l O _~ - ~ z ~' 4 N 1~ IQ 1 1 ~a ~Q ~~ } J ~o u, >~ ~ I ~' 1: ~;~1 +s o I 1`'I' ~~ 1 II ~ o I . "a 1` 1 c~ 1 ~ lil 1 + ~ ~ k °' 1 1 ' ~ ~, 1~ 1 ' `N1 ~ ~ ~ ~11 r ~ `~ i i 1 ~a ~ ~' j ~ i „+~ 1 f 1 1 ~. 1 ~_ ~ 1 i '~ 1. 1 r i ~ l~ .i ~ .~1 ~~ ,. ~ o 0 o~~, L~ o~~, ~ UNrw-~ ~oz Z O ~ °2~` o `~~ o $ °~ ~ Lz r _ ~ ~ o~~ Qm p N rw `~ z Ui7 Z r 7 K ~ l ~ } y ~ ~ ~ a Z z ~a h~ 1 ~ ° "_I w s zT~ r Qo aa~t J 0 ~ ~ W o +r. ~ Q N. ~fl ~ ~ N ~ ~ ~ O N c ~ Y1 h ~ Q ~ ~ ~ A Z 4 w ~ a~ ~ ,P Z '~ u ~ o ~~ U~ W ~ ~ '~° z ° ~ ~ ~S ~ ° ~W ~ ~ ° ~ ~ yz o - ~8 -= K O Y ~ Ji ~ N ~ - 'y ~ V< SU ~ s ~ `^ ~ n o `~ O i'v" U ~~ O ~ ~ Z ~ ~ 2 ~ ~ ~ w u L 7 W w ~° ~< ~ -~ s1 `~ ~ 4 ,s sl ys ~ M K N r i~ to w ~ m ~~ ~ z U O ~ L ~Da 1~1 ~ , ~~~ ~ z O cz-`~~ s a~ r ~ ~~ zc NZ~ 4~ 4 4 ~ W 5^ 4 Q ~ 7~ ~ fl 4 Q `"' 0o ao+9 vls - arvnuo.~vw ~~ ~ ~ ' ~~ ;~ ~~ _~ ~ Y~ ~ ~_~ _C~ ~.~ ~ ~ __-. s 3 ~~ a ?' Z s S /~~/ ~ N V• ~ _•, `~ W Q. W W'~8 Q ~/ O Z ~Q O 4-/~ ~, a 1 t ~ S n _ 4 ~ K Z o[ ~ G ¢'S i ~` Z ~~ ~ ~~ F U V ~ 4 ~ ~~~ ]S 15 Nrvll~ MVYry -_~ ^ _ p xrdvJ ~ ~ ~ N VN ]1 ' ~ _ < a °z a_p f u aio~ i N m w 8 ,y \ ~ m ~- y ~ 3 n Nl Y a ~ ~~ #~ ~ N iy ~ ~15'M I K /J ~ r~ a a vwo ' ~ Z n , . lroy Q - ~ry~o ~ N b ~L z m O II p N W J ,~ U' N Z tT o ~ f'- Q L; Z N N v 1D N ~ O~ rti ~ K ~ O L ~ w N = r w 2 ~ N t0 N L O ~vj z~ V ~o K K O~ N N ~~ ~' w w i N N w 'L N ~ N N N ~ O N K _~ V LK V C"j U = az w N In O 2 ~ ~ K NK~ K O O ? N ~ M m rtm) m M M ttn1 ~ m~ uij w 5 5 ~ w U1 N Z 2 N N N N N N N N N N N ~ O O i n m ~ O Q ~ i O v i O 1 n j i O ~` ' N m N m m m - m - m m m N m m m v v _ rc i c n rc i M m w w w z ~ w ui Z N N N N N N N N N O O ~ ~ M ~ ~ Z ~ Q m ~ m m m rm~1 m M m m m m m m m m m m > W m ~ m N N O O U1 ? V In In ~0 In In yD ~n ~e n n O ~ m m m m m ~ m o m .~ a' ~ ~ K .~ K K ~ oC Iu iV (V to fV rt1 iV lV iV fV iV ~ lD lD m lD m lp lp lD o n n - n w n n n o 0 ~ ~ 8 ~ ~ 0 8 T a o 0 m W 0 Q + + + l0 + lD + ? + V' + N + V + V + N o o N v v O O n O ~ o V Z O NO W ' w - _ O V Utz '1- O "~ N % In 3S ' ° yD N m t~ O ~ R' U ~ F- N w Z N 1~(1 m Q % 3 !D N _ - 0 ro V O ~, n I r i. r V yj O V L N ~ O NO ? '~ o Q ~ ~J1 g a ~ 0 t+ 0 w K ~ O O m V m In m M O m m N N M ~~ ~~ o~ o a D O N N ni m p N S V oC J O O O = II uni m w O m u i Z m NZ NX m V _ 3> O ~ p K ~ --• O ~ O n ~~ K O i ~ m O Q~ ~g U "I 3" ~ O m m ~ m IO N ~U1 m NO m m o ~~ ~ X ~$ 6'b9~ u~i w / / / bGV O / W W / ~ Q ~ / / / t _ / m / ©/ / m \~A: ~ .~ s ~~ ~ I q.. o_ W ' / /. X00 ) __-m N ) x _ W= ( O ifl 7t __~- - _ ~+c ~ a w 2 n ) I m ~- N ~. I ~ ~ _-- N I N I• ~~ 10 ~n O O l+ , I ,, n --~L'1' I I I 4 .. ` m ~ m I I a pg ~ i I: N$ I ~, + ~o 0 wN 1+ I IIQ I qQQ> 3 of }I`° W ~ ~ I ~ m r. ~ ~ i. I N W I I ~--- - _- ~ -~ N ° I' ~ ~ j. ~ ~ a >v l 0 61 _ 7i L " ~ W I O I ~ ~~ _ N o 1 I - t.. I ~ ~ I I ~ I ~ ~ J-p O ~ 5' ~ , 7 u~i ~ ~ 56I~ 5 5 z ~~// w i 30 ~ 18l5' ~ ~ Li. ~~ I 5 I I wS - I ~• I ~~ I ~~ I I O L + I I m ~ ~ ~ ~• M _ _ I I L.--- _ N W m I I. _ - Z ~ -~- ~ ~ ~ -- "~ 1+0( Naw N ~ N O ~II - ~ m ~ I I. l O ~ - _ ~ _ - O r -~~_~I i' I N I T-I~ I I ON I I: J I +O m = I I I I I F- ~FJ; ~ N N I c II) I I "~ I ~. t 0 I I N m w I'' X0;1 ~o P ~' _ © ~ ~ l_V V' yw ~~ ~ J ~ ~ ~ ~ ~ ~ I ~ ~ _ Q ` . fQO- N~ ~~ .,1 ~ -~ _ - - 3f ~~ O K K ~ O V L p ti 0 `- 8 U72 In M N % O O 3> Z ~ N U1 c~ 0 C R' o ~ I ~ ~ K ~n 3 ~ m m ~g m 3% i O ~ ~O 0 m 7 ~ U O In Z ~ _ - ~ O ~ ~ a ~pOW U K ~ ~ r~ K m ~~ ri r> I. ~ ri r~ d Ir~j N Z O m 3 p' O K N % u O e-l O O Kt7 In in Z N N m ~ m m m ~ m 3% ~ O om ro ~ ,~ N m m m ~ V 00 N~ 8 ~ o ~ N V II ip min p O ~ N - O V LL O l0 N m ~ ~ w ~ N c V _ 3 l+' K ~ O > ~ ~-~ °~^' w Z O ~ ~ 1 wZ N% m U - a% N o ~ ~ m N ^ m ro ` m ~ ~O m V oQ ~ N O K V ~ ~O ~ ~Ng m p ~o II ^ QK N nN t9+p O ~ . i K ~ ~- O O m e m In m m O In m N m m m ~ m dV OI 8£E = nl3 00 oa+e = V14 ' dV ES LEE = nl3 00 SE+e = V1S '- I I L££ = nl3 EG 09+L = V1S 00 d0+0 = v1S dOA Swui66 I L 5£E = nl3 ldn 00 O I +S = V15 ldn gm U p ~ 09 SEE = nl >+m L996+b=dl v `~ o0 0~ ~ = Vl~ d"b~,~v~urs O ~ 6S S£E _ ~l3 d1 >' oe s£E = m3 odn 00 O I +b = V1S Odn b9 9fE = nl3 Ldn 1166+Z = VLS Ldn U~no 269£E=M3 du > +~ 61 Lb+Z = V15 du N II II 8~w -~~ j> I I 0000+O=Y1S d~ 09 9££ = n~3 Od/~ I I b6+ I = V1S Odn p Z9 S££ = nl3 ldn O n o0 9L+o = v1S ldn Uvvmi SS'S££=nl3 dl S II ° w ~ ~ L6 SE£ = nl3 Odn 00 9 I +O = V15 Odn (ZB 9£f = M3 d06 X31 6Z 9f£ ~ M3 d09 00 00+0 = V1S dOe ZS 06+ I = V1S 3bIWJNOI ~ O im V ' ~ m m m 1 N ( I~ IN I I I 1 I I I I I II I 1 I ~ I o I I I I I I I I I I I I I i I I I 3 I S 6 ( ( ( ( I I I I z~ I Ii0 I ~l I n I o I 1 I I m m o oz 9ff ~ S o O (B6 Bf£) Lfl 7 ®®~ ZL L££ -1- o °~ N N g tss eff) p ££ Lff + N8 ~ it O N (/ h A£E) lP ~ SO L££ -I- N [\ O LL. (Z9 L££1 O to LL 9E£ '~ ©~ 19E L££) ~ iD 6h 9E£ '}' m Q ~ (SZ Lf£) Q ~ I Z 9E£ + ] Q i n ~ (9Z LE£) N ~ £6 S££ -~ u N n (f6 9££) Q ~ ~I c o (zo Lff) ~ ~' 19 Sf£ -I- W W `~ ~ ~ o L (9S L££) Q ~ I'^" L8 S££ ~ ~/~/ W (5b L£El O O ` bZ 9f£ -~ _ m (b6 9E£) Q 09 9££ '~ W m t... (bz Lff) ~ l e 9££ -E I ~ ~ I N ~ (Sb LEE) Q 69 9E£ ~' I N I I O I (bb LE£) I m £2 9E£ + - I ~ I O I O 1 (£ I G££) O I ZB SEE '~' 1 ~~~ ~ ~ O I (BL 9££) I 9S S££ + I O I (Z8 9££) O O O lfl + ~ O ~ O ch c~ N m m c.> p _-7S 15 NNJ1~try, N]1 >~ I - _ _ _ AMV,I W ~' ,~ VM ]1 N ~L < ~ ~ I S ¢ 7ipj ~ I s "' 'x W ~ ~ l ~aN.~, a aq is ixlln VSr '~ ai '~ ~o ~'~ / p„ n 0t'l' ~Q~ L N ~! U 1L s N °o ~. ~~~ n o N II~^1 N VI U Z V1 o ~ Q U Z Q In ~ a a v ~~ ~ W 1- U' G M M ~ ~ o ti «\ ~ `a Q mz pM v ivx m o m a M N in rv 3~ .mil O -~ o> U O ~ ~ W ~` ° --~ o n~ ~ O _-~ ~~n =o wbSN ° ~~ ax"8 V _~ ~ ~ ~ ~b V ~ro a II ~ M M M M N M ~ O , V W N 1-V' O ' L _ 7 NZ ~ NX t Z ?~ - ~' O ~ ~ V II M N V O ~ WU' O p O ? ~ M M M ° 3x W ~ N M M u ~ ~ Y Y L O N p ~ N 0 ~ `~ U2 Oz Z'' ZO OU) 0=8 ~~ = Ud U ti 3 F ~ O = 5 ~ p N ~ L ~ ~ y Z V ~ Z F Z p ~ ~ SON ~ U O w o o ~' b N ~ Z O ~ ~ z ~ N rc ~ N z yVy r O V ~ ~' m O ~ W w 5 z o O ¢ ~ ~ ~ o ~ p O S ~ '~~ ' ' - ~ -~- N i° o - g ~ 0 ~ ~ V O i ~ t~ K p O O O i~ lf~ .- f- ~- ~v' O W N N N N~+ ~ O N N N ~1 ~ ~ Z _ N m P N~ 9-?J OMa 33S O (n O ul O \n O ul 00 OO+L I d1S ' 3NIluOldW m m m m m crj m c+i O ~, I~ ro zb£ r `° I ~ I I I - O I I. IF N o I I I (9b £b£) O O ~ N g ~ ~ 6Z Zb£ ~ t, o I 1 I ~ ¢ I I bE W w I 1~ I I_ I Q (19 £bE) ~ 5 ~ ~I ~ Ico I I~ I b5 ZbE ~ I ~~ - I I w " LI_I' _ I _ IJ sL zr£ = nla ldn I O ~~ 1 I I 69 85+5 I = v15 ldn, ~ (EB Eb£) ~ w - ~• I 1 p g zB zbs = n,a dv I 6L Zb£ ZN ~q1 I I jpyM. IS 1£+SI =V15 dlJ ~ r Ntl p i V b'_^'° LL ZbE = nl3 ) O N ~ ~ ~ - _ ~- - O I I ~ 8 ,II > _,,,69 BO+S I = V1S I (I 9 b b£) ~~~~ I~ I~ I _ _F ui nO OO FO-VIS .FOCI NI lIC)"J I f/7lC ~ n lIl U ,~~ I 1 I ~' I ~ I ££ Zy£ = nl3 Odn ~ O 69 BS+b I = V15 odn f££ bbE) + I l 1 I - ~ ~ " IZ Zb£ ~ I ~, , , I ~ _ I '- I I er I I ~ bS Ib£ ~ I ~ a ~ _ '-I,O I 5 I^ p l W I I LI_ 1 1 ~ \I ~ ~ O .SS B II .S Bz '"~ ~ II ~"~ LB Ob£ m ~~. I (. ~ I M I ~ dV I ~ O ~ I 1130 NOI1N313Y-019 • OZ Ob£ = nl3 I O ~© 11' (96 Ob£) ( IO W 00 00+E I = V1S I `~ ~ W OZ Ob£ m I` 11 i I -N ~ I 4 O I ~ ~ I ~ 56 6E£ N I r I I I LV I l1J _ I. I I o cE• ~ I ~ ~ O 1° ~ zz° I ~ (zs obE) ~ N ~~ II p OL 6E£ N I I I^ 1 1 ~~I N~ - I I I I I 0 O O 1 l 1 I Sb 6££ 1 I 1 1 \ \ \ I p ~ \ ~V ~ } • j (59 6££) ~ \ ( \ \ \ I OZ 6££ ± ~~ ~ \ II - \ ~ ~~ ~ o ~ ~ \ ~ \ (b 16£E) ~ \ `, ~ \ \ I 46 BE£ O s.. o \ \ I O ,~ ~. as a OL BEE ~ •. ~ o II s - \ ~ o \ ~ ~ I w (9B LEE) ~ ~ ~x ~ I ~ Sb B££ + .~ ,`Q- ~ ~ ,~ ~ ~ !`~ + ~P~~~ ~ ~ m ~ ~ o m o m~ ~ _ ~_ ~ > ~ u j c v ~ ~ ~~ you u,~ Gp~H ~~ r 9 ~~~~ ~ ~`~~,a T i ~ O F- Z ''^^ ~ V/ ~ Z ~ Q Zp W ~ ~ ~ ~ ~~~ = I~ V ~ Z Z O J ~ ~ ~W F- ~ Y~ 3 N Z oW~ VgO ah-~' nw~ 3 ~ ~ O O Q z0 _ o~~ ~o V N ~O~ Nm ~ 3 U) ;) ~ spNpN ~ ZZ U u mq < p~ 2 a L tp N >~ ic3a7 V °' O T Oy~~ X a -.s^ ^~ c oa ~ ~ '!,~ c ~U I "' p ArdtlJ ~ m ~ au n W N ' a3 S ~ ~ 6 6 110J y~ N m W y 8 ut ~ l ~ '\ °' a _vv utll w 3 ss rs M~ ~ y H in 7aa, -~ \ _ g~~, .~ a~~e vwoiroi Q a' .- ~- ~ L~ 0o- ` L rv m ~ ` ~L z N In Z_ m L V~- Q U _Z 0 ~-- z z z w w N N fv N N N N ~ ~ n 0 in N N O ~ ~ N W _ m m m m m m m m m m m N ~ Z U1 t N N N N N N N N Z n N N O - l0 iD t0 ~0 u1 _ m m m m m m m m p g F N v, O ro n m a4 c o m ~ X 0 0 O m m m m m M m ~ K K ~ K K K b ~ ~ ~ ~ ~ n O m n n n n n - ~ Z lD lD N tD N N ~ m m O m n N 0 a 1- + n + n + N + N + N + N + ill N N N N N N ~ g m w v ~ "~ m V o + m N ~~ II O _ N ~ - ~N- Q J V1 W N U N ~ ~i N N ~' 2 ~ O Z N V~ O w0 tj'li' N K Ci N N 2 O a m z m N O N + N O N P Q Q_ n N+ O ~ _ ~+ a ul a~ N 05 N w _z z o, Q ~ R' Vo=- = K O a - V ~+~+ O O O a 7 v o O v 0 ~ N Q n m N N Q - N O O N ~m N Q 2 ~ w C ~3 .W- m t>'ti~ V ~ ~Wp L OC Z r ) Z O N'+~ =2 Z Q ~ O 2 Oz z0 oZQ ~~ o=g ~~ =~v Fa 3 ~ z ~ ~ ~ O ~_ ON ~ _ ~ y 2 ~ V- H Z ~ ~ ~ K ~ 0 N > ~VU 0 v ro m ,.l -o ao N~ N NN Z j w y=j QaV' Q K (P lj'li' W W 7~ ~I N - _ Ii~~n _ __OO+II a~m ~'tj B- -r ~' O_ ~ W L II ...-. ~`p ~ w ~ _ : N ~ N O - _ C9 '+ Z m o N V J 1 ' _ _ _ _ o W y W ~ ~~ Z +6__T_ I~ W W _ ~ Q w ~-' N _ N O ~\ N O i / I ~o \ 'v W V! Z Z ~, W - o J No ~ ~~ 00 ~ Q ~ . N ~ w LLLLLL L = W !A~ ~N W -- ~n I"" N N W _ _ _ y --~ _- W - T_ 00+8 ~i w~ ~I >_ _ N- ~ W .. _, I 1m ~1 2 ~n I- I -~- ~ O M N ~ p O ul a Ngm m i i °i c i JO v v " mui u N ~~Wo ,,,,j °n O~ m o K f, V N m 3 m O o m " ' °;~ o v1 J O z o W < X rD =w O O U1 Z > 3 U m ~ ~ ~~ m O m ^N m O 1p0 N N m W m ivp ~ N? p ~ L ~ N )p ~~ w ~ _ ~i x u1U1 O 2 fp Nn Q.P V O L ~ ~ 3 m wz ~O mm O v ~> P 3x Min ~~ v i ~ ~~ i ~nL_ p w 5 O Z f W o :: p O Y 0 U ~ l o O u )N N E z L 5 J rg i O ,~ t Y L b n II C M O L 3 0 ~ K L W ~ F¢'"~ _ "' _~ N m v J °"'~ ~ MI_ a m N~ m O D N ,8 NZ aO N X ON ON ~W _~ N m~ irPj WO O gm <x moo i 3 mNapw i ro ? m O v m u w a in z ~ K NX I -i = ~? a% 3 ~ N p `P ~ v ~ v o N N N ~ N . "'m m ~" O ~~ Gm t m Q 3 N N gm V = J .t?1 n o, Obi ~_ vl m O m ul O m m - oo+ Q 35 1$_NN_?1J tlyN31 ~ f y ~1J AlbvJ N ~ ~VI! ,,, Y31 N a a3 4~~U ~ n ~J N w ;~ Cy ~ d " TYVi ~uvl 4 a ~+ as, 1~ m~ln lib i ~~ o n.~"y 'aisle vwoi~vi~ Q 0i+~o- ~I ~ 1L z ._ rv m O H J N V N Z N O L F v U ~ z N + 'r ni ~ ? Q (J ~N a w ~ ~~ O N ~ Z 2 Lis 2 Q ~ S ~ ~ 8w z - ~ ~ l+'l+' - 2 l0 W ~ O N K t~ W om _ __ _ __ __ _ w z~ ~- ---- - o+ -- - v in Vr U1 ® I ~ +n -------- I ------ Q V1 `~ OI u~ + N N - ~ I ~~ W I I z ,n ~ I ~ a I av I I = I °~ I ID .I i , t~ti+ I I it I I~ l~ _ - - ~ I K _ _ 00+1 _'~ IN ~ ~ ~- got ~_ ~ I I ~ ImIp, N w ~I I I __-___11N WN I ~ F ^ 1130 NO11N313b-OIB N ~'tN ~ I I^ ~ I I I ~ •, 1 I ~~ N m N N .i Q ~ I I I +mb I I I I ~ .1 a~ '0 1 N! I O 1J W I 10 .1 IW <G I 8 0 LI-I - ~ _ :~- J -= - U 1 I ~ ~ .I I t++ti~ ~ 'I ~ _ I '^ I V' m I loo --.-, ~~~ W ` p a l I m~ W N Q o l1N o "' _ I _ _ _ U1 I I ~ ~ ~ Q I 1 ~ .'I I I '~ t ~ I I I~ 1 I - , r+ •I Id m S '~0 I 01 + O ~ N + Mhf 9S 1 N < ~S~BI I ,,5181 ~ 1 I a Q I 10 .I I }0 ~o I} :I 1 8 ~ I M .I ~ in l+'v' I I I ~ F.,, .~.~ ~ M I N a= ~ I ~w - V - ~ 10~ S ~ 8 + I N ~ - m N I N 4 ~- I .I I a ~ I I ( 'I I _ N ~ ~I N .I > w I I l I a j I I I l l ti ~ I I I 8 w I I °o ~,~, }± ~ I I i I ,i I I I W I ~ _ I ~ m _ ~ ~ .I W N _ _ m m I W N ~~, -- -- _ ~ ~ 3 OO+F f ~~ a--^---~-__-_ W w N _ 0-0~'Z_ ~N ,_ •_ N ._~~ t11 W ~ _..__ ~n Y L A II C 6 Ui ~ U_ Z u z a D V~ = ~a z z r0 ~~ ~ ~g ~N ~O i ~, ~~ i ly ~s .n ~z v~ L ~ ~ O ~~ 5N ~O =O ~C N N 0 K O N ~ O u~ u') ~ O v' ul cis O m ul N (91 Zb£ = Ala d03 X3) so 09 Ob£ = Ala doa '~ Sb bl+6_ V15 d03 $ O _ _ £b £6+bZ=Vl$ NN3l°J Vilb31 I N (10 Zb£ ) O I I £ Ob£ dtl O BZ Ob£ = Ala I Sb 86+8 = tl15 I O ~ (L9 I b£ ) I b0 Ob£ + I N rp I I ~ 8 r ~~ ~ o ~ O N (S8 I b£ ) O I p 6L 6££ -F I N ~ £S 6££ = Ala ~ p Sb Qb+L = V1S ~ ~O 4 _ _ 00 S8+ I =tlLS d03 LO V21b31 ~ N ~ ~ (OZ Z6E ) 1 •N ~ bS 6££ -}- bb 6££ = Ala 1dA 1 N ~ ~ 00 O£+L = V1S 1dA I T 1 I p V g m SE 6E£ = Ala dl (£S I b£ ,~ ) g ~ m Z6 56+9 = V15 dl I ~ ° lN~~i m 9£ 6EE -{- II ~ I ~ p<W I N _~s ~ > ~ O (BZ I b£ I II I S 6££ + L9 6££ ° Ala OdA o 8 lD 00 O£+9 = V lS OdA N i g ~ o I B° n N m (LO 1 b£) O BL ObE = Ala i o ~ ~ O 96 6££ ~ ~b 7,~+~_ tll 00 SB+ I =V1S d03 10 3lOJ\ ~ v N 0 I - ,~ \ ( ZS'ObE = Ala 1dA I e ~ `~ (0£ I b£) ~ ~ bb Ob£ ~ '+' Sb Zb+S = tl1S 1dA `j iv ~ Q g i o ~ ~- J ~}M ~ N ~ I N (£b Zb£) o O 8 ~ n 6L Ob£ = Ala du ( LL Ob£ ° ~ -I- S a w LB 98+b = V1S dl! ~ ~ N- I ~ N N ~; I 8 N o I O N ( ) I9 ObE = Ala OdA I L9 Ob£ ~ Sb Zb+b = tl1S OdA I ~ D I ~ 1 0 I O I ' N L (SL I b£) 1- O ~ I N 6Z Ob£ ~ Q '~- ~ ( N 1 ~ ~ e- I O ~ I o r (IZ IbE) L zo 0 06 6££ + ~ m NO I O ~~ 1 N p Q \~ ' v i fL9 ObE) i a ZS 6£E -{- t I ~ N m I ~ ~ II N © N (E I Ob£) O Lfl dV I E 16££ -f- 00 6EE = Ala o ~ N 61 ££+Z = V15 00 OL+ 1 - V15 d03 1J VWOtlvl I I N08 I (64 6££ O I ~ 5b B££ -~ I '~ N I gQ p N II ~ < O (SO 6££7 l17 I \ N Z9 L££ -f' \ ~ _ \ N Cpl N 8 \ \ (99 L££ O \ In 6L 9££ -I- p Ob 9££ = Ala 1dA I ~ - 0 ~ 00 9L+0 = tl1S idA O ~ I < O ~O+M _LI.9££=Al3 dl I _NN(ZB LEE Ul II II Z8 8b+0= tl1S dl L 19££ ©~ '~ ~ I N °' OS 9££ = M3 OdA I ~° (S£ L££ = Ala d09 X3) s4 ZB 9££ -~' ZB 9££ = Ala d09 N O 00 00+0 = tl1S d09 II bb~Z VLS MII!\W?13L (n O ul O In O N In Ln v v' m m N m m m m ch m m q ~ m ~ n~li m m m m o~ W V Q~i Ul z ~ o N ~ Xpn v I tN~ o ro o 3 ~. of ~ "'v m kNt ~~ L."'- m vl ro - _,o gm 3 ~ V NN pw W _ `' Z V' W 3 X ZOJ t ~ NL_ o w ® _ a N z p 0 Z N N X N vNi p _ _ I ~ a V ~O ~ ~ ` ~ ~ p N II W V ~p NU1 Z OO 1I) 3 X NO O ~ ~ O BOO N m m m vm ~ 7 N V Q N O K C V V _ 3 z - S N ~ N_ ~X o0 ro ~ N N V ~b J o ` n d l~ z N ILIY - J' X I O in O N in a m m N m m m m m V VY ~ a W L K Z ~~uN! O~ ~OZ=~O ~~~ o~n o=o° ~° L3V ~ (~$[~ Q ~ N O L W pN N p j > Z V ~ F Z Q wZ w~U1 ~ ~VV K n ~ o O ~ o y ~ O I O G G ` a ~ ~ K c O O O Z N N N U~ N 4 _ ]S 15 NNT~ YNN11_ ~ Nl W ll ~AMVJ N'% NVXtal IJl .` ~ . qwW ~ 110J ~ L ~ 3 - uvrisudl w a ~ 3 ., ~r 15 M]IA Vy / aal' ~y ~ \_ K ~ ~ ~ an1B VwOtlvl ~ ~ Q n r Qi cc 0t" Q~ LL N } IIJ '~ 1 ~~ V ~ N N Z Z N Uf N N N N N N~ S N~~ O O n w ° N N m V 7 7 W w m m m m m m _ m m m m m m v ° 2 N Z N N N ~ wl IMImI I Iml~ O ° ~ w ~" "-' m n ~ P m p m ~o n a m m N m ~ m m N m ~ m m m a n m m m~ v n i m; m. N I ''a__~ II i ~ '~ N ~ N K N .~ K K K J Z N N Q P tD l~ ~ U ~ ~ 0 O 0 tD ~o - n n ° ~ u V ~ Q ~ S g ~ ~ o oa U O Q V o N v N o N o W ro m= ~ F ~ + + + + + + Z U 1 O O m vl lD lD l N a ~ m ~ - - - -~ - - o - N O - ~j ~ ~ ~ ~ ~ ~ ~ K ~ O m N w O "~ - N m 7 Ul ~D O ~ l0 ~ V N W l0 N a F- Nz z O 3~ Z _~ ~ m~ W ~ ~ W O ~'1~ - p K n Q m m w o ~ u1z S~Q ' ~'~ ~ = _ N m X w d'~ r _J ° °~ - ~° v = ~ p p ~W ~1 N In d ~ o N N 8 z tD X ~ N 3 V = ovo ~ mmN ~ o. vl ttm1 rtm1~ m p q w OO l0 NUt x , 3z w N O ~x Z a - mll V1 ~ mul N NN ~ K I Nm o tD N w m _O ~m ~ =° k m U O 3 m vul gm m = J oW i° u i L ~ ~~ ~ O m m~_ m O N m m m 0 ~ ~ tig °O v O N V '^ O Z m u c v~ 0 O v = w Sn ~mul NO -~~~ O LLLLLLJJJJII -~~~ N tD N ?i 0. ~ V - ~ _~ O c, O i- - f1 _ V L d' O w K NUl N O l m m ~p O N O m N N m m m ~ m V Z ~ ~ .. ... r.,--. ~ I __ _ - I- - -F--- - - - W w + 22+0 0 23+00 `,~° + _ C7 t° ------- ~ °' --------- v I ~ N JI N W F. Q ~ ~ I , I I ( I I I 10 I I I I ~~ I ' I I t I I I I p I I I I ~ 113 NOI1N313b~019 ^ Q I 0 U I I I I ' m N I I I 1 I I I O I , I I I I O ~' I~ I I WI I - I I I Iw I' I I I I ° I . + P I ~ i° ^ 113 NOI1N3132J-OI0 I I Q - + K ( I I I I ~ ..,. N N ~ ~ I I I ~ ~ I I I I I IO TIO ~ I E>, I I ~,O I ~ ~~0~- ~- I I ,5 I ~S1BI hN2J .95 5 I ~ ~ .5 4Z ~5 £ I I I ~p + I I I I 1~ I I I ~i ~ i I ~ E' I ~. I Ii I l0 ~ - I i I* U # N I ~ + P a I I ~ I g I ~ I +~ o I I I I <~ 3 I I p I+ I a 3 I ^ _~ m rw- ~ ~ W I I I I I I I L ~ W I~o J ~ © I 1~ - _ ~_ N a' ~ ~ I -- -= _ 00+9 0 . S _ -- - ~ OO+b W~ ~r ~ m _ N W m ~ a ~ ro W Q Q~ W b n 'II L L °~W ~pp~Q5 p<<n jW V ~ w O z ~ZQ`~Vz O= z0 O~° O~n a=g ~~ o~V FN. ~3 0=~ O NV ON K 2 U~ ~jp vOv_1 ~ ~VV a O 0 N ~ O b' U ~ i K ~ Q N ~ Z 3 ~ z ~ a ` ~ ~ `~'W o u ~ ` ~ ~ u ~~ z _ N ¢i O 4 ~ g ~' z ~ o a ~ ~ O ~ - ~ v ~ ~ w O p Y ~ ~ _ _ __ __ _ __ ~j n ~v , _ 2G y O O ~ Y ~ ~ N i N U > > ~V ~ l7 ~ K D i _ ~ ~ p O O O y~ ~ ~ ~- it " W u N N N ~ o j i H -I O N N N N ~~ a Z _ N n r ,n° uu'1 O r~ Z O ~ O z t; ~I O u=1 ,^ QV_ V O U O ~ ~ ~ Q ~ ZWe} m O m ~ n K Q'j-c ° 3 Q ~ O u~ ~ Q ~ ~ ; W ~ - 0 ~ Z Z. ~ Y _ s J ~ ~ ., a~ o U g Y/ p ?- W Z~~1~~ QWW38 ~~~~5 QQO~o N O Z D. 0 ~ ~ NO ~ Li. N IIK v ~ N O = N 7 Z ~ 8 .I ~= ~' ~~~s ~;~~ s G ',;~v M ~~~ ~~ ~ 1 H O Z ''~^ V/ m O /~ O w ~ V ~_ ~ ~ ~ ~ } {- ~ _ ^ O ~ J /~~// ~ ~ ~W FW- ~ LL 3 NZ~ ~ LWL ~ w ~ ~ Q r ~ to w I- H 3 ~ ~ Q~ Q O Q Z _ O Z O m I O Q~ m 0 ~ V N m V ~ N ~c ~ ~~ ;1 ~ ONInD a0 m a NF Z r lDN ci ~mm > ~ ID~gP d V p TOO c ~mm Flao °' C ®. ~ ~ ~~ C ~U Q 3S 15 NN719 Vy7131 ~ ~~~'~~ 1 N ~ a L ~ u H 1Tj '~ m W p ~' ~ ~ '' ~ ~J 3 w wlp`~ at ~1~ M In y'b3] ~U K 7' z ame rwoirol - ./ ~' n 0~~ ~~ ~ ~~ u \ ~C _ .n O w ~ ~~~r _ ~ N N U N o Z m I- Q V z O P M~ Q n O - F- Y ~ ~ In i + 'n ~~ Q ~ ~ ~ ~ ~ n r N~ WU ~ ~ Z z Q U L ~~ - - - - rn ~ Zrw' ~-_ _~__ 1__ W w 19 00 0+00 21+ i~0t J w _ I ~N ------- 1 --------- N I I~ I~ I 1 W N H W W ~ ~ ~ !- ~ N ~ ~ (~ N O~X ~ N F , W `W Q L2L 1~ 0 $~ 8< + ~ 0 a~ N~ N wW a~ LaS ~w m ~- ~~ w > _ ~ 2 ~ ti >> o F O N w Z p Z z Q ZO? ° U z z0 ~z~ ~v ~ O=O L~V ~ 3 F j m pN ~r0 NL N z ~~ ~z0 wz --.__._..... WON ~ U U a N O ~ ~ N $ ~ o o ~ ~ i w ~ N Cy y 9 UN O U ~ ~ ~ ~ u ~ z ~ m o =_2~ pZ u+ Y 9 ~ ~ LL' i ~ ~ ~ ~ 1: a lz v 5 ~p .~N yO~ O y 8 L U~ ~ pN N~ y ~ K p u' O o ~~U ~ oQi of ? - Yj' o p O O p i~ t~l z0 ~ N Ul N NW+ p J L wo N N N - ~ ¢ Q _ N T P in ~ l0 N 0 ~ O ~ O O l 9 u l V c~ N m m m SE SbE _ ~l3 d03 `~ £0 09+e = V1S d03 ~ Ob 99+6 I =V1S NN319 b'bb31 \ \ Q (6Z 9b£ In dV \ OL bbf '~- EO Sb£ = M3 \ ~ 00 69+9 = V1S \ \ \ O \ (16 £b£ O ~ ~ M • \N ~ (£ I Zb£ Q 1 S£ ZbE -~- 1 1 r O 91 I b£ _ ~l3 1dA (Zb I bE l O 00 OO+L = V1S 1dA I 91 I bE -{- 8 g I i r` u°o ~ m ~ O ~ S e (Z I I b£ In „ ~ g 1 I S I ObE -~ ~w I ~ a ~~ I I I b 6££ = M3 Odd (£9 Ob£ O 00 00+9 ~ v1S 7d/~ I W I b 6Ef -I- 1 N ~ 1 I W I (SO Ob£ O I ae ~ ZB 9E£ -I- ~, . - _ 0 I O (OS 6££ Q I ~ ZZ 9££ ~ I o I ~ o I I a O £9 L££ _ ~l3 LdA e a h i~ (L6 9££ 00 OS+b = dlS ld~ I LL a £9 L££ + J ~ 80 1 ug~ I I bam I (IL B££ O O II A I SZ L££ '~' 8FW ZZ L££=M3 dl I ~ ~ 0® ~ ~ ~ O 6Z L££ = M3 OdA t+' ~ (BS B££ Lfl 00 OS+£ = V15 Odn 6Z L££ '1- N i o m I o ~ ~o a1 I O O ' ` m0 h S 9E£ O ~"~. ~ , m I o 6L LEE _ ~l3 ldn I (bb 9££ lfl 000542 = VlS ld/1 I 6L L££ '~ y 8g 99 L££ = Ala dL7 i I N j0~ 65 O"c+Z = V15 dlJ O N~ q i (0£ 9£E O II gaW ~ E8 L££ -~ N -~~ I ~> I i O bb LE£ a ~l3 Odh (£ 19££ 00 OS+ I = V1S 7d~ I I bb LE£ '~ I ~ I ~ p I - to£ 9££ I SB 9E£ + g 95 9EE _ ~l3 ld~ I O N 00 9L+O = V15 ld~ I e ©® 60 8 9S £$+O = V1S dl I Eb 9EE -~- °~~ II O N ~ it OB 9EE _ ~l3 ~dn I ~ 00 9 I +O = v1S Odn 1 sP O I ni (Z9 9EE O (Z9 B££ = M3 d09 X31 , a Z I L££ -1- Z I LE£ _ ~l3 d09 `~ O _ 00 00+0 = v LS d09 6L 09+L e H15 M31~ V~31 O In O N O In O In ~ In In ~r ~ m m N m m m m m m m m i~ F- R' W 0 IVI Y L N N ~~ O a ,"tl a o m m 3 ~ _ ?; d ~ o O t w ~ u ,, ~ J N N ^ n u = ~ K ~ "~ ~-~-~ _ o Q w M z~ a ~ G m m a~ ~ W N O in O ~ 3 o m ~ N ~1 i!] l9 J ht N C N 3 o W z ~ O O = "~ ^+L_ - ~ a J J O N h d N O in ~ O rl m rv m O o ~ N ~ N $ n m m a ' a O ON a NO iv p U r0 a V' = Ut ~U a ~z l0 fV X O ~ o O p t0 m U z ~ ~J N v~ p n O rn ~z ~ Q- 3x M O ~ N ~ ~ m m J o- a a N Q 3S 15 NN71~ VMMa1 _ ~ WN ~ ~ lu VYN]1 ~ - ~ a3 ~ u ~ liOl u 1 yW 1. I ~ \ y5 L-$ v~v~uvi u`i 3 a V ui ~``~ 1S MJIA Ih~ll /~ K 2 e oudi - O~~~~o- G N ~j F V ~L < ~ O w N II O N N O NI I~I~I I~I~Iwlw ~Inl ImIrNnl I~milmlmlm _ 8 K ~ ~m ¢ ^~ 3 ~ > L N O L_ N N 8 0 ~ rv N ~O w I ~ I M M ~m N Go n _I ~ ~ m N^I ~w O ~~ O~ r O ro hll V NN V' ~o ~~ ;~ g 9£ S££ = nl3 ldn N ~ 00 9L+0 = V15 ldn = O V`la >ix ~~?o~ II 905££=nl3 dl ~ n ~ ~z vi n " II J ~ F 00 9b+0 = tl1S dl ~ < a tD u i l D W O g N V /L ~ 9£ S££ = nl3 Odn N ~ i V ~ p0 B I +o = d LS Odn ee J o ~ 3 ~ e_ 60_00+0 = b'1S d09 N 9Z 99+0 = V1S n ~0 A3llVn A21~J39 ~, 00 g o ~n O R ~ P V M ~n m m O ~ ~l N rn r~ w z w ~ ^"I N N N N N $~ _ ~. ~. ~ O N .~ :. Z N N lD K 47 ~' _ N N tr) M I~ N m ~n rn m m _ .n ~n .n ~ m ~ ~ ~ ~ Z~ N so z~ ~ N g~ ~~ Qw ~ m ~ ~ ~ a Ov O li'ti' ¢ in K m ~ M m rUn ~ ~ ¢ a' O M m m m m m m ~ Q _ _ __ _ _ __ - _ _ _ -_ _ _ Z N in iV in iV iv f~ m ~ O j rY v 2v o= ~_ n r r ~ o z O W a_ -~- O muLi O ~- p --~ ___-_-+-_ m o o N ~ Q w °' 4+00 0 3+00 2+00 L ~ a z ~ A N N + z O v IN Q O b~ N ro~ m m N< V t0 Q -- ~ I n _ N O U O O V m m- V z Q o ~ I+ ll3J NOI1N3132J 019 • S ' I 1 ~ a I _ _i! W O W _ _ _ _ _ _ ~ ~o'I~ ~p+ ~ ~ Z Q N I L I I J n h r n ~ n n W N/b ,95 ( I y ~ sel „sal J m W - a ~ ~ I fA ,~' ~ ~ Li _W `" ~ ~ 15+DO N N - _ IW" N ~ I U K ~ O U o 0 ~o + o N N N QO ¢ ^~ V N H N O~i N ¢ > ~ N U1 O ~ u3i ~~ ~~ ~o ~~ w ~~ m ~ N ~~,, m U pwpwv ¢N~ U~O~ N w L to VN ~o ~~ N Z oo;~;. / ./ ~ . Y~ ~o G" - N mom O nt O armi w O O II NN Ow ~ ~p NO Lw O J m O> NCI L ~ ~ ^ O ~ N Z m U1 ~ ~~ ~ h m V °"'_1 w i " ~z 3 ~ ~X N m O ~n `T O m M ~ N -1 ~ N ~ lD m~ ~N m N 3 J Orc i P ro N L w O ' ~ O O -~ r > U L ~ ~ O Z> ~~ ~ I~ m ~ ~ U L N ~ ~ l~ ~ _ z ~~~ r ~ m..-., z O O U O x N ,~ ?w _g ~ o ~ N w ,o N ~ ~ V it O F- ¢ Q MN 3 t0 U II N N ~ ~ o ~ O m w O K -1 _ ~ O ~ a ~ O o Vd O z 3 ~ W ~ y~ m ~ µW~I > N O O K ~ t ~ (] a p a `J N ~ ~ nl ~ II ~ lfl ¢~ Q ~ O N NI ~ M V a ~ o w = Z r ~ O~ W z O z ~ ¢ V z Z O zj'- O 0 Oln ZO Q O u ~~ ~ 3 j ~ L O~ aN p N L K z ui; Fop ~ z W p ~n ~ V V u~ w 5 z ~ o ¢ ~ o ~ u a0 p ~ ~ N ~ Q ~ o m - UI (~ ~ e p O O C N ~ ~ i1 ~ m O m ~ m O m m m O m (B6 Ob£ = nl3 X3) LS Ib£ = nl3 d03 00 O I +Z = d1S d03 9fi 19+E=V1S 019 VWOLlVl N O Ig (96 Ot£1 O SZ Ib£ = nl3 ldn N L£ IbE g -~- ~ 00 b6+ I = V15 ldn N u ~O > +v M o ° > S9'Ob£ = nl3 dl ro ®(ZO I b£) ~ l~ ~~w ZZ b5+ I = V45 dl 99 Ob£ -1- a 96 ObE = nl3 Odn t++ I W _ ~ 00 b£+ I = V1S Odn O Z ~ I °o I ~ / N J csL I b£) O O O O£ I b£ -I- ` / b5 I b£ = nl3 ldn v' O J 8 ~ 009E+0°V1Sldn 1 ~~ A/ ~ +~ / ~O Q (ZO Eb£1 O >,~ II II / ~ 9B I b£ + o W O N / S Sb Zb£ = nl3 Odn ~ ~ 00 91 +O = V15 Jdn ~ ~ ` (99 bb£1 O (9S bb£ ° nl3 X3) a LL Zb£ -~- LL Zb£ = nl3 d09 N O 00 00+0 = V15 d09 L9 BO+S i =H1S M31~ b'2JY31 o m m o m o cn ~ m o m m m o m N m (I L B££ = nl3 X3) ~ BS L££ = nl3 d03 _ B 19L±£ = V15 d03 61 O I =2 1I =V15 Onl9 VWOAVL I ~ z6 9££ ~ m31dn 9o L££ + ~ 81 £b+£ = V1S ldn ( m ZS'9££ = nl3 dl I t~ m I 5 I £0+£ = V lS dl O I ON Z9 9£E = nl30dn~ Z5 9E£ ~- ~ 59 9££ = nl3 ldn 00 OB+Z = V15 ldn I ~ O o ~ I ( > + W SB 9££ LB 9E£ = M3 du I ~ J + N N $ II W I 66 S£+Z = V1S dF! Vp ZZ I J '^ - ~' u'S~ I q ~ W f95 L££) Q r~ ZL 9E£ ~ -I- ZS 9££ = M3 Odn O ~ ~ y N N DD OB+ I = v15 Odn ~° o \ N to ~ ~ O £ 19££ = nl3 ldn 1 - ~ (Z9 9££) lfl ~ M £ 19££ 00 OS+ I = V1S ldn -I- I ... - I 1 >g I o (I S 5£E Q ~ - ~ SS s8+o = v16 dl ~ _ ~ I I O SB S££ = nl3 Odn (Ab 5££) Lfl 00 OS+O = V1S Odn I SB 5££ -{- o O f I ~ (£L 5££ = nl3 X37 I O OZ 9££ = nl3 d00 1 (£L S££1 Q 00 00±0 = V1S d09 OZ 9££ -~- O O L(1 O (n O (n ul v ~r m m N m m m m m m O w o ~ n V~ s u =_ iw ~: i ~Q ~ w~ 0 ~_ ~g ~~ o ~- O a~ im v V+ U Z pD3 yL Ua N iFO L"' ~ ~ J ~ ~z ~~ ~o s-~ ~s W O 11 r 2 in W N II O 2 0 ~ II O~ ~__~ m N I ~ Q w N ~ H ,~ - a ~+ w .~~ n 0. 1\\ a \, i~ ~5 ~ oni 7~0 o~ INT`J yyY31 -- P ~ i u ~' _N ~ ~ z S ~", L w ~ ~ yy`~ ~ ~ S Nw ~6 r . nJ vl S .. , Z ~ 1 ~ K ~ ~ W ~ ~ M IA~NaII = ~~ K y 0.- 6 aVaOllY1 ~-l. ~ 4 ~ N ~1/ ~1- - 1 - ~ I. ... lU ~ K N }W U -_ _1- Z ~ W '\ u t Ul \ ~ - - ~ ~- ----- - ~ --~ ~- 8+00 ~f = Q I(1 __ .-. ~ _ I _ O LL 0 0 ' + I p n o ~ ~ ,S ~--{ ' S ,4 b Le~i//. fiz M21 .9S I ~ B N U ~ ~ 5 Z < r o ~ I 1 ~, r °~ I I \ ~ . m ~ ~ L H Q U Z Q O In cJ ~j N a L ~ 111~~ N N N O ~ ~ `+ ~~ n~ a~ ~F ap -~ ~~ a~ ~~ ~~ N ~ .m ua -~ r= J 2 4 lD in ~~ ~S ~ n< N w oc li'li' W _ ~ O ~ `~-~. to _ ~ _ -I- _' 1 ~" _ ~ Sb ZE r~ '~ m W - vot ~~ ~w Qw 00 Q ~ l~_~ N W I .. to r Z N ~ , ~ • - I _ _...-- J1 N ~ ~ O5a p --,~ ~ i L rn i a Q ~ r y 1 ! O O o 4~1 _ ,~, 1 ... ~ + 1. i- f ~^ .( J ~ w u ~~- ~ 'S Si b ~ J' r 5 6 A"Jd .9S i 9~ z~ u ~S U a~ ~, Z 8 m `~ ~ W ~ 4~ + V r O - ~ l l ~o U o" 5 O N ~ r ~ O K • Q K ~ to a ~ ~ ,. 111 N __~__~- T ~r ~~ ~ a~ .• 'N ~~ _ + I~.I Ill ~1 111 N I-I 7+OD INI _ ~ oo `1}- 1-+ 8 ~, o . . m ~ N J _ Q 1 N N j <a Y ° g ;~ I- '- U ~ In ~ ~' 111 )-~ J_L-- ~~ ~ _ ~ 7 = 2+00 c `~. _ g - ° G --- - - ~ •~ > . ~a ~l7 t CJ 1 1~ O '~ 1 ~ 11 + ,,, --I p ,~_.~-,-j ,S -J_ 1~ t MM X95 :E,SHI k r .S'9I .S O~ I G t "''~ ~... 8 y ~ \ ° ~ - __ o ~ ~ ~o _'- ~___. _ "- - -- ~ ~ ;~ N oo -` -'-- - l a ~, ~ 6+t- .uz.u, - _ ---~ ~zez1z 'a°a» ~Er POND#2 ~ j$9zze~ ~ wEr PoND~1 3AV 111001 nl °~ 11 dV y ~N O O 'r '}" •9 t l V1S X90 l SZ 6£E a W ;no ~) t... 1u > ~ v, m ~u~ I V o ~ y 1--~~f (EL I b£) O u 6££ "+" ~ ~ ~ ` ) N~ ~ ( ~ OG ~ 59 II _~ ~ s = I ~ ~' I ~ W o ~ ~ tLl Zb£) lCl ~ '~ ~ us ~ ~ _ r u '^ o g e ~ d y o ~~ I I ~ ` I I o w ~ ~ p i 19 Zb£1 0 0 < o ~ o ~ w n1a Y3) Zb£ = Ala d09 ~ 40 I b£ ^ o ~ ~ a 4a m r_? iqp >= V15 d00 ee ., ~ ~ ~ p y ' ~~'', 4 Kn y U ~ N b j s ~J rr Q ~ n' K ~ ~ ~ IS'1 ~^ o i ~ " N Cn (r1 Y v, ,~ ~ .n s o ~ i oT S fK 10 ,P ~ Z - '~ ~ O to cn I.fl ~ N n m o In `r m "-' c m "' o f59 Zb£ = Ala xa) p QL Ob£ = Ala dQ3 -}- 6 Lg+ i = v15 d03 gQ ~ N ib=y15 aAV 111001 ^r N dd ~ ~N ®a o ) Z£ OVE = nl3 (Ob Zb£) Ln ~ £~ b9+ ~ = V1S ( ~ OS Ob£ 1 ~p I 7~ I ~~ I m O (5s 24£) O 01 i b£ -~' in ~I It >~ I ~ p I o . I Op 1 - ' ` t09 ZbE> if 1 F" -~' SY ~~ O r OL lb£ ~ ~ 7 ~ ~ I O ~ J ~ N l96 Zb£ ° Ala X37 I (96 Zb£> o O£ Zb£ O 11 0£ ZV£ ~ Ala d09 S1 ~ U T pp pp+o = v is doe N b ~} N p = . . ~ a o N w ~ O ~ N O O c~ N a. ~ j Ul -}- J o m o m ~ O m m ul p m m m ~ a m + nu xa) i56 6££ ' N Ala d03 p0 6££ s 00 OL~~_°_`>1S d03y, 61 EE+ZxV~S 3nv N100 ~ -- 1 N 3 O i98 6££) tS") 1 ~ r~l © I ~ q 09 B£E '~" dV 45 0££ nl3 I ^. . ~ I ' 00 Lb+ 1 ' v1S Zp I ® ~ In o ui0 I ~ ® to iBL 6££1 0 ; - d'd 'c£ 6££ ~ M3 o IL IB+O=V1S ~ ) ' (bO Ob£) ~ p p ~o; ~ d ~ ss 6EE o r, r ` ~~; ~ o V x 1 s o Q Izz ob£) O u! ~ fZZ ObE ° Ala X3) I O s ~` ~ G 06 6££ p 06 6E£ ° Ala doe e ~ ~ O ~ + V1S do 00 00 O = I , {.J - ..~I Z ~ 41 ~ f ~ + r N I- o w II I w o s „ d + ao ,~ ~, ~ ~g , ~ °~ o o ~ ~ , ~ a ~, ~, - O w~ ~ ~ ~~ gN o ~ Ml w N s ~ .._..- O o_ ~, o m Vil ~ ~ m m o ~ ~ cn m ~ "~ ._-, r----~ --~ ~~ U ~~t ~ J Q ~ Q ~ ~- N z ~ o ~ Z Z w ~ ~ / J A ~ / ~ O z U / / v "' ~? O tf) ~ / / I o ~ '^ ¢ ¢ ~3 ~ p lLl / / ~ ~~ / / ~ ~ F ~ > °- ' /ate ~ m • • ~p / N z / / U o ~ LL1 ° ~ / / ~ ~ a U W ~ ~ !- W ~ Z J ~ ~ ~ / V 1 ~ O m Q ~ ~j _ ~~ Q Z ~ Q \ `~ ~ i ;, . , ~ \ ,, . ' _ ~~ ~ o <Q~ ~ jse ~~ ~~~~ ~ T ~ ~Cj ~W~§~KI ~ k ~ , , Ei $~< ~~< ~G~~~~ FoR i~73~ Ft S ~ooa ~~ y ~~~ Elmz~<~o ~Sa ° ~~° ~ 9s ~~~~ ~~8~ ~ ~8 ~ d j~ ~< .E ~~ ~~ p 5 f r ~ W o a U C a ~°- a O d ~z ~ ~N N ¢ [r ¢3 z w ~~ W~ w ¢ a 0 x F a ~SS; g g J G '+ Z ~ ~ I ~Y ~ ~\ tl31NY1! y ~ 8 ~ ~ O ~ ~nr9vols ~ I ~ W~ I I S 3 =y ~ m ~ ~ 3 m ~' L1J ~ e n ~ =S z ~a 0]}- n~ O S ~I 1 O W~ '" u S I"- F ~ N ~ O~ U W a ~ ~ O ~ W > z b ~ ~ ~ U ~ '~ u d ~ W 0 _~ t O L~ ~ 3 ,91/[ ~ B ~~ ~ «~ie ~~~ €~1 i~~ 'dt~3~~lTiWb~~ ~~ ~w~vrg€~ °a ~ ~~~~~~~~~~~ ~€~~~~~~~~a &01~ 3~~iu ?fup~y~y~Z RW~s°~€ ~~~~~~~~s~~~~i2~~g5~i~<~OS~ N N .o n d ~F ~~y I \ =2 ~ p ~. Y w 30 ~ O O F- ~~ ~ ~3 ~ -1 U Y 5 ~m Z Q ~ ~ Oa O ~ $ }~ w Ua W ~ ~o ~ o ~ ~ ~ ~ ~~ ~_ ~ ~ ~ ~.. a s '~ ~ ~~ ~~a~ ~ a° ~ a ~~! ~to~ L^~~~0 G~ ~ _ ~~ ~ Ski ~~d a b ~w~~~ ~ ~~ ~ ~ ~ y~+? ~~ ~ ~~ ~ ~~ a~aa g ^ N H "' ~^ Y = ~ < ~ j~'B~ u~ ~~ < RI ~ ~ ~S ~o {1J.l~3 TU U J z Q W ~ ~ ~ 4 Z ~ O uc~ °~s ~~ ~ W ~~< s~ a #~ J oa ~ ~ ~ ~ ~ j U O ~ L1J ~ s d ~ c a~. ~_ d ~ >r ~ T ,v. j ~ 0 W O ~ Z U o a i l , 03 V ice' $ Y b ~ ~ c I : ~65 u~ s . pp ~ ao S3M1 37Na39 7tlfISS3ad Nf1131NiN 1 d ~~ tl 3 S3taruNra7 ~~ a 53M3 a017311OJ NIIWINW _09 yry Un ~~ ~ ~ z al a m _ i ~ I -- - 5 ~ a m ~ ~ k~' -O ~3 p yo4 w z ~ e f- o ~ I '~ $ I W U o m j ~ I '~~ 3!' ~ W 777CCC k o dl ¢ ~~l~ ~ ]ern mo/ a a I ~ _ .~ ~° a ~ 3 Q `~' >I ~ ~ ~ a~/~ I - I I ~ ~ ~ ~~ .000 ~~~e~~~~ ~ ,F 7~ g^g^ ~ pu $y 34 ¢ rl ~ ~ i ~W ~~R F~~~d~ ij~~~Y3 ~~Y N ~ W Z ~ ~ M Q ~ ~- I ° ~ ~ cn O I W ¢ a M~ 3 ~~- In aU Q Q in in Q ~J .1 ~ d~l~l ~ ~ ~ ' ~3 ~ w L ~ ~ d ~d ~11~4~N ~ a Ul W ~ : ~ ¢ ~ ~ J ~ u~~~ uu~~J ~ ~Z ~ a ° o Q 3 'x ~~ a ~ W'^ ~ ~' ¢ G~ ~< ~ 4: ~ o ~ _~ n o _ m ~~ _ _ Q ~ UU ~Z V ~ ` ~ d,~ J J W2o ut?O ~~W ~~< G 0 z .- .n 30 W UU I~^ J= i~ ~ 1< U<' ^ O ~ Q U3 ~ m rii .i I W O .Z r Q ~ a~ I I u' J m H N ,~ O < , Z ~ W W ~~° T W yl~= m I UCO ~_~ II ml 4 V r z w ~' ~ '^ ~ rn ~ 1 O ~ U ~. ~ _ ii, ii, I-h~ ~ Z U N N J O y~ W ~ ~ 2 .W-1 >Q Nfn _Z i _ ¢a ~ ~~ ~ W ~ 3 W O O ~ J .1- ¢o ~ Q ~; ~ w~ U mm - - ~ ~ a ~ C ~_ 1 o Q NZ C ~a II ?o n O ~'~ a ~~ = a xW. go II o a!N ~ <_ ~ m II K`~ m m ~Z Zo ~~O ZZ Ury _ z- _ w im <` Q O Z ^ ~ < .0-.1 VI F'- Y W ~~{{ ~ N t I < ~ ~ n ; ~ ' f ~ < c. ~ ~ u U W Z UI }m ~ m ~ o I ~ oa U~ ~ v p.,n-~ ' TI.. ~ ~ ~-o U •- ~~Y _ Z U r- W .9 ~ ~ ~ ~ o ~ ~ ~ earo 30 37vd r'I I'" .1 P .v ~ ~ ~ yy °k \ , ,', ~~ ~ ~ ~ H~ . a , ' ~ s ~ o ~~ ' ~ _ ~ ~ ~ \ `-8tlf17 JD 37rd ~ ~ ~s$ ~ ~ ~~ ~ Z ~ ~d .- ~8 ~'~ ~ i ~3 ~e~ ~ ~ ~ ~'~~ ~~ ~ ~~~ 4~~y W SB a~ ! ~ ~ ~ g ~A~ '*d Q g 9e [~ R ~ R ~ ~ ~ ye Z O 61g g ; i8 !- ~pypy ~ pp `~ ~ Q. ~ ~ vi ~ 0 @ 66 g ~s tied s ~ ~ ~ ~~ ~~ ~ ~ p~ ^ X ~ pk tt = - ~ ~"" s^'""'~~ a ~y ~ ? oY Ski z W ~ .,, . a~ o ~ a s o r Z r ~ O l1 1 w 0 ~ ° ~ a a~ ~u,~ "' p o 1 ~ w r- 4 + ~ ~ 'y z 1- ~ ~ ~ T' ZO ~ O~ p p~ O 1 •a ~~ p r ~ r ` Z Y ~ m~ ~ a5 is nNai~ raz ~~ _ ll .~ ~ 1 •. ~ Z v+ ~] p m ~ r u LL' ~ NK _ _ „vaba+ ~~ ' 1 _ V, Il Z Z . ~ ~ O Y Y a ~ +o~ ~ F nrJ 3 TOE 1 U ~ ~ i~I 4 W 4L ~ ~1 ~~ J ~ ~~ T 9 ~ z O z~ ~s tc ;H in v~erai - r. 4 ' J '~i zd ~. ' Qntl VINi~~~Y~ ~ ~ N -~ ~ x O \~j~ ~ ~ ~' ~ r.. !~ 4 1. <,j ~ \ Y ~ 1 Q Z _ ~ \~ ~ ~ `,~ ~ ~$ ~X~ y ~ byyoyb~ o0 ~' Xz` ~ ~~ d ~ X Xz~ ~( / JX I -_ 4 ~ ~ ~ 'V j ~ ~~ j ,.,x~ /~X ~ ~ 7 r ~ ~ M m 1 ~ ~ ~ W m w ~ ~~ u3 m 5~ ~, ~ ~i m m t~f1 ` ~ M ~ Q ~ m °~ m ~ o° ~~ 1rL{ K O~ N~ ~ H O N N r o `; ~ v + Q 4 U ~m Qq4~ ~ ~aN~~ O ,~ K U ~ N cal W m > m J llJ ~ m ~~y b b u.- b m 0 ~ o~ ~~ so m 4 d ~~ ~ r A N v S' aQa~ ~ !'~1 W \.J ~ ~ ~ ~~ 1 N ~ J ~ m ~ ~ r. m ~ ~ ~ r ~' ~ ' S b ~ ~ ! ~ u.. ~ o o --JJ.... r~~ ~ o~ X0 s~~o w ,Y 4 / c0 u I i . ~"~r ~ t ~ ~ h 1 Q 4 1 1 N I ~1 ~ \ ~ ~`. ~ ~ ~ O ~ ~ 00+Z ® c,Z-+-l ~- ~ ~ _ °` ~ _ -' O -~" + ~ /- ~ / - i ~ i"" , /G, I N / ~~ S i `~ i 1 1 m O 1 7 W C m I ~~.i O ~ v ~ O m M ~ b f "" ~ ~ ~ r b ~' m 7d p "m' 7d O m r ~ ~ `~_ ~ z ~ N ~ O ~ 4 ~ _ ~ O ~ N N < ~ } ~ ~ ,,, u s, ~ i 4©~ ~ ~ lJ ~~ (N J K Q N~ U r, w 4 4 4 ~.{ ,~ _ Q ~~ h r ~, ~, m ~^ t u.1 ~ 7 o tai- b ~ m x z O m r ~ ~ 1 7 ~ 1 r ~ / '~ o ~ ~ ~ , 1 4 N + ' h ~ r U qd4 ~ r t ~ O ~ ~ N ~ ~ / U~ N a ~ iO m l1 , N m W m m °r b SJ ~N m ~ m m ~ N c~~l ~ r O ~ a~ U d1 N 44 a O ~ ~ N W ~~ N1 Wzz ~ 1~-. J 4 W y'd '^ O W 2 ~j O L 1 o ss .. o z Z. ` c~vl a ~' z~? O~ ~ ~ L ~ Z° ~~ O ~ O ag r o- y 3 ~ O ~ ~,~+ `~.~ u~ ~ = o O ~ Kz ~~ ~ ~ ~ ~ °' '~ W~~~.yy ,. Y U U 111 ~ o O O ~ ~ Z m N ~ ".. ~ 4 ~ 3 Q ~ o 4 ~~ W ~~ o z '~ ~ x g, a "1 O v 's u~ 1 ~O ~ ' ~ ' ~' J ~ t .. >n W -~- + 4 ~ . ~ d ,,, w` w Q W F N ~ m ~ ~, ~ OG ~ ~-- + 0 ~. V ~ ~ a NO ~h Q ~~ z `" b yy N ~_ h R' N ~{ d ~ ~ `~ ° o c q e .; ~ ~ ~ ~~ < X75. x U I ~Z" °~ ~. -~~ G v3. °- ~~~ ~ ~~~ eoa _!.. 1 0 t " f' Q ~( ~ r t 1/ ^~ J W ~O / / _ (/~ / ~ a m a > ;~ `~ `^ m ~ m m r p b O m ~ ~ W O m m z ~ ~, ~ o ~ ~- 4 ~ +~ U ~ o CO ~a4~ W m " N mow.( r ` 1 4 o r ~° ~ ~1 ~ F °/a s~ Paz --.~ _ ~ ao~~z ~ ~'~ ..~ as'`~z t 7F1 1- s ~. ~~Vp ~`~ Nbl , r~ ~ . ~ ~ r, ON / ~ -- a¢A~"~l- ~- ~o 7 ~ w M ° ~ ~ ~b ~ ~., u~. °o m Z ~' `° ~~ ~ o~ ~~ ;n O 4~ M~ a F'" ~ N U `n I ©d Q K O ~ ? ~= .n w vj ~ _ ~ Z O fl[~rzJ ~ ~ z O Zr- v }}-- Y 6 1~ ~ ~ ~ N ~o ~ W Y u ~~r ~ 4 r J~ 4 4 ~ Q ~ 4 ~T Q Y z OZ ~m0 ~ 4 ~ u ~ ~ ~O ~ ~ ~N~D ~~z ~ g~~ °~z pp3~'. U~ O~q N X m y .--333 ...~ r~~ "~. ----°'~Y-`--i --~ -~-- !b a a U v 1~ F... ~ "' }. - liJ r °~ { / ~ I~ O o o a a la ` ~ Y ~ o ~ ~ I o Q J O m Z M~ ~?) 3 ~ ~ NN31U tMa31_.- f I ~ ° ~ ;W 2 ,y ly ~I ' I I ~ ~ Q N 0 In N ~ N ~ O 1- f, I ~ a N ~ ~ ~~+I;IYJ W ~ . t I U, 11 T'~ ~ ~ Z ~ O W C Q m N z y m ~ ~ ~ F ' r < ~ z oL q~ fi t J ~ '~ o `" ~ ~ V m ° m s to ~i4 `t 4J`il _ m ~ " ~ ~ 4 , ~ ~ ' , ^ V, 10- W ~ a w P of r r d~ ~ + ~ ~ 1 V n~Sa ~ .~ ~ "` to N O N O w °L t to z N 4 I ~ Q o o? s U ~ ID ~ y' U,»H VWOlrrl ~ ~ N s I ~ I ~ 1 Z o N O ~h ~ w ~n ~ r .r a a 1 ~ ~ N ~ I ~ ~ ~ _ __..~-~-~~--- 0 O ~ b 8 •ls NN3~J _ ~ , o ~m oM `gym N A -,-----~-----moo+sZ sZ+SZ ~,~~,~w:~ 05+bZ SL+bZ I O NW Nw NC QC ~~ ~~ Ulm ~~ ~~ N - o III o - o000 "~ ~' ~ i h 1 > N o '~ a iD v ~ Co ' ~ O ~ ~ ~ K K > O I i ' i~r by b ~~mm ~~ ~ I ~~ >~ ~~ ~~-~ w ,,, I I ~ ab b b ~~ ~w ~ m r ,mn ~ bb l O W ~ ~ ~ i ~ 0$ ~ ~v -~ Nw Nw In "' ~ b o N I S >~-4- 1 7 +~ o~ m~ ~~ K Q N p~ I N I A 'I ~ ~~ N~ O a O O r U ~ N I O Q I N i ~J U `r N_ c`n w O J 444 w ~ U] w s ~~w ~~ ors ~~ z UNw uOVZ Z~z OO o z~ ~v o~~ F~ r_ ~ ~ O~~ QoN ~sz Vp r ~ O ~z ~°o o_ ~ 7 w ~`. ~ o m z ` N l 4 w 1 2~ 1 ~ ~ o~ O Q ~ J ~ u~i O „n ~ m N O ao°~ y. V ~' t _~ o ~n m m ,., ~` °~ J- 1 ,~ ~ ~ `i' m ~' _ b o ~ m ~ N w m r' ~_ M ,~ ~n ~ a, - m _ ru ~ ~ b -.m '^ _m qm Slb ou, _m wm~u ru IJl ~ ~ b LL- N -_ N 1` 8 N Iw ~ w ~ Z ~~ _ N ~~~ + w b w+ w p w p/ ~ _ Y Z N N 4~ 4~ Y] Y }~-- N ~ O S ~ ~ ~ ~ ifl V' ~ O ~ rtl u0.L1 Z ~p N 7 Q~ Y- ~t C aQQ /"~ O ~ ~ N ~ ~ ? ~ ~ + K O1fD1O LIC. Q v ~'` qq4 (~_'\~ g44 d, O "-`? `=mom I~~ `~,/ U a N Kl w ~- ~ ~ LL Q] I ' T t 1 _.-- U ---- - ' ° -k- I h u II O W N ~ +o W I ~5t+1~ OS+~ _~~~ ~ 00-~ ~ ~L ~ d ~ -'~ ' l~ tl~b31 ~ ~ s I 'i ~ IN ~ ___~_-- -----_ t 'r T r~. ~ I I i ~ ~ i --~ ra d I _ 1 O I c ~ t W + 7 ~ ~~/A~ ~ m ~m ~ I 1 ~V1 W 1 ' ' > '4 1 w~ ~n ~ ~ M ~ Oo b^"~~ N - Z ~ 'p ~ ~ i ~ Q ~ I~ b I z O ~ ' - ~u LL, Nsw Nw +w - i9cc +a/ +~w m O ~ ~ h O w o~ 4~ 4 Z o m ~`~ 1 D O 1 - ~ Z w ~? ~Y~v'~s~s ~~~ o~ , ono , goo O ~~ oQO= V ~ -}- ~ ~ N ~ aaa I pN 1 V U ~ ~ '" m a~ ~, ~ O N qqq al ~ / ~ I °j ~ m ° N ~n W ~ 1 `~ --- -- - N o , + o O ___ J ~ J b b m m b $ p b q ~ m ~ 00+£' SL +Z OS+ZI' SZ+ Z m w ° __ _~ _ ~ 3S 00.1- _ - 1 J __ .. -. I .. --~_ _ _ 1 ~_ '1S T T ~' w N w N W N w N w 4 ~ M3II1 2i31 ~ ~ s~ ~~ ~ Q ° , oo°° 0 o a _-- z ~ b Q N ~ K N II ~ 7 ~ ~, p C ~ 0 U -~ ~ ~ ~ _ __---- G~~$ ap,~ 8 o~ ~`~* x ~~~ m ' = I ~ CO ~ o ,~ ® _ ______- 1 ' l la II ' '- + I I o U , ~'~ .n m 111 M b b $ b ~ l~ O O b ~- i0 N t` I o W p `u o] `~ u. v+ N ~ O _ o ~~ +~a~, Z ~ % 7 - +w oY a}_ a~ 9L z o 4n a~ 4 S ink O ~ ~ ~ ~ 4 ~ + OOm ~ o ~ 4- o~i a~ + v ~N o~ 0 u ~ qq4 ~ aq ~ U~""-_~w O V~~Qw m - I ~ I w '{' I _. S1 N _ _---- w I ~ _' - ...._ _ _ f--- ~ ~' ~ is x Q I ~ ~..J _ . + O~ tlWOHtll ~ ' F- t N O e--- O , - _ ._,.. - - e- ~^ l to 1 ~ N II ~~~ ~ ~~~ "gyp°~ ..•~` _~ •. _J ~ ~- ... - ~9 > r' ~ > ~' v w ~ o "' ~ w~ o M ~ b o b~ b h O N~ ~ ~~ ° `~ _o~o_°_° "" ~ 1~ b bb O N m m m ~m ~~ $N K 0~ ~w~w~~ }K Z O QJ ~ } K +wC ± w nr O ~ m ~ R] r AN K ° + ~ Ss C7 In V m r~ y° ~ r _ ~ 4{ /1 m u o v s q4q 1 C. I ~u $ J W 4 Q a V m Q _ aqa 0 ~~"-~,w O K~ N p W ~+ L `~- `" I ~ , __,_ ~ N _ ' '- ~-~ ~` In 1 1 © O I ~ ` ' W I O O+L 5L+0 ~m W ~ J ~ ~ J O N U 1- O r d Z ~ u~0 Q ~wr 4 Z ~ 7 ~ O a ~, ,~ o ~o~ ~~ JZQ1 ;1 ~ ~pl ~ KZ 6' N ~n KKKK zZZZ i ~ m ~ o~~ w~v~ 0 00 U ~ ~Mm ~. _.~. s~ o ~~ r Z z .,.. ~~ ~, ,.. -r ~ ~ Q Z ~~3 ~~ W p ~.,. r 4 tQ~ D G oa Q o '~". 35 1S NyT~ yyb71 " e m s~ av ~ 1, vaa9! 7`~. o o l ~ ~ ~, t~ a 310J ~ ~ 8 ,~ ~~ ~ ~~' 3 -bWOUbI JS~ Mein `J3 ~~ ~~ \ 1 r `~ p~ O~ip VWOilbl (L _ e yV~ O ~ ~ rv \ ~ N > V ~, m tr U O IU la O I~ ~I a III ~1 J ~ o Q z o rr Z ~~~ Q N J I J N v I 1.t.. d O O 0 S O 2 O tN w 0 0 0 a l~ N H ~ - -_'~ ~[_~ Q ~ n 3S '1S NN3~ J b~21 2131 -- --~ .__ SL+lZ _. +. __ OO+ZZ __. I- __I . __ SZ+Z~~S+ZZ ~ _ SL+ZZ ` I ~ v n O - - - - - ~ I O - - - ~ >~ o + I N o 0 W m m m ~ m w I w m m m m ru ~ `' b I g ~ I O ~ ~i ~ ~ b ~ oz2 O~ N ~ I ~ 0 O ~ - O~ N _ ~ ~ I O N O NU1 I T . L I ro o m Q n `~~ O ~ IY U Q l() rv ~ O~ ~ H~ - ~ TI / V J + K U ~ N N ~ O 444 ~ ~ ~ I 0~1 ~O < 444 ~ ~ I V N V m-= ''~ w I m V N Q -= "~ v N I + + I ~ I ~ ~ ~ ~ $- b0 am $m I 0 I z $- b0 by $m m m m ~~ I O m M ro -m mm nm vm Nm ~ n !o n O n o n ~ ~ p O O aim rim aim r;m O n o n m n - n a~ oW nW m~ I w ~ oW oW ~W vw I y.w Nw ipw !pw e ~ .iw Nw !pw ,pw ¢~ <~ ~ < ~o ~~ ~ N V' NV' NV' UlV O } I O ~ ~~ J1 C7 NU' N NV' o C 0000 I al 0000 ~ ~ I ~~+ K TT 0 i l ~ 0 K K K K ~ ~ $v oN ao $N ' F.. $v air, a~ $~ - ~ m ~ O - ~ ~ ~ I - ~ ~ - ~ ~ - ~ W m mm r`~ aim nm I ~ I ~ mm -r n aim n~ N ~ n o n O n ~ n I m n - n ~ n o n w ~pw ~w ~w ~npw I ~ ~,pw mw pw ~w N Q w ~ w p w V W I U +K +K +K +R' t ~~~ Q a ~ I I O o~ o a s p S S N V' N NU NU S Ul =V' Ul V' Vl l7 N V' O O O O I I O O O O ~ ~o > and N I ± I > n N w m m I I ^/ O I O w m M I V/ o g b I Q1~ N b ~ $ O K O ~ _ N I I ~ O I oz[ O `0 N z O ~ ~ N I O = I 0 F- ~ z O ~ uNi ~ ~ ia- + + °~ i ~ I O ~ ~ ~ + o V tl~ in o ~-}- + U N e O o ~ aaa~ K ,p 0 aaa ~ ~ ? N V = m w/ N O I a Y N~ m=- m w ~ p -- -- © I ', OS+S SZ+S 00+1 ~ 5L +ti OS+ti -- ~- ---I- --+ L -~-- -- ~-- 3S '1 S M31n b2Rl31 w `-'~ °~ w f~l z O~ Z ~~ W z a O z " v z Oz z F' z0 O N "a=S ~~ O~O O ~ 3 " O Q~Q 0~3 O N O V N L ~~ii oC Z ~ r ~ ~ ~ . H Z ~ ~ - yUN ~ V U - > N w m m m m m > m m w m m m m ~ ~u ~ ILL $ m ~ 8b N m ~ w ~ of ~ $ $b "' ~ m ~ O _ _ ~ O _ °~ ~ K ~ Oro H' O 4a- + °~ ~ °~ O = ~ + ~ ~ O °~ ~ ~ ~- O N ~ Fa- + ~~ U Ul O O U N o w Z J O ddd O V V N V` w ro _ m d d d ~ V N V W ~ = rc~ } {-'. ~ N ~ ~ ~ ~ / a N z i ~ x~ W _ _ _ -- ~~ / t ~ - ~ S 7 ~ / w ~ w w ~ ' ~ ~ v O ovP ~~o ' BERR ~ ko Y ~, ~ 0+25 0+50 {~ ~0 ~~ ~ ` ~ i. ~ 1 N O O ~ "~ + 1 - - - ~ 1 n n Oy O w> ~ v > O O rMn J N N J N N W ~ Q C w m m w m m K ~ O ~ ~ ~ to O b in to b b b ~ ~ ~ ~ ~_ ~_ n ~ Q N N ~ ON OQ on u'm Fes- ~ `0n N~ ~m ~~ Z n v ~ z p n m y e a n v N a -m nm mm mm m ~ m .P~ m ~ w n~ on ~n nn n K Q o tD o K Q o ~n o m -~ O -~ io ~~ W ~ F- + + ~ ~ F- + + ~ + w + w + v + V l(1 n n V ll~ n n N w n~ ~ w ^ w - - N~ F~ 1 5 H O ~ QQQ W ~ry ~ QQQ ui QO mV U O ~- 0000 ~--~ // \ / O ~ o ~ 0 3S '1S NN3~ b21213 j a ~ 50 17+75 18+00 o0 X c ~ ~ T,~'~ -------- O ~~ ~ p 0 w' + ~~~^ I ~~ wig I D ~L L n n w o ~ o Iw = z I~ o 0 I I ~ o _ ,~,;n~„~„~„a _ . _ O a N ~ .: v 1 I ~1 ~ O ei ~ . ~.~ N III ~ O ~I 3 L n ~ Q rt, ~ ~ ''' Z e Z o 1 a 1~ ~ 3 o e~~l w << ~ 5 a Q ~, w ~ ~~ as is ~ ~ , ~ to J _ ~ m31~N7i ' - o I L 4~11t] VW(tlldl ~ Q _ t- I ~ N aa : ~ J Q 0 y W ~ N U I a O o . ~ ~L > N I in U Z 4 = I I.y i ~ z~ I O I ~ _ ~ ~ ~ N N I I ~ I O ~ I I - ~ I mm °-m n n a n 1 I I ~ W ~ W I ~WN~ l~ a ~ ~ ~ NU' Nl~ ~ I I + O O I OO I I I I I Op ~ I I > ~ p I 'f- ~ N m _~ ~ I I~ I w m ran I I ~ ~~ b g O ~; ~ I w o $" ~ I ~ 05+0 I SZ+O OOI+O ~ I ~ Z n N N ~ tD --~-- ---'~'-"---{ W I ~ Q m a~ F- • N V to a 'N1 J1121t/~ ° > I ~ aaa ~ I ~ I u p N y W m _'^ O I ~ , I ~ > ~ h N ~ I I ~ I I N w ran m I I ~ ~ O I ~y a ~ a ° $ ~ I I Z OC w N ~ - o m~ m I I I `r O~ `n U~ N II ~ II +LL iw I I I ~ ? n ~ Q m to 0 ' a t o a W ~ I ~ 1 I U N O a o~ - ~5 ~ I N N U In ~ I O '}' 'I- O d d d 00 I II ~ I ~~~~w N K Q t` K to w ~~W ~ =~'~ _~~ O z~ ul w ~=Q O Z '~ V Z I-OZ ON~~ 20 Ov_l gig ~~ = 3 m o~~ nN O ~_ ~ ~ V ~ ~ r ~ Q w ~o~ ~UU a. ~~ w ~~ ~ o = z -~ O m V mU uNi~ 3 Q~~~°o ~ N~~moo - 4 - oc ~ Z O ~ ~ ~ N ~ N U ~ o -~ ~~ a~°~W~ F- +~ +d, ~ ~ ~ a O N ~ U U ~' m N 00 ~ ~ ~ ; m I b b b b N - Ul N N - m In N N N ~ N ~ ° b O O a m a M -rc i ar a n - a~n inn mn inn ~ r ----~ I ~w ~ w pw Nw +R' +K +K +K w w w / ~ ~ \ \ p p p~ p ____ ., N V' N V' N V' N U O ~(1 O 0000 \ 0 \ n AU \ 0 OS+O SZ+O 00+0 °a ~ °L __ _ ~ _ F I ~ a N N ~ N N > n m m n ~°O-°O '1~`d212~ 31 %56 p~ k I - = w m m m ~ Arai n^ VV / 6' Iwi. O F\~ ~ tr ~i ~ ~ b b b O m / oZC O N N -_--- ~ / X Z \ p O~ a~o~ / K - - O ~ ~ N ~ ~ J m O -~ _ ~ ~ ~ ~ Q F- + • V U1 0 0 O d d d m W ~~ b0 b~ b0 b0 rom ~a ,om ~a - N - v~ N m v m - m mn inn mn inn ~~ ro~ ~w m~ ° w ° w ° w ° w - - - - - - 0 0 0 0 0 ' 05+D SZ+O 00+0 > w m - a m "-' N a m v N a m "-~ N a m m - a m '1~ 3~0~ O F- w ~ j a F- ~ b b O Z K "- O ~n N ~ N m '^ ---- `~S ~ a Z \ ~' ~ O - ~ - ~ N _ ~ C ~ ~ q4~ U N o o " O 4 4 4 a N - a ~ w QI x ~ >, ~~ ` ~ / ~., 0 \ F~ mss o " K lT lw O o~po~ wl 0 8 ~ ~~ _m m m-r d° mm om ° II N II N w a w - - N W N w ~ Q Q ~ O fl C7 N U l O O 00 ~ ~_ TERRA GLE NN ST SE o . 20+75 21+00 21+25 21+50 ~nm mm ~nm °~ °" I'" ~ n n 11 m 11 O O NW ow °~ O O Q~<;<~ ------ ----- ---_ Inb ~nb ~nb __ 0 0 0 -- - ---- - - . _ ____ _ _ _- ~_ K ~ m m g ° m a m _io =0 =m N m a n a m a mm Inm mm n II m II ° II n N O ~ W -~ +w +'L + O W N W N W Q ~ Q ~ Q ~ N V' UlU NU 000 W w w N W ~n't N > ~ 0°i -1 N a 7 a J a a a a w m m wl m m `~ IL N N tH O (N ~ w (N~ O N N 7 N O ~ _ _ N ~ ~ - ~ N ~ ~ z O - N O m ~ LL J~ K Z O _ n N ~ Q O M D m ~ Q m N ° V ~ °' ~ ~ U ~ * o ~ ~ O Q Q Q O Q Q Q U m a = N = a m W ~ ~ V = N = a m w t~ R' K K K R' K R' K b- O~ Om ~a ~m bro $m ~In a- bn $m n N - m - in iu in - n - n n N - m m a a m m m m m m a a nm nm mm nm vim aim nm mm nm Nm Om Ql II n II O II O II N II n II O II n 11 Ql 11 - n m II o-. - n~ a,~ v~~ - r_ a~ o N.~ mW n w O w _ w n w p w O w N w a w n w O w _ +K +n' +K +u' +K +K +K +K +K -} K +K N V' Nc~ N V' N V' N V' Nb N V' NO NO Nl7 N~ 00000000000 t~ ~ ~ b t, bro om bm a- b $o Oa bm bro 6m ov, i00 -a -"I ro° m~ -1^ _m ml^ W O -- _m n -n -n n -n -n -~o O -~n -n -n m m m m m m m m m m m rim Nm Om icm nm nim nm mm mm nm mm o n n- n ~ n o n m n o n N u n n a, n n n lD~ ate lD .~ O~ N ~ O-+ Ql~ N~ - n~ a ~ nw aw mw ow nw in LL+ nLL+ ow ow Nw aw +K +K + R' +K +K 4 K +K + W +K +K +K mw ,p .., flu mw my row °w _ au, aw aw ~~ ~~ ~~ ~~ ~~ ~5 ~~ ~~ ~~ ~~ ~~ N Vr NO NU NU NU N V' N V' NU N('l NU' InU OOOOOOOOO O O > ~ o -' m r1Dn w m m ~ Q~ J a Z ~ 8 ° N 0 - - w~ Z K m O ~ N N F- n N - ~ ,a- °} } ~ U In D O O d d d a` N a W - m ~ r m w m m m m ~~ ~b N w ~ b m K ~ ~ `A N Z m o °: ~ Fa- + } V Ul o n O d d d V a N a W m = = m 1 TERRA GLENN ST. SE 19+50 19+75 ~ X20+00 20+25 I __ O Ip 0 I ~T~ I / ~ , I I/ 1 Q I N I ~- I ~ O ~~°° OI I Q~ I ~Ip I I 1 ~ I ~ I I O O I I I I I I I I I I I I ~ ~ I I + I I O ~O I I I O I n I O I I W++ I - I Y~ I ~- 0 1 I O I W' I O Q ~ ~, O I w I ~ N ~ I ~ i L T + i ~ I ~ I /VV/~~'~ I ~ I I I I I I O p0 I I I ~ I ~I I I ' ~\ I 0 I p 0 I ~ I 1 p i LU~+ ~ I /A I \ I ~/ I I ~ I I ~\ I ~+ I 0,~6 \ O a I~ 0 1 w I = p I S,~xO \ \ ~ ~ I I ~ I I \/~ 0 ~ I p I a \\°SXe ~~ © +o~ I Q Y~ ~ I ~ \ ~ 1 ~s X w O T N ~ w O ` ~~XcQ / ~ O \ N s~ x ~ 0 \ ~ - \ ~/, ~ a ~~ ~ ~ `~~~,OO-~~ o ~I ~ ti o z ~' N ~ ~ w o o~ ~~ V ~ OWN ~ f~ N ~ rc ~ ~ ~ Q 3 ~o~. W ~~ - ZZ ~~ ~O ~ a 3 ,~ ~~ ~ k _J QL Ir Q J m V p a N D O h m Q 0 z 8 ° ~ n e ~ ~ <.,o~ ~_ ~ ~ ., „ ~ u n G~~B ~ S z ~ a ~~~ ~ d`s~9p~ ~~ Z O m O ~QOZ w~V y~ Q ~ ~ ~ ~ {-a= ~OVK ~ L i 3 N Z~ oW~ ~3° Q~~ Ulw~ 3a ~ ~ ~ < a I- Z OZ pm ° a ~ ~ O m0~ ~m ~ 3N N ~ ~NID ~ E ~$ a ~ ? lD N `Z r ° ~mm >5 in3cv °~ S t°° ~~mrn _.e^ ~c ®~ J ~ ~~ C ~U O O -`O O .'".~-~------' _ i .: O 'O ""~ w~+--^J ~`~ J ""'~O _ a 1- y J ,..-~ 1 -'"'~---~.J `-l_-..J ~J O ~ _ ~s is Hrldl'J vcaai _ _ ~ -- - 17 O tYVJ ~ N W. M31 u ~ ~ a ~ a alp 8 8 1~ ~ 3 m -bWOl+bl JS fS M]i~`Mb31 ~.~~ oC ~{ ,r ~ ~ 3n`te p Q L~'p ~a ~ ~ N ~ V ~ ~ , ~, m U lO l¢i. O a nl J ~ O Q zp~ Z ,ll a~ .al I `^ J `~ U a W O b z Q 1N w ~i O 0 0 ~~ o~ Z_ W y J = ~ ~ ( l 2 ~ } ~ OQIII V N W ~ O 2 ~ O Y Oz z ~- 0 X9 Z O ~n 0 ~~ 0 ~ n 3 F O Q O O ~ ~ ON _ Z I V l~9 F z p ~ I NZ d, WON > _ ____. aVU u~ ~ Q~ > o ~ > o ~ > ~ ~ > ~ _ w m m °-' m m w m m W m m ~i ~ u b ~u o t ~ b ~i ~ ~ O ~ ~ ~ b IL Q v p O O ~ p O N ~ ~ N ~ ~ ~ ~ § V ~ oC O ~ ~ 1D ~ O c N - ~ O N ~ _ z~ O ~ ~ '" ~ o o S ~ ~ 0 8 ° ~, ~ o ° ~ ~ ~ o ~ ~ N K Q o m ~ K Q o v o ~ Q v n o K Q °n' ro o v a c c in U ~ v l V N v v (~ ~ U N O d d d O d d d O d d d O d d d ~' v a m W ~ p N "l w ~ p ~ m w ~ ~ N m w m ~ ~ n Q ~ ~ N ~ K1 n~ W ~ m ~ ~11 m M W ~ m 't v m m W m m m m W m m m m ~i ~ `- b rii ~, ~ O Cii ~ ~ b rii ~ a b ~ O ~ N ~ O ~ ~ ~ O ~ ~ O p O O R~ O O V n K O N 7 Z ~ ~ O ~ N _ Z oC ~- O ~ ~ n Z O o ~ g N ~ ~ z O - n g ul ~ "~ Z O o v - n ~n H 11~' z O o ~ a ui ~ K Q m n11'i j ~ K Q r + rv o ~ Q v r + a oa K Q m a ~ F- + l + ~ ~ U F- N m + O ag ~ V H N + '~ K ~ V F- N + O V U1 ? ~ ~ _ O d d d O d d d O d d d O d d d -~ N ^l w m p N m w m p N m W ~ Q N ^~ W m ~ ~ o ~ z C \ N ~ ~ ~ F ~ _ - _ - u. _ ~ _ ~ - ~r u ,s~~ Q _-___ _-- ~ °O~`~~ ~O os~v~ O s~f~~ 'a/1l8 b~WOHt/1 oofs~ -~_ s ~'~ - ~ OS+S~ SL+SI -- -~ ` _ SZ+g~ -1-` _-~_-_-I-- O -I- ~, \ ~ ~, - ~, ~~ _ _ ___ __ __ OS+BI O SL+g~ OO+g~ SZ+g~ ---I---+ O ~- O n _ .~'.~- ~ S "~ O z ~ o a ~ w u ~ ~ o ~oN~ ~"oN U~J~~ O ~ }w~'~ Opp ~ ~ U p u0 ~~p t ~ ~ Z may] 4v `d ~ ~ m m OYK~Q d Q N '~ ~0~~ i ~ ~ b O ~~ a D O 1 S I b 1 P b ~3 1 w b ~9 ~ a :, ~b~ b ~ ~ ~ F ~3~ ~ - k N o~ _ Y ti ow N + +- oQ N 40 '-- ~ ~ ~ _ vQ J O O 1 I b b `+~+,, a ~[sa A5 `~N~ i 5 b ~ :~ m h A ¢~ 1 b ~ ?' 0 ~ _. _ o ~ I ui L ~ ~ W L o~~ ~~ ~z"~ ° o~p ~ o ps V ZKo O ~¢ yd 0. O~ = r 3 7 O~~ Qm O L ~ ~ UZ ~~ Zp ~Jy O u~~ o- 0 0 O ~t O _ o~ J q OO ~ Q V/ O o ~~ ~ ~m ~~ o ~z a~ ~ u l~ ~~ b r- ~ ~~ 3~ et 6 V ~ ~~ °a a b ~.+ '~~ u b b it ~ ~~ D ,^~ w m b U b by `i 11 N { ^- o p o z N ~~ ~, s O 4 ~ v ~ ~ ~ ~~ J p ~ ~ ~ N ~ ', ONp i ~? (~Qm ~ :. ~ ~ 7 w ~ ~ ~ a Z ~ ~ ~, J d' o a3 ~ v ~ ,. Q az aL I~_ Q, W V r o u+ v~ m Zoo © o ~s ~$~`° N o0 s ~ ~ ~ ~ ~ 54~~32 4 Q 7 r O1 0 } { < a ~ b z f p ~ Q o g [~[J~ K ~f'~ Vicc, u~.. A S`=ji U ONh t~,7 ~ V' ~ ~'~ (qJ Z J ~ ~ ~ ~ Q 'o $ ~~ m _... ®~ ~~ ®' e C 1NIOd tIJIT~ v ~ ,,,. r-'`l _.~ ~ ~~ ~~ ~ T "' l___.~ ~ ~ ~ g,~ ~~ 4 ~ n u d z ~ Z V a~ S~ 33~ ~ O g u v°~e ~«, ~ ~ ~ x° ~~~ S'1~ Q ~~ Q ~~ ~ 7 ~ ~ U O ~.++ Z `L J ~ ^ 0 O L `L ~r Znn i2,- U ~~ 4 V' Z~ ~ ~a~ Ng~ ~ ~~ ~w~ a Q 3 ~ 4 O Q U z~4 U ~ ~>~ 4 ~ ~ ~~ w L _-- b '~ o ('`~ ~ a z S O ~ az w ZOz> ~'~ o 4 O N > > ~ V~IL Z a ~ ~ z iL ~y j ~ 2 I y ~ U < ~ ' ~m0~ w ~ -~ p ~ p ~ o3~oNu {-, o p O ~ upra~0 `n d V r m D~ V O Q ~ ' N N o[U ~A c~ 00 00 a ~ O _ ~ 3 ~ a r-~- b o U1 i, N _ <~ $ ~ 3 O N 0 ~ ~^ O~ ~~ °~ G Nu' p N~ N m :_ ~ ~3~ o O y ~ p O W 0 p,0~ ~, ~~ _~_ VNd V' O o ~, ~ o U ~ ` a L.. ~ a OS ui~ O ~~ N FL a o ~ o --'-- 4 ~ of ~ 6 5 1 0 h -~- ..J Q O Z 00 o ~, ~ W Q Q v ~ O !O L Q Q Z O W o~ ~ ~ Ow U ~ 4 ~ C U UO w ~.- ~IPO)u~IV7 i o a r-~- a ~ U1 I ° O ~ w c z~k ' O '~ N u ,~ u, z ~w p z ~ z '~ ~ z p Oz~ z0 O J? 0 8 V ~~ ~ 3 ~ ~ a gj ~~ z 4N G, ~ ~~ ~o ~z °u > d ~ ^~ Z ~~ ~ O j a U W, W ~ _-._ SE~~3~ .w /, o ~ `^ N ° s _"~ ~'" a V N ^ a 0 0 ~i ~ °~ u H y~ ~ ~~ .']( z ~ a `~' \ O 2~ ~~ ~ J ~ i9 3 o '1 5 _ a `> I ~, o .~ z u T~3~ ~ r Z O ~ J o ~ ~ a ~ -F H _ ~ ~ V o0 W °o '~ ~ N o~ ~ ~ --- - ~°s U1 °+ - to ~ v ~ Qa J ~ ~ o ~o ~W Q o os Na Q N~ LL b m ~ Z a a~ m W ~3 _ ~ - ~ ~Z ~ t s ~ ~ ~ Ny Q _~ _t-_~ _r ~ :L~ _C~ ~ CC_~ O .O O O Q ~~ o >, l N N l N I p N ~' p tl ~ 'a o 9j _ _ "°'~ ~~ ~ ~~ Z N ~ ~~ A F~ M N ° 3 V ~,~ ~'' ,r,, ~ c b O N m L ~ N ° _ ~I I zo~ ~ „BI ,.91 .ZI a 8 ,S b Z ~ U ~ N ~ O, In 16 i"" '. a O NIW ,b ~ ~ 0 "~ Z Fl ~ ~ K O ~~ ~~ ~~ ~, 5 ~ ~ ~ V ~~ ~ 5a I k, ~~ ,. ~ ~ ~ ' 'I ~ ' !!nn J I - " .. ,.ail tt~ .t yri?~ • ,~, v^1 ~ K 8 _ _ -~ 41' 81 I ZI I Z 8 . . [pl b O ~ F- _ M O ~~ NIW ,b ~ ~I Z O M1, ' ~ O l u~ u j s ~ o s 3 LL~s ~~ m~ y ,~ ,Y{x,t O ~ ` '~ '< ~~ r~r~ , ~ N ~ .B I .B I ~ .Z I Z ,S b O a ~ o rc " ° N ' o 3Q a w o~$ ~ ° ~ o io r~,n b a ~ o ~ wa4 ~ w~ w W W dlYi ~~ ?d u ~ 3 min Z O 9 I - LE .. T,I, M~z' V ° 8 I _ W N ~ ~ ~ , ' IY ~~ b ~ ,B I I ,B I I' I~Z II N og sb .~ N 0 , Z N ~ ~ O ~ OI NIW ,b J J W Z 0 W W O m J J W Z L~ r Z W W O m N 0 3 ~ e o p,U u'N rc ~ U " Z i ~ O ~ ~ ~ ~ w~ ~ w~ d~ ~s, ~ ~ ° °~~~ ~~ 3 mN W a 8 LI N a a _ V ~N ' ~ T x ' , ,V I ~ " l - -, Z ~ .B I ,B I 'gip I , Z I ~ a8 sb w "~ ~ a _ ~ a '" 1 6 O NIW ,6 " O ~ ~ Y O Vp N N ~ K ~ O ~ " Z 9 _ Y O N ~ w ° ~ ~ 3 ° ~'~ `~ W ~ ~ ~ ~ J o V W ~~ a I K Z o~ O ~ O Q' o --I ,B I .B I Iip I .Z I Z ~8 sb ~ o t _ Z lu N ' ` L ~' 1 ~l I 6 ^ O NIW ,b O M W V 1' C, O 3r, O u O N ~ o u ~ 91 ` Q }g~ N a,•n ~ ~g Id ~O{ ~5 N ° ~ ~ dY ~ `~ d `~ 3 ~~ 0 J , W ~ ~ ~. W Z a N 0 a (~ a8 _ ~ ,sb N N ~ N w ~D Z O ~i6 O m ~ NIW ,b O IJ '~ W U ~_ F- W W 0 m J J 'W Z O H Z LWL 1'~ W O W IJ J W V Z L_~ r Z W W O m 1 b I.ZI .S b a ~ ~ ~i ~ ~ d 4 pau V N r a'Z~ ~ ~ o Z~[ / ZCC~ L C ~ 3` ~ ` , , ON J o ~ ~o ~ ~.. w > U = . ~ U Q / Z W W ~ O ~ ~ ~ ~ W ~ ~ ~ U ~ I~ \ ~,A , I ~ W ,~' ~ ' ~ z v N ~ ~ ~ m .,`,. O ~ Zu ~, ~ o m V Q Wo a3 Q ~ VQ V w N~ ~~~~,~,~~ ~~ fL~W IWI "~"`'"' ~ U1 ii 1 V. w ~ In `~>~ \}~ , ~\ . l 5 a ~ .a O 0 Dul `1 o J a ~ ~ m u K Q ~ ~ d 7 / / ~ \ o i N i \ a N t N O ~a 3 C, ° v V ui ~ N J 0 w o V Q ~ O I yq~ w ~ ~ ~o w _ ` ~u+> ~ s N ~~ ~ o~s k'~ J U N 7 U Z W ~_ oooaooaaaao~oo U Z N N N N N V1 u ~ K W R' i N N K - K N K - K N K N K ~ - K n K N oC 47 K N oC ~ K K ~ O K ~ - K Ql K N K r~ K N K Vl N K 7 K M K M N K V K nl K N K N K yr N K W O o .n m m g vi m m o N m ~n 0 m rn m 0 .n m M 8 n m m 8 in ~n m m ~n m g o m in o m N m o N in m a - ~n m ~ ~ ~ ~ ~ ~ ~ N in O fV N iV - $ N b ) O g b N in b N O (h n ~ n V n V1 N O ^ n ^ N N N N m n N ^ ~ D > m O > gm O > -m V- N gW N Z ;~ U1 Z m~ ~Q ga O gm , D mm ~ ~m _ N ~ o ~,o ono mo o ~ ~ ,~_ ~,_ roo o ~~ ~~ o Jl 1 ~ _ = + V f- N / - m iu - 1- N _ N ~= _O N 1- f Ol Q O ~F R~ V O e(1 - 1- Z ~ r1 N F- m - 1 N m Z ~ j O j N - Q N N N p}~ py~ o~ d N ~ ^ 7 Y ~ ~ a ~ ~ o o ~ 3 J k' !G' ~ 4~ }J ~j O 7 y 2 ~ 2 Y.i S x 2 w ~ 0] 2r5 ,p°b~ o u Oa Y o 9 S U~ ~ h a w 0 / ~ ~ ~ m o~ I// g ~ ~ ??{~ 0o g< za N N g ~o ~ E u° -~ '2S ~ ~ ~ ~ ~d g ~ ~ 0ou ~k ~o ~ 8 ~~ 'R~ o °3,W xvw ,s g ~ AA ` .- oaa sv ~ ~~ o o '~ ~~ a~ ~ ~a rc w°m o< m~ ~b ~E ~ ~~z ~~ ~ ~s ~~ R DI ~ zi m ~~~ ~}~} ~s ~ oa~ ~~ ~ N b ~ ; - ~ ~ ¢~ ~~ g 3~< ii iW ~ ~~~ ~ ~~ ~ ~r~ r~ n~ ~~ ~~s `~ ~ o~ !~ _ ~ .d o~W ~~ Z~~ ~~ O ih '~ p z z Z ~ U z ~-Oz O ~ ZO O in a=8 ~~ =~U ~ 3 ~ ~ o= ¢ N ~ 0 p ~ t ~ } Z U >V' ~ j z0 ~ Z K O N > CVO d _ _ m ~ ~_ a a ~ ,b l I w o ;_ i =s--11 Ha ~~ ~ ~~ a a Qo o ~~ ~_ ~~ N~ ~~ ~~ a~ ~a - _~ ~~ za ~ ~°~ wo ~W ~ ~~e^,~c =a~ c~ ..I 8~ o =_ ¢ma ~J NV ~ ~ ~ Z I~3 ,O ~ 0 ~ ~ I ~I v~ V ~i~ nmo ~ ~ Q €~ U W ~o y 8~~ a < ~ :~~ ~ ~ w a~Y ZI ~ ~ O a o K z I - t--~ W ~ Z,ff ~NI~tldS xvw i .~ m a r I o 'U ~ o c~ , a ~ ~ o c~ c~ c.~ a c~ ~ c~ C~ c~ o c~ Q C~ a N S '•".~ ~ o - o ~ n .~ K F- m > m m n ,/ ~ ~ O ~ w a ~ W M ,~ ~ w 3 °' se ~ / o R ~~ ° = j ~, b ~ p r i z ~ f /°, ~ 41 - a ° ~ aez ~ V ~mb,° a' ~ O ~ ~ Z > ~ z m n 0 > ~ m - w kooN r ~ srl pKK O n. ~ m ~ ' O R~ o M in ~ ~ M ~ p l~ ~~ m oOiO ~ mi > mO -~ ~ '^ ~ m Q ~ n iii "' m O µ~ m m; J O w ~ J O ~ ~ ~ ~ ~ ~ K O ua ~ ~ r pp m Q m 4 ~ ~ ~ 3 ~ 4" fZ f / vtt3r'+3 >+ d SC ~ / ~ N ~ w O ~~ >~ ~ ¢' ~ L ~ 3 J ~~ ~ m ° ~ ~ mb- ~ ° o EzE ~ u~ m~~ ° O SB ~ ~ W N K u+ ~^ ~ V '^ m r- D O U v,ml_pZZ m Z ° n _ ~ O Z~ 4 h ~ > O p w~~ lD ~ Z 0~~~ ~ '~ W Opts H KOw ~ ~ u.l OOKW ~J ~ ~ Agin J ~ mgr O O m 0 21 ~ m ~ o; ~ o ~ r. ° M ° O O v. m ~ oCC m o n K cp ~y> ~ ~b F- m ~ m ~ Q a ~, w ~ ~ ~ O D> ~ J o v a ~ ~pp a t ~ `~ ~ L S m S 11tlM y90b Q i m ~ 1: ~ d i ~ CZ b ` / p = W r b Ow O t~ ~ b_ ~ '~ L ° ~ ~ °s a J N 11YM YJOb ~ O ' ~ 1JLl O K ~n ~ O U NMN 4 O (J ~,`~,~OO m Z o n m Z o N zd m ~ z~ m ~ iW O Z J ~ ~ 7 !- vw~u F- O "' `~ i`~ ~ ~ O z ' F- w ~ u ~ O~ r F- Oa W OKpO„~~ 0 1 j w OK ON OO 0.l Q] min '' c~ m min O m d m m o 0 wo ~ o > o C m m' w ~ "' m ~ ~ `1 M r it ~ w ' 3, ~ °w ~ ~ ~~ x~p a ~ ~ i L~ wM 4 3 °- cl ' / ° ~ ° .f. O ~ ~_ ~1~-- CJ ~ iNav+as~a uiuin m ° ~~ J r`b~+ `~ C n i"r~ ppp[ ° a b- w °~ ~ D `2 O Z W G O L 1 ° O< ti W NbK ~ 10~ w im+l m LLJ ~O~viWf1 ~ Z C N ~ ~ W pKpZ ~ 0 Ow~p 0 O ~ K ~ ~ O [~ w W Op O= ~ in ~- ° ru KKw y ro p ~. ~ ~ S ~ J ~ ~ Q O O ~ O ~ O O = ti'1 m N N K 8 ~ > ~~ O n v C '' ° w ~ ~ ~ w Qm O~ ~ 3 scz / a ~ ~ m ~ ° ~~ m m ~ 3 ~ °' _-----" °~--- ii ~ ~ v ~~ W, i~ ~ a b _ a~_-- 1NalNah = ~ ~' ° ~ ~ b_ _ ~ ° N 0~56~ ; U~.S NbK • o 'i v '~ x10141 07 O r ~' (~ v M ~o ZOZ ItVM 7<7 O i~ Z q M 6 tt1 0 4 Ol Z l N x+ m O Z> Q O n~ O U- n O r O ~ Z O~~ K M ENO oC r >~~ O z°> O= "' 4- pops wwr.. F, O"'~~W OJ ~ oL O~Ow ~~M w op~in ,~ O mN KKO ~ ~ ~ ~ a o s 8 w m D_ f'~ U' m ~ O ' ~ O 4- .d ;~, n ~0 EKE = r- ~ M > m A Z_ m O `< J Ii ~ w m cv O ~ ~ ~ I ~ n u~ (~~ , r, Wpp oC 1 w ~ i~ ~ 4w-m'1 C ~ ~ ~ ~ ~ ~' a ~ _ > a ° 4 °- r '~ r -~>-- ~ - 4Nava~ra v ~ u"' ° ,/ ~ ~ ~ ~ ~ ° O\i V i~ m i. V f, ~- 0 2 u9xt p .. m IiVM Y~O~ J N O (V V- N 41 990t AL J m Q Z> • ~' O ' ~~~ ^_ ri 1 ~ ~ ~ _ ~Q`~' QQN jppW V ~w "'U2 O dpi z_ oz~ ~v og°° ~~° i3 'd ~ z~ 0 0~ o~ r z Q~ ~ Z O U U r ~ - KZ wpUu > ~ O "~ ~ O m n O > c'1 w m LL1 N m > h Ov'~ `~ O al a ~ OO4ly ~ tDr G nom, U - n$o~ ~ w w ooo~ a ~ ~ p vm~ ~v ~ ~~O Z~~NJI ~ 4- ~ ~~ tin ~ F- O ,y, J z Gd M~ uZ.t O~OOtwfl ~ w u1 O K m O Q ('~ -l__~~ r-, .r-7 ~ ~ ~~~ W ~ W U V U U 'G V U U _ V _ U U U V U U ~~ 1 O O O O Qp O 0 u1 0 l9 0 N 0 ~D 0 N 0 p 0 ~ 0 0 0 0 ~J 0 O 0 O 0 ~ O 6l ~ 7 tf1 l9 0~ - u7 0 O N ~' O V' Q ~ lD C' l0 V' N - V' c~ N ~ ~ (` 7 7 cD z0 i ~ z v~ ~ -~ N f~ N N - N I~ ~ ~'1 Q yJ 6~ - h i71 cn ~ - ~ N - th V (` CD lD I~ u'~ l9 oc oc O O ~ z O ~ p '~ 2 ~ ~ p O Q ~ - - V' c0 N l9 to N ~ ~ N 7 c0 m «) 3 3 E ~ ~ ~ a ' a O ~ p 0 a ~ ~ ~ Q > ~ l9 ~ 7 N N - ch N ~ ~ l0 rfl N N V ~ ~ O W tc ~ ~ ~ O O ~ O --' y 33 VV5 ~ ~ ~ V ~ w z ~ W ~ w d c~ `a O O ~ v 3 ? ~ o O a a O O ~ O ~ ~ O ~ _ ~ ~ ~ O ~ O ag ~ O u' U U V U U1 to to N ~ N N N N U N p p N ~~9 OW O O O O O O O ID p I., b r 0 O 0 O - ~ ~ O O N O O O 7 u'~ N O O I I ~ ~ w I I I O 0 I • ~ 8 ^ ~ ~ ® ~ _ I a I = I ~ p b b b b i;n b b a'1 ~ Fw b v b ~, b ~ ~ I C N I d a Z z O p z 0 ~ ~ W C7 ~ ~ I z _ _ ~ _ _ ~ ~ ~ U~ ~ ~ u ae ~ ~ a a °- ~ O a ~ ~ J I ~ 3 Z ~ ~ J W U O H z Q m U ~ w L U' L - V Y ~ ~ Z O Z _Z Z _Z Z_ _Z Z_ Z _Z Z_ Z_ Z_ Z_ 2 Z_ ~ Q m t ~ Q m Q m ~ m ~ m ~ m ~ to ~ m ~ m ~ to ~ m ~ to t~~ t Q m Q m m O \ ~ ~\`~ ~\, ~ ~~ ~ ~'. ~ ~~ ~~ .. ia`~ \ ~ '' ~ ~~~~~~ A ~ N a ~ i Q / ~ ~ / \~~ / W ,.Q_ ,' n~ __ pti LY~ `. ~~~~~ ~ ~ ~` ~ ~--- Q / ~~ ~ ~ ti l ti ---~f~ _ // ~~i l ~ I'~ i ,~ J ~ ~~ r~ Jr" ~~ 1 I~ ~I~ ~ J I ~ I f ~ ,~ ~~ ~ ~ II ~ I J ~ /- ~ I~ J ~ . ~i .8 , ,, , ~, ~~ ~~ ,.~ ~ ~~ iil`y~~ 11 a5~~ $q,?c ' ;' ~~ r- ~ ffljj~~~ // s ~ ~ /~ ~ a~ ~ r / b ~~ ~~g ~ ~ ~ ~ / dY ~x%~ ~ ~ / ~a T W ~ , ~ ~~ r p ~ ~ I--U W a Q' ~~ Z Q ~ Z 2 ~' / ~ ~ W Q O O d ~ , `~ i "~ :._ U 1 ~~ K myO o O e b ~, 0 N a g w ~, o 0 ~~ ~ ~ VQ ~ ~ 2LL' 3^ ~ a ~n ~ ~J o ~ ~V ~ g _~ 3 ~ ~ O ~~ iy ~ ..9 1 ~ .8 .b Z 4 J W v N Z N~ ~Z V ~ N W ~ ~ ~ O ~' m a Q y ~ o ~x O V ~ < ~ a Q~ ~ m O ? ~$ o 25 w W ~ Sl w ~ ~ w~ ~ ~ W~ M11~ 8 ~ ~~ ~_~ ~~ a a~ N ~ CC OC Sl z 0 J ~ V N Z N ~ N .- ~Z VW ~W zo °- m a 0 .e~~•Q~ .z J W v N Z b N ~, N . O Z CG W yr ~W z °G r• iV O > J ~U ~Z N~ .+ 0 r ~` Z O O a 0 m ~~ ~~ U df, o~ r z~ ~O w~ a O z4 ~ o O ~ 7 ~ ~ ~ ?cm, O ~ ai No ~ Z lh ~ U ~(~' ~ Z i~ 61 1 ~~~ Ug 6 ~O c J~ ..` _~ .~ ~~ ~~~~~ry7f •l--i'_1 -3 ~- 0 J O V W Z O I a N Q ~-~- L N r' ~ ~; o o ~ ~- N °" ~~ o vW~n ~ d O ~ 8 Z' ~ N 4 Q ODD ~' 3 ao.- ~ w~ ~ ~ Y a ° ~ p Q ~ ~ V U J JO Q -~ zZ- r ~ W~ J W O v m z o t= W OG O o ~ td 0 z 0 I m 0 ~ 8N p r N Z c ~ O ~ m P ~¢ ~ O ~ KO g~CZ rye fl 1 1 ~v ~`'~ O ~~ ~~'~~e~ s 0 N O ~ VR ~ ~D 3o N~~ ~ ~~ o ~~ t ~Z w w ~ 7 O ~_ 0 ~_ Z s w/ 3 /i ~~ ~Q ~~ Q r 5 > ~ o s 3 ~ 0 5 8 0 ° 0 ? W o w > ~ O z ~ ~ ~ g > ~ O ~ II--~~ 3 3 O ~ ~ ~ m - m g a ~ ~ 3 K ~ ~ ~ ~ ~ E i i ~ ~ O ~ O 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ O ~ SS d u i_ ~ N a0 aa ~ ~ W O S (~ _ y a ri ~ O rz ~9 a p O uJ W U ~ O O m N O V1 U1 N U1 a U1 O U1 V' O N K O O 'n D Z~ I O J Z I I I I 1 ~ ~ Q ~1J I f o U . ® K I ~ ~1 ~ w I I ~ a I I I I i Fo I 1 o~ ~o I f ~o I I ~ ~ C~ Z I I ~ x~ p y I I I Wo Q Z R I ~ ~ W W I ~ I ~ ~ O j ~ I II l ~ ~ ~' l ~ Q / ~ V r" v i i i ~/ // ~~ m V ti 111! ' .8 $ ~ _ -~ N ~~ ' { ~ ~ 1 8 1 J '' I ~ ~~ ~~ ~' ~~ i, , , - - ~ ~.t~ ~_, yr ,, ~~~ ,, _ , ~~ , ,, J \ , N y \ ~~ // \ N / _ / ~ \ '~ \ ~ ~ ~ J ~~ ~ _ ) l. •~ N Z ~ I..I.. _ / ~ ~~ ~~ f 8 r~ ~ ~" ~ Z Y _~~~ ~ - ~~~~r~~ ~ ' ~ w Q On- o.. __ _ ~, ~ '~ UO ~ g ~ ~ a ~ ~ ~ /, r~ r ,' ~, ~,' / ~- ~ e ~ ~ ~. ~ il~ ~ ,~ II I ~ Ii 18 i I I I I I a I I I I ~ I n I ~~ I 1 ~ II 8 I I I II k / •- I I ~ f I _-_ W~1~- I I I ~LE'~- II ~ 1 _--_ I N ~- I I J I ~ f0 III{ m i I I II Q ~ I m I, ItlJ ~ f ~ I I' ~. '. ~ 1; ~ ~~~~ m ~,~ 1 11 ~, ~ ~ , ~ ~ \ ~~ \~ ~~ ~\ , ~~,\ ~ . \~, .~ ~~: ~ ~~ . ., ~ W ~',~ ~• `/ ,~/ __ ~ ~~ a a aa_ aa_ as a a_ as _ a.. a a. a a ~- a-~ ~_ a a as Q ' la' Q~F , Q Z to uJ -~- G K 7 r.,~ ~ ~ O ~O~ ~~~b Soy ~~, .~ h N 1 a, z I w ~ ~ ~ 1 r ~ C~ ~O Q CJ -4- ~ ~ ~ o U1 ..~ s.'z CL z 4 ~ 0 h- >, rt °' Z - a x ~~ O J w m r ui ~~ ~ r ~ ~~ N Q ~ ~7 `L 0 o. I~ ~ / n v 1 d ' I~ o Q '~, N 'O Q `f- Q r I ~ o ~ m ~ o ~~ N ~O N Z ~ O n ~ ~ O O N R O O m z a z 0 Q z m n w i o s ~ s~ s ~~s z~' ~ m ~ r.f <[ a. Z 0.J z~ K 7w ~ 2 O b C ~"' '~ w o ~.4 Wa. ZD ~ ~" ifs v~ O N _ iD N Rs - ~ b ap ~~ = d OL7 ~ ~`w, j p ~ JN `~ d _ 4 ~ O ~O ~ ~ ~ z 3 ~ ~ O~~ 3 ~ ~r ~ "~' ~o' i W 4°; ~F z a3 - p I K n. V ~ 7 'a- --_~. 4 ~~' ~ l1l ~~ 0 1 Ct -----~- u y kY O ~~~~ ~ . ' 9 n m ~,: .Fyn'.. ~ 07 ~' O N yW~ Mme' W _ ~ ~~~g, , I o ' p 1 O Q~ ' 3 ~ N z4 ~ ~ - `~~ s J~ ° w gWb ~ 2 f W ~ ~z d o o „ x ' °_~' `n an S ~ I ~ ~ °y~+ a 3 P N w ~~ y ~ 03 r~ °1v 1 O ~ N Q ] s ~ ... d ~o~ ~ 0. ~ ~ O 3Q-o ~ m z cn ~ f~ b n ~~ `~ U- tut g 7 U m N N 4 ~a w ~, ~o ~w o lip i s m m <y. `' w p ~^<y ~ '~~j; ~ w , ~oo `~ s o C~ ~ m Q ~ N Jor ~ ~ ' n ~ N UNM ~ n n W O ' ~ n ~'~C iv Z O ~~ '~ W ~ 0. h ~ ~m LLw z- a ~= z 0 5 ~' " ~ g \~ = U V ~~ os= >~ 0 5~ ~t~ °"~o N ~%+llY ~ ~ K p ~~ - ?~O a Oar LO U U ogz ~" U ~~ z `~ ~~O S O m m `~ N n 4 w 7 a 0 qmu~ PwY) a~z0 t', ~~ yi _ i. 8m 0 m O m N n m s 3 d O Z 0 J z O O ~o N M l W ~~ ~o N ~ u_ mtI ~ t[o °_, lad x p Q O qy Q O ~ u'~ m N ~ Q ~Cr Q ZZ'3 J V 3 o ~t ,l m .. w^ O ~ ~, g m y ~ }~j N ~, ~~ w a 7 w Z G ~~ '~~ ~il~ 6 ~ ~ w~ ~ l~ z m z ~K 4 1~1 W O ,,11 ~ ` m M 47 +1 wn u~ 3 ~` ~ ~ 4 O K m ~ oG ~j VJ 0 ~ ~• ~ Q O 4 v p = Q ~ $ c Z {~- o m 0 $~~ab `o ~~ ~7 ~~o(}?~ Y V~ IS-1 G 0 111 ~ o at3Gw ~~-~ ~/ ~ ~ ~ = ~ z „~ cv ~ ~ ~~~ ~~ J °- ~ ~ o orb ~'~ ~ ~~: ~~$~ ~~~ ~~ rJr 71 O 000 ~ J,az dim w'z y m pJS .~3~ u°" S~~ N ~N Q 1~ --~ ~~ .~ _ "~--~ :Q 8g m N n ~ ww o z az0 ro z~ mr Cn a Appendix 11 Wells Location Map I~ U C ~.~' C C C C U ~' II , U CI C LJ C I~ L.J __- - - I ~ I I I S~ ------------- I _ I I S~ I PROPOSED I _~ ~ ~ ~ i TAHOMA BLVD I S~0 I ~ I I I i I I I I I I I I I I I I I I I SW Berry Valley Road ~ i ~,~ I --------- I I I ;,, ,;, ~, I ' ~ ~ ~. ~ I i ~ -p ~ ~ ~ Z I ~, , o o, ~; I I I i i +~ I ' I i~ Z'~~ I ;; ~ ;%;~ I ~- n ~ ~ I ~~, ~,~ I D y ~, -, , -r, o ' ' '' ~ I Longmire St SE i. ~ - - - i ~ i i ~ ~ / ~ I / i i i, ~ ( ~ , ~ i I I ~~ ~~ I ~~~ ~~~ I I i ~~ i ~~ i I -~ I i ~ ~ ~~i I ~'~ ~ _ I '~ I ~~~ ~,~ ~ I ~~ ~ ~ ~ I ,~ ,~ ,~ ~ I ' / ' ~ / ' ~ ' ' ~ , ' ~ / II i / ___---~_____________-..L.___ ® ' O EXISTING WELL ~,~. 100'RADIUS TAHOMA TERRA APPENDIX COf13~1f1~!UP WELL INFORMATION 11 ~~~~ aeu • mei+sPGeunaN PLANNING • SURI~EYINC U I~ l_.J ~~ 'I I~ 1__1 U I~'~ U ~~ ~,J r`? U U n U IJ U V ~'~ IJ C I i ~ I li Consulting Group DE9aV/BUHD awe • m~NSaaRr~naN PUWI~NC •SURVENNC N W _~ t7 2 O TAHOMA TERRA EXISTING SITE CONDITIONS WETLAND BUFFER & BOUNDARY N.T S ~xuir~rr i 1 Appendix 12 Wet Lands Boundary Map